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Abstract: Callose is widely present in higher plants and plays a significant role in plant growth,
development, and response to various stresses. Although numerous studies have highlighted the
importance of the callose synthase (CalS) genes, their role in the resistance of sorghum (Sorghum
bicolor) to aphids (Melanaphis sacchari) remains limitedly understood. This study identified 11 sorghum
callose synthase genes (SbCalS), unevenly distributed across four chromosomes of sorghum. All
SbCalS proteins contain glucan synthase and Fks1 domains, with segmental duplication playing a
major role in gene diversification. Cis-element prediction revealed the presence of numerous stress-
responsive elements, indicating that this gene family is primarily involved in stress resistance. Using
published RNA-seq data, we discovered the differential expression of the SbCalS5 gene between
resistant and susceptible sorghum varieties. Real-time quantitative PCR (qPCR) analysis confirmed
the relative expression levels of all SbCalS members under aphid stress. To further verify the role
of callose in sorghum, we measured the callose content in both resistant and susceptible sorghum
varieties. The results indicated that callose plays a critical role in aphid resistance in sorghum,
particularly the SbCalS5 gene. This study provides a reference for further investigation into the role
of callose synthase genes in sorghum aphid resistance.

Keywords: sorghum (Sorghum bicolor); expression analysis; callose; aphid (Melanaphis sacchari); callose
synthase gene family

1. Introduction

Sorghum, a C4 monocotyledonous herbaceous plant from the Poaceae family, is
known for its high photosynthetic efficiency and robust resilience. As the fifth largest
cereal crop globally [1], sorghum is widely cultivated and holds significant importance,
especially in developing countries and semi-arid regions where resources are limited. In
these areas, sorghum is primarily used for human consumption. Conversely, in developed
countries, sorghum is mainly utilized for animal feed, industrial applications, and energy
production [2–5].

Recently, sorghum aphids have become a major pest for sorghum plants, with their
presence spreading across Asia, Africa, and the Americas. These aphids pose a serious
threat to sorghum cultivation worldwide [6]. Their piercing-sucking feeding behavior
leads to leaf wilting and dehydration, which directly affects the yield and quality of
sorghum crops [7]. By feeding on the phloem tissue, aphids can cause plant tissues and
leaves to desiccate, discolor, and necrotize. This damage can delay seedling development,
inhibit tassel emergence, and cause grain heads to become sterile, with severe infestations
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potentially resulting in plant death [8]. Aphid-induced stress can cause significant losses
in grain yield and overall biomass. Additionally, the sticky honeydew secreted by aphids
can promote the growth of sooty molds on leaf surfaces, further reducing the plants’
photosynthetic capacity and exacerbating the damage [9].

In plants, the enzyme callose synthase, situated on the cell membrane, is responsible
for callose production [10]. This enzyme is responsible for producing β-1,3-glucan, a key
component in various physiological processes, including sieve tube metabolism and ga-
metophyte development. These glucans are vital for spore formation, stomatal closure,
and responses to biotic and abiotic stresses. The synthesis and degradation of callose
are integral to plant growth, development, and metabolic processes [11]. Callose plays a
significant role in sporogenesis, stomatal closure, and protection against various stresses.
The production and breakdown of callose directly affect plant growth and metabolism. Re-
search has identified synergistic interactions that enhance resistance to pathogens through
callose involvement. For example, in Arabidopsis thaliana, PDLP1 protein enhances plant
defense by regulating callose deposition around haustoria—specialized structures formed
by downy mildew pathogens (Hyaloperonospora arabidopsidis) and fungi during host cell
infection. This regulation aids in strengthening the plant’s defense mechanisms against
these pathogens [12]. The transient expression of the PMR4 gene in Arabidopsis thaliana,
which controls callose synthase, has been demonstrated to enhance osmotic resistance to
barley powdery mildew [13]. Mycorrhiza induction in Tomato (Solanum lycopersicum L.)
plants infected with Staphylococcus aureus results in upregulation of callose expression,
confirming its relevance in plant defense [14]. When plants are attacked by hemipteran
insects, they activate callose deposition, which obstructs the flow in the phloem. This
obstruction reduces the amount of sap that the insects can extract from the phloem, thereby
limiting their feeding [15]. In Arabidopsis thaliana, the CALS1 gene, which encodes callose
synthase, is upregulated following Tobacco whitefly (Bemisia tabaci) infestation, resulting
in elevated callose accumulation [16]. An abundant accumulation of callose deposits was
observed in wheat leaves infected with Russian wheat aphids (Diuraphis noxia) in sieve
plates, companion cell plasmodesmata, and stylet tracks [17]. Recent research indicates that
β-aminobutyric acid (BABA) enhances the expression of callose synthase genes in soybean
seedlings, leading to accelerated callose deposition and significant inhibition of soybean
aphid growth [18]. In cotton plants, the callose synthase gene GhCalS5 plays a crucial role
in regulating callose synthesis in leaves, thereby enhancing cotton resistance to aphids [19].
Variation in callose content upon infestation of watermelon (Citrullus lanatus) mesophyll
cells by aphids is one of the distinguishing factors in watermelon resistance against cotton
aphids (Aphis gossypii Glover) [20].

