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Abstract: Frass generated during the production of black soldier fly larvae is attracting the interest
of scientists and horticultural producers because it is a material made from the biotransformation
of organic waste, it contains several nutrients that can be used by plants, and it has a biostimulant
capacity that has become a recent focus. Thermal composting is a stabilization process that improves
the physical and chemical properties of treated wastes, allowing better performance in plants com-
pared to the waste in its fresh state. In this research, thermocomposted frass was evaluated as a
germination substrate for kale seeds (Brassica oleracea). To achieve this, the phytotoxicity of increasing
concentrations of frass was evaluated by examining the germination of kale seeds, and seedlings
were grown for 30 days in germination substrates mixed with 20, 40, 60, 80, and 100% frass under
greenhouse conditions. The treatment with 20% frass showed the highest values of seedling height,
stem diameter, number of leaves, length and width of the first true leaf and length and width of
cotyledons, and reduced the contents of phenols, tannins and antioxidants. However, the content of
flavonoids increased compared to the control and the rest of the mixtures.

Keywords: biofertilizer; organic waste; phytostimulant; spiral economy

1. Introduction

The most frequently used growing media in soil-less cultivation are peat, coir, soft-
wood pine bark, wood fiber and composted organic wastes. These materials must provide
physical, chemical and biological properties to support healthy root growth in the environ-
ment and must provide the practical requirements of the production system in which they
are being used [1]. Peat moss is the substrate most frequently used for plant germination
due to its high moisture retention capacity and porosity. However, these properties en-
courage the proliferation of fungi that are harmful to the proper development of plants [2].
Furthermore, this substrate is derived from moss ecosystems and its extraction destroys
areas of ecological importance [3]. The search for new materials for plant germination is
considered a means to reduce environmental impact and improve seedling development at
the same time. The use of composted waste is a good option, since it offers physical and
chemical properties suitable for the development of seedlings in addition to reincorporating
waste (for example, livestock waste [4], municipal solid waste [5] and vegetable residues [6])
into the production chain.

Black soldier fly larva frass is a bioresource composed of excrement, undigested food
and insect exoskeletons, and it can be used in agriculture for many purposes, including to

Agronomy 2024, 14, 1392. https://doi.org/10.3390/agronomy14071392 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy14071392
https://doi.org/10.3390/agronomy14071392
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0003-4093-7810
https://orcid.org/0000-0001-8001-5912
https://doi.org/10.3390/agronomy14071392
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy14071392?type=check_update&version=2


Agronomy 2024, 14, 1392 2 of 11

improve plant growth, increase production and improve soil. This is due to its high organic
matter and nitrogen contents [7]. The food or residue used to feed the black soldier fly
larvae has an effect on the chemical quality of the frass [8]. However, it has been reported
that it is necessary to stabilize the frass through practices such as thermocomposting to
improve its chemical properties and provide better uses for plants [9].

Frass post-processing through thermocomposting may be advised to avoid soil ni-
trogen deficiencies or impaired soil–gas permeability, and thus to improve the use of
nutrients by plants [10]. This process reduces the C:N ratio, the pH (to neutral values) and
the concentration of phytotoxins, and increases the germination percentage [11]. It also
significantly increases the chlorophyll concentration, growth, yield and agronomic nitrogen
use efficiency of maize [12].

Fresh frass has been used as a germination substrate for baby leaf lettuce (Lactuca sativa
L., cv. Chiara), basil (Ocimum basilicum L., cv. ISI 602) and tomato (Solanum lycopersicum L.,
cv. Roma V.F.), in a Gainesville-type feeding process, in combination with commercial peat,
where 10% frass showed the highest values in plant growth [13]. However, it has been
reported that the use of immature composts can cause phytotoxicity in seed germination [9].

The phytotoxicity test is performed to qualitatively determine the delay in seed germi-
nation due to the presence of phytotoxins [14]. It has been shown that the application of the
thermocomposting process to fresh frass reduces the potential presence of concentrations
of phytotoxins such as phenols in the soil [11]. One way to quantify the impact of these
compounds is to determine the antioxidant content of plants [15].

Antioxidants are secondary metabolites that plants produce under different types of
biotic or abiotic stress, and their quantification is an indirect way of finding out if plants
are subjected to any type of stress [16]. It has been reported that a deficiency of nitrogen,
phosphorus and potassium generates an increase in flavonoid [17] and phenol [18] contents.
The presence of beneficial bacteria from the Rhizobia family favors the production of
flavonoids, and these also play an important role in the formation of the nodular meristem
in the roots [19]; moreover, the main function of tannins is to provide protection against
attack by insects and pathogenic microorganisms [20].

For this reason, the aim of this work was to evaluate the thermocomposted black
soldier fly larva frass generated from the treatment of fruit and vegetable waste as a
substrate and its effect on phytotoxicity, the germination index, growth and antioxidant
content in kale.

2. Materials and Methods
2.1. Obtention of Thermocomposted Black Soldier Fly Larva Frass

Black soldier fly larva frass (BSFLF) was obtained from the biotransformation unit
pilot at Universidad Autonoma de Queretaro, Campus Amazcala, Mexico. The feedstock
was the organic residue of a mixture of fruits and vegetables from a municipal market
which had undergone a biotransformation process. The residue was placed in plastic boxes
filled with 20 kg organic residue, and 9000 5-day-old larvae and 500 g of sawdust were
added to each box to retain water and reduce the moisture of the residue. Fresh frass was
collected using a no. 10 mesh sieve after 14 days. After collection, the fresh frass was placed
in a circular tank made of a black geomembrane for thermocomposting using the static
heap method, until it reached its maximum temperature, oscillating around 65 ◦C, and
then the ambient temperature, for a total time of 30 days.

2.2. Laboratory Analysis Methods of Thermocomposted BSFLF (TBSFLF)

After thermocomposting, frass was sieved to obtain 2 mm particles and then air
dried. The Mexican guideline NMX-FF-109-SCFI-2008 [21] was followed to determine
the pH, electrical conductivity, moisture content, organic matter, organic carbon, total
nitrogen, carbon-to-nitrogen ratio, cation exchange capacity, apparent density and carbon-
to-phosphorus ratio. Nitrate nitrogen was calculated according to Cataldo et al. [22];
phosphorus was determined following the Mexican guideline NMX-DGN-AA-32-1976 [23];
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potassium, calcium and sodium concentrations were determined by flamometry; magne-
sium concentration was determined according to Harris [24]; and humic and fulvic acids
were quantified following the Kononova–Belchikovas method [25].

2.3. Phytotoxicity Test of Thermocomposted Frass and Germination Index

The plant bioassay method was used [26] to determine phytotoxicity, and the seed
germination index and plant growth were also examined. The black soldier fly larva frass
was hand-sieved at a diameter of 2 mm, and then the extract was obtained by diluting 5 g
of frass with 50 mL of distilled water (1:10 w/v) and shaking for one hour using a Thermo
Scientific (Dubuque, IA, USA) maxQ 2506 reciprocating shaker. The extract was diluted in
the same series as in the seedling experiment (described below), at 20%, 40%, 60%, 80% and
100%, with distilled water as a positive control, to determine the effect of the concentration
of frass extract on germination, of which there are currently no reports. Next, 5 mL of each
dilution factor was taken and placed in a Petri dish. Seeds of kale cv Blue ridge (SAKATA®

Seed America, Inc., Morgan Hill, CA, USA) (Brassica oleracea) were used as a test crop, and
10 seeds were placed in the Petri dish in triplicate, laid on filter paper and then moistened
with 5 mL of black soldier fly larva frass extract. The Petri dishes were kept in an incubator
(Memmert model IN30 Eagle, WI, USA) under a controlled environment at 25 ◦C. The
germinated seeds were counted after 72 h, and their root lengths were measured after 72 h.
The germination index (GI) was calculated using the following equation [27]:

GI(%) =
(RSG% × RRG%)

100
(1)

Here, RSG is the relative seed germination and RRG represents the relative root growth.
RSG and RRG are calculated as follows:

RSG(%) =
SGCE
SGDW

× 100 (2)

Here, SGCE is the number of seeds germinated in thermocompost extracts and SGDW
is the number of seeds germinated in distilled water.

RRG(%) =
MRLCE
MRLDW

× 100 (3)

Here, MRLCE is the mean root length in the thermocompost extract and MRLDW is
the mean root length in distilled water. To evaluate the phytotoxicity of frass, the GI value
is calculated; GI values below 50% are considered highly phytotoxic, values between 50%
and 80% are moderately phytotoxic and values above 80% indicate no phytotoxicity. When
the value exceeds 100%, the frass can be considered a phytonutrient or phytostimulant [27].

2.4. Germination Substrate Preparation

To assess the ability of TBSFLF as a growing media, six different germinations sub-
strates were composed as follows (% volume): commercial peat moss (PM), PREMIER®

Sphagnum Peat Moss Premier Horticulture, Inc., (Quakertown, PA, USA), PM 100% (GS1);
PM 80% + TBSFLF 20% (GS2); PM 60% + TBSFLF 40% (GS3); PM 40% + TBSFLF 60% (GS4);
PM 20% + TBSFLF 80% (GS5); and TBSFLF 100% (GS6).

2.5. Germination Test

A germination test with the prepared substrates was carried out under greenhouse
conditions with temperatures ranging from 8.1 to 38.2 ◦C, relative humidity ranging from
16.6 to 76.8% and a solar photoperiod (maximum intensity 2448 µM/m2s). Kale cv Blue
ridge (SAKATA® Seed America, Inc., Morgan Hill, CA, USA) was sown manually, with
1 seed per pot. Styrofoam pots were used (diameter 8 cm and height 9 cm, 0.236 L) and
filled with the different germination substrates. Each treatment contained 33 pots arranged
in a completely randomized design with no repetition. Each pot was manually irrigated
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every day. The number of emerged plants was recorded every day, and the accumulative
percentage is reported.

2.6. Agronomic Performance of Seedlings

The experiment was carried out with the same conditions as the germination test. Each
treatment (PM, GS1, GS2, GS3, GS4, GS5 and GS6) contained 11 pots with three repetitions
arranged in a completely randomized design. Kale cv Blue ridge (SAKATA® Seed America,
Inc.) was sown manually, with 1 seed per pot. Thirty days after sowing, the following
variables were measured on each plant: height of the plant (mm), stem diameter (mm), total
number of true leaves, true leave length (mm), true leave width (mm), cotyledon length
(mm) and cotyledon width (mm).

2.7. Antioxidant Content

Extraction was carried out according to Cardador et al. [28]; a 25 mg dry sample
and 200 mg wet sample of kale were taken, and then 2.5 mL of methanol was added. The
samples were kept in the dark and shaken, and after 24 h they were centrifuged at 5000 rpm
for 10 min at 4 ◦C; only the supernatant was taken.

2.7.1. Total Contents of Phenols, Flavonoids and Tannins

The total phenol contents of roots and leaves were determined using the Folin–
Ciocalteu method according to Singleton et al. [29], modified to a 96-well microplate.
Briefly, 4 µL equivalent to 0.01 g of the extract was mixed with 250 µL of Folin–Ciocalteu
reagent and 1250 µL of Na2CO3 solution (20%), and incubated at room temperature for
2 h. Absorbance was measured at 760 nm using a spectrophotometer (Thermo Scientific
TM model MULTISKAN TM GO, Dubuque, IA, USA). Gallic acid was used for the calibra-
tion curve (0 to 20 mg) and the results are expressed as gallic acid equivalents per gram
of sample.

The spectrophotometric method was used to determine the total flavonoid contents in
methanolic extracts according to Oomah et al. [30]. First, 50 µL of methanolic extract was
mixed with 180 µL of distilled water and 20 µL of 2-aminoethyl diphenylborinate at 1%
in a 96-well microplate. Absorbance was measured at 404 nm using a spectrophotometer,
MULTISKAN GO. Extract absorption was compared with that of a rutin standard curve
(up to 2 µg/mL). The results are expressed as rutin equivalents per gram of sample.

Total tannin content was determined following Feregrino-Perez [31]’s method, modi-
fied for a 96-well microplate: 50 µL of methanolic extract and 200 µL of solution 1:1 (v/v)
of vanillin at 1% and HCl at 8% were deposited in 96-well microplate, along with 50 µL of
methanol and 200 µL of HCl. Absorbance was measured at 492 nm using a spectropho-
tometer (Thermo Scientific TM model MULTISKAN TM GO), using (+) catequin (up to
0.1 mg/mL) as a reference standard. The results are expressed as catechin equivalents per
gram of sample.

2.7.2. Antioxidant Capacity Determination: DPPH and ABTS

DPPH quantification was determined according to Zenil et al. [32]: 20 µL of methanolic
extract and 200 µL of DPPH were deposited in a 96-well microplate. Absorbance was
measured at 520 nm at different times (0, 10, 30, 60 and 90 min), using a spectrophotometer
(Thermo Scientific TM model MULTISKAN TM GO), and the results were expressed as
Trolox equivalents per gram of sample.

The spectrophotometric method for antioxidant capacity quantification by ABTS was
used, following Pellegrini et al. [33]: 230 µL of ABTS and 20 µL of sample were deposited
in a 96-well microplate. Absorbance was measured at 734 nm using a spectrophotometer
(Thermo Scientific TM model MULTISKAN TM GO), and the results were expressed as
Trolox equivalents per gram of sample.
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2.8. Statistical Analysis

Data were analyzed using STATGRAPHICS Centurion software (version XVI). An
ANOVA test was used for height, stem diameter, number of true leaves, first true leaf length,
true leaf width, cotyledon length and cotyledon width of kale seedlings; for significant
differences, a Fisher’s LSD test was used to make a multiple comparison between treatments
with parametric data. In addition, a significant difference was determined by Dunnett’s
pairwise comparison for germination, the germination index, antioxidant content, and
antioxidant capacity to make a multiple comparison with the control because the data were
nonparametric. The significance value of the data was p < 0.05 in all analyses. For percent
emergence, the total number of plants is indicated.

3. Results
3.1. Chemical Composition of Thermocomposted BSFLF

The chemical composition of peatmoss and frass are reported in Table 1.

Table 1. Chemical composition of peatmoss and thermocomposted frass expressed in dry matter.

Parameter Peatmoss Thermocomposted Frass

Moisture (%) 64.70 ± 0.025 46.46 ± 0.615
pH 4.435 ± 0.017 8.506 ± 0.093

EC (dS/m) 0.6735 ± 0.019 7.476 ± 0.475
OOM (%) 91.735 ± 0.039 78.63 ± 0.750
OOC (%) 53.21 ± 0.021 45.61 ± 0.438

Total N (%) 1.08 ± 0.018 1.98 ± 0.049
N-NO3 (mg/kg) 308.99 ± 4.458 96.50 ± 2.708

C/N 49.525 ± 0.725 23.13 ± 0.368
C/P 1263.135 ± 3.447 29.27 ± 0.453

CEC (Cmol/kg) 117.69 ± 0.647 55.57 ± 0.163
AD (g/mL) 0.1210 ± 0.007 0.2622 ± 0.017

P2O5 (%) 0.1 ± 0 3.57 ± 0.014
K2O (%) 0.05 ± 0 1.71 ± 0.014
Ca (%) 0.62 ± 0.007 0.70 ± 0.035
Mg (%) 0.085 ± 0.004 0.24 ± 0.071
Na (%) 0.03 ± 0 0.11 ± 0
HA (%) 1.6455 ± 0.012 1.629 ± 0.144
FA (%) 2.613 ± 0.018 1.731 ± 0.144

Mean values ± standard deviation (n = 3) of electrical conductivity (EC), oxidizable organic matter (OOM),
oxidizable organic carbon (OOC), cation exchange capacity (CEC), apparent density (AD), humic acid (HA) and
fulvic acid (FA).

3.2. Phytotoxicity of Thermocomposted BSFLF and Germination Index of Kale

All the treatments showed a germination of 80 ± 26.46%, with no significant difference;
however, the 80% and 100% composted frass doses showed moderate and high phytotoxi-
city, respectively, and the 20% and 40% treatments had values greater than 100%, which
means that they had phytostimulant properties according to [27]. All values are shown in
Table 2.

Table 2. Mean values of germination and germination index (GI) and phytotoxicity of different
treatments in kale seed.

Treatment Germination (%) GI (%) Phytotoxicity

Control 96.67 ± 7.07 a 100 ± 6.58 a No
20% 96.67 ± 7.07 a 108.54 ± 6.58 a No
40% 90 ± 7.07 a 106.46 ± 6.58 a No
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Table 2. Cont.

Treatment Germination (%) GI (%) Phytotoxicity

60% 80 ± 7.07 a 69.70 ± 6.58 b Moderate
80% 90 ± 7.07 a 51.17 ± 6.58 b Moderate

100% 96.67 ± 7.07 a 49.63 ± 6.58 b High
Mean values ± standard error (n = 3) with superscript letters indicating significant difference at p < 0.05 according
to Dunnett’s test.

3.3. Effect of Thermocomposted BSFLF as a Germination Substrate on Kale Seedlings’ Growth

The percentage of the emergence of kale was affected by the percentage of inclusion of
composted frass as a germination substrate; the results are shown in Table 3. Treatments
GS2, GS4 and GS5 were the first to emerge, and treatments GS5 and GS6 reached their
highest emergence percentage on the 7th day, and then the plants died. The moderate and
high phytotoxicity obtained for these treatments in the previous test was reaffirmed in this
test. After the 12th day, only treatments GS1, GS2, GS3 and GS4 survived, so the remaining
analyses were for these treatments.

Table 3. Emergence (%) of kale seeds in different germination substrates after different days
of sowing.

Emergence (%)

Germination
Substrate 3rd Day 5th Day 7th Day 9th Day 12th Day

GS1 0 81.82 81.82 81.82 84.85
GS2 12.12 100 100 100 100
GS3 0.00 72.73 87.88 87.88 90.91
GS4 12.12 69.70 90.91 90.91 90.91
GS5 3.03 21.21 24.24 15.15 9.09
GS6 0 0 6.06 0 0

Mean values (n = 33) of accumulative percentage of total number of emerged plants are reported.

The growth of the kale seedlings was recorded with the variables of height, stem
diameter, number of true leaves and length and width of first true leaf and cotyledons. In
Tables 4 and 5, mean values of these variables are shown for 12 days after the seeds were
sown and on day 30, when the seedlings were harvested. The greatest vegetative growth
was seen with the GS2 substrate, a mixture of 80% peatmoss and 20% composted frass. At
the end of the experiment, the GS2 treatment showed the best results compared to the GS1
control treatment, increasing the height and stem diameter by 32.7%; the number of true
leaves by 51.6%; the length and width of the first true leaf by 38.7% and 17.9%, respectively;
and the cotyledon length and width by 25% and 33.7%, respectively (Figure 1).

Table 4. Mean values of height, stem diameter, number of true leaves, length of first true leaf, width of
true leaf, cotyledon length and cotyledon width of kale seedlings in different germination substrates
at the initial measurement on day 12.

Germination
Substrate Height (cm)

Stem
Diameter

(mm)

Number of
True Leaves

Length of
First True
Leaf (mm)

Width of
First True
Leaf (mm)

Cotyledon
Length (mm)

Cotyledon
Width (mm)

GS1 1.69 ± 0.07 b 1.07 ± 0.02 b 1.06 ± 0.05 b 6.78 ± 0.56 b 3.43 ± 0.31 b 6.43 ± 0.24 b 10.10 ± 0.39 b

GS2 2.26 ± 0.10 a 1.21 ± 0.02 a 1.57 ± 0.09 a 9.29 ± 0.64 a 5.51 ± 0.47 a 7.95 ± 0.29 a 13.82 ± 0.53 a

GS3 1.44 ± 0.04 b 1.09 ± 0.03 b 1.00 ± 0.00 b 4.40 ± 0.77 c 2.53 ± 0.58 c 5.10 ± 0.12 b 8.41 ± 0.26 b

GS4 1.43 ± 0.05 b 1.07 ± 0.02 b 0.00 c 0.00 d 0.00 d 5.24 ± 0.17 b 8.11 ± 0.27 b

Mean values (n = 33) ± standard error with superscript letters indicating significant difference at p < 0.05 according
to Fisher’s LSD test.
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Table 5. Mean values of height, stem diameter, number of true leaves, length of first true leaf, width of
true leaf, cotyledon length and cotyledon width of kale seedlings in different germination substrates
at the initial measurement on day 30.

Germination
Substrate Height (cm)

Stem
Diameter

(mm)

Number of
True Leaves

Length of
First True
Leaf (mm)

Width of
First True
Leaf (mm)

Cotyledon
Length (mm)

Cotyledon
Width (mm)

GS1 3.33 ± 0.11 b 1.07 ± 0.03 b 2.48 ± 0.09 b 16.67 ± 0.61 b 7.74 ± 0.40 b 6.12 ± 0.17 b 9.92 ± 0.39 b

GS2 4.42 ± 0.17 a 1.42 ± 0.04 a 3.76 a ± 0.11 23.13 ± 1.17 a 9.13 ± 0.41 a 7.65 ± 0.25 a 13.27 ± 0.42 a

GS3 2.16 ± 0.09 c 0.94 ± 0.03 c 2.06 ± 0.06 c 10.82 ± 0.54 c 4.78 ± 0.21 c 5.89 ± 0.18 b 8.63 ± 0.30 b

GS4 2.06 c ± 0.05 0.90 ± 0.02 c 1.97 ± 0.06 c 9.09 ± 0.32 c 4.44 ± 0.17 c 6.33 ± 0.21 b 8.07 ± 0.32 b

Mean values (n = 33) ± standard error with superscript letters indicating significant difference at p < 0.05 according
to Fisher´s LSD test.
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Figure 1. Representative kale seedlings harvested at day 40 and grown in different ger-
mination substrates: (a) GS1 = 100% peatmoss (PM); (b) GS2 = 20% TBSFLF + 80% PM;
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3.4. Antioxidant Content

In Table 6, the phenol content in kale leaf samples is expressed in milligram equivalents
of gallic acid, tannins in milligrams equivalent of catechin and flavonoids in milligrams
equivalent of rutin. The GS1 treatment (control treatment) shows the highest phenol and
tannin contents, and the GS2 treatment was the one with the lowest amount of those
phenolic compounds.

Table 6. Total phenol, tannin, and flavonoid contents in leaves of kale seedlings with different
germination substrates.

Treatment Phenols (mg Eq. of
Gallic Acid/g)

Tannins (mg Eq. of
Catechin/g)

Flavonoids (mg Eq.
of Rutin/g)

GS1 354.054 ± 0.19 a 10.972 ± 0.45 a 0.1045 ± 0.28 b

GS2 170.954 ± 0.05 c 7.985 ± 0.21 c 0.0713 ± 0.11 b

GS3 263.993 ± 0.10 b 4.437 ± 0.09 b 0.2177 ± 0.18 a

GS4 244.744 ± 0.04 b 5.115 ± 0.17 b 0.2516 ± 0.3 a

Mean values (n = 3) with superscript letters indicating significant difference at p < 0.05 according to Dunnett’s test.

For flavonoid content, the GS4 treatment showed the highest amount and the GS1
treatment showed the lowest.

Antioxidant capacity is expressed in ABTS and DPPH percentages in Table 7; only
the GS1 treatment showed a significantly higher percentage of ABTS compared to the GS2
treatment. The GS1, GS2 and GS3 treatments showed a significantly higher percentage of
DPPH compared to the GS4 treatment.
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Table 7. ABTS and DPPH percentages in leaves of kale seedlings with different germination substrates.

Treatment ABTS (%) DPPH (%)

GS1 99.1718 ± 0.58 a 91.6772 ± 1.11 a

GS2 97.1877 ± 0.58 a 89.7525 ± 1.11 a

GS3 99.0338 ± 0.58 a 88.5828 ± 1.11 a

GS4 98.1481 ± 0.58 a 76.7695 ± 1.11 b

Mean values (n = 3) ± standard error with superscript letters indicating significant difference at p < 0.05 according
to Dunnett’s test.

4. Discussion

The thermocomposted frass showed an alkaline pH (8.5), and a higher value compared
to previous works: 7.26 from brewery residue [34], 7.3 from brewery residue [12,35], 7.5
from a mixture of okara and wheat bran [11], 7.6 from brewery residue amended with
sawdust [36], 7.7 from brewery residue [37] and 7.8 from brewery residue [27]. The other
physical and chemical characteristics of the thermocomposted frass used in this research
differed from those reported in other works because the origin of the waste with which the
fly larvae were fed directly affects the physical quality and quantity of frass nutrients [10].

Other experiments with radish and lettuce seeds showed a similar trend with fresh
frass, where decreasing the percentage of frass in the aqueous medium increased the GI
value due to high phytotoxicity [38]. However, the GI was higher in this work, indicating
that a thermocomposted frass has a low phytotoxicity and inhibition effect. Another study
with fresh frass showed GI values greater than 100%, indicating zero phytotoxicity on
garden cress seeds, but considering a 1:20 dilution [13], a highly diluted extract.

A study of thermocomposted frass from brewers’ spent grain biotransformation used
a 1:10 dilution, obtaining GI values from 22.9 to 101.9 [36], a broad range compared to
the present work. Another study used a 1:10 dilution with a thermocomposted okara
and wheat bran frass mixture, obtaining GI results lower than 25% and showing that
even after a thermocomposting stabilization treatment, the frass had a high percentage
of phytotoxicity that may be due to the presence of phenols, chitin, and an excess of
nutrients [11]. According to Teresa Barral [14], substrates derived from thermocomposting
contain some compounds that can cause phytotoxicity, such as ammonia, ethylene oxide,
organic acids, phenols, salts and heavy metals.

The plants demonstrated inhibition in their shoot and root growth at a higher percent-
age of inclusion as a germination substrate. Macro- and micronutrients are essential for
plant development and growth because they play important roles in plant physiology [39].
Additionally, the most significant importance of frass is not due to its mineral nutrients
but rather the rhizobacteria and phytohormones present in the frass [40]. Song et al. [11]
reported the highest number of leaves in pak choi (Brassica rapa) using 10% composted
frass, an increase of 41.67% compared to the control. In this study, the highest kale growth
was with 20% composted frass, an increase of 51.61% in the number of leaves compared
to the control. The substrate pH is essential in determining nutrient availability to the
plant [41]. In contrast, in seed germination, an acidic pH can inhibit the action of enzymes
necessary for germination and can have a direct effect by dissolving the seed coat [42]. Some
authors have reported pH values between 5.5 and 6.9 and EC between 1.2 and 1.9 mS/cm
(=dS/m) as suitable for kale germination [43–45]. However, in this study, the alkaline pH
of the thermocomposted frass (8.5) and high electrical conductivity (7.476 dS/m) could
have reduced the germination of kale as the percentage of composted frass increased in
the substrate.

Flavonoids have protective functions in plants, including defenses against
phytopathogens and herbivores [46]. They influence the transport of auxins, plant hor-
mones that protect plants from microbes and insects. Flavonoids play an essential role in
the roots during nodule meristem formation and as a defense against attack by rhizobia soil
bacteria [47]. In this way, the increase in flavonoid content as the percentage of composted
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frass in the substrate increased may have been a defense response to the microorganisms in
the frass, such as Azospirillum, Rhizobium, Azotobacter, and the genera Bacillus [48].

The difference between the obtained DPPH values can be attributed to the nitrogen
content in the composted frass. A high amount of nitrogen applied to the plant decreases
the percentages of ABTS and DPPH, which measure the activity of water-soluble antioxi-
dants [49]. In this experiment, no differences in these variables were detected in accordance
with Biesiada et al. [50] and Romano et al. [51], who reported no significant difference in
the total phenol content or antioxidant capacity using fresh frass.

5. Conclusions

The addition of thermocomposted frass at 20% generates the appropriate physicochem-
ical conditions for the generation of a substrate for improving the agronomic performance
of kale, showing an alternative material for germination.

More research is needed on the content of other components in frass, such as phyto-
hormones. It is important to know the appropriate doses of thermocomposted BSFL in the
phenological stages of germination, development and production in different species of
vegetables and fruits. Likewise, it is necessary to improve the thermal stabilization process
or even add another, like vermicomposting.
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