Research on callose deposition has been a hotspot in recent years. When higher
plants are subjected to mechanical damage, bacterial invasion, insect infestation, or high
temperatures, they promptly regulate callose synthesis in sieve tubes. Callose deposits on
the sieve tube surface or within sieve pores prevent abnormal substance transport, thereby
maintaining normal transport functions. Once the external stimuli are removed, deposited
callose rapidly degrades, restoring the sieve tube’s normal transport function [21,22].
When aphids pierce plants with their stylets, the plants perceive mechanical damage
and salivary elicitors, activating a complex signaling network involving various plant
hormones. These hormones regulate callose deposition through synergistic and antagonistic
actions. For example, jasmonic acid (JA) and salicylic acid (SA) are crucial in enhancing
callose deposition. Studies have shown that the SA and JA signaling pathways can trigger
activation of the flg22 protein, leading to an oxidative burst and callose deposition [23].
CalS is key to callose production. Specific genes such as GSL5 and GSL7 are upregulated
during biotic stress, resulting in increased callose synthesis and its deposition in sieve
plates and plasmodesmata, thereby hindering aphid feeding [24,25]. Calcium signaling
also plays a critical role in regulating callose deposition. Pathogen invasion triggers a
rapid influx of Ca2+ ions into the cytoplasm, thereby activating calcium-dependent protein
kinases (CDPKs). These kinases phosphorylate target proteins involved in the callose
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synthesis pathway, thereby enhancing callose deposition [26]. Reactive oxygen species
(ROS) serve as signaling molecules and directly act as antimicrobial agents, regulating
callose deposition [27]. Moreover, ROS can influence the expression of defense-related
genes, boosting the plant’s defense mechanisms. Recent research highlights the importance
of secondary metabolites and signaling peptides in controlling callose deposition. For
example, the induction of glucosinolates and their degradation products has been shown
to enhance callose deposition in response to aphid feeding [28]. Furthermore, signaling
peptides derived from precursor proteins, such as the elicitor peptide 1 (Pep1), can amplify
defense responses and promote callose deposition when the plant is damaged [29]. In
summary, the regulation of callose deposition in response to aphid feeding is a multifaceted
process involving complex signaling networks. These networks integrate hormonal signals,
calcium signaling, ROS production and various secondary metabolites to coordinate a
robust defense response. Interestingly, heavy metals like Al3+ and Cd2+ also play a role in
regulating callose deposition in plants [30]. In (Figure 1), we present an overview of the
latest insights into the function and regulation of callose biosynthesis in plants.
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Figure 1. Regulatory pathways of callose deposition in plants infected by aphids. Solid lines indicate
confirmed regulatory pathways, dashed lines indicate possible regulatory pathways, and bidirectional
arrows indicate reciprocal regulation.

Based on this, we investigated the SbCalS genes, identifying 11 in the sorghum genome.
We analyzed their phylogenetic relationships, gene structures, conserved motifs, and
expression patterns. Additionally, we performed qPCR analysis of SbCalS gene expression
in sorghum under aphid infestation. This study offers valuable insights into the role of
callose in plant defense against insect pests.

2. Materials and Methods
2.1. Experimental Materials and Aphid Rearing

In this study, the plants used were two sorghum varieties with extreme aphid resistance
identified from the sorghum germplasm repository at Anhui Science and Technology Uni-
versity: the resistant variety HX133 and the susceptible variety HX141. The identification
method was based on Tetreault H M et al. [31]. All experiments included three biological
replicates. Aphids were sourced from the common sorghum variety ‘Tiegankangsi’ and
transferred to fresh sorghum plants biweekly to sustain their population. The plants were
cultivated in an artificial climate chamber with a 16 h light/8 h dark photoperiod at 28 ◦C
and 50–60% relative humidity. Regular watering and fertilization were maintained. All
setups had three biological replicates.
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2.2. Identification of the SbCalS Gene Family

In this study, we downloaded 12 Arabidopsis thaliana CalS genes [32] from the En-
sembl Plants database (https://plants.ensembl.org/index.html, accessed on 22 February
2024) to use as reference sequences [33]. These sequences were then subjected to BLAST
searches against the sorghum genome (Sorghum_bicolor_NCBIv3) to identify candidate
sorghum callose synthase (SbCalS) genes and their corresponding proteins. Subsequently,
redundant sequences were removed, and the inferred sorghum CalS genes were examined
using the Pfam (http://pfam-legacy.xfam.org/, accessed on 23 February 2024) [34] and
NCBI Conserved Domain Database (CDD) programs to verify the presence of the CalS
domain [35]. We excluded sequences lacking the conserved CalS enzyme domain and
aligned the selected CalS domain amino acid sequences from sorghum using GeneDoc
software (version 2.7) [36]. Finally, all predicted SbCalS protein sequences were analyzed
using the SMART database (https://smart.embl.de/, accessed on 23 February 2024). The
complete sequences of the β-1,3-glucan synthase domain (PF02364) were used to confirm
the presence of true CalS in sorghum [37].

2.3. Physicochemical Characterization and Subcellular Localization Prediction of SbCalS
Gene Family

We performed a predictive analysis of the physicochemical properties of SbCalS
protein using the online software Protparam provided by ExPaSy (https://web.expasy.
org/protparam/ accessed on 25 February 2024). Subsequently, we utilized the online
tool WoLF PSORT (https://wolfpsort.hgc.jp/, accessed on 25 February 2024) to determine
its subcellular localization [38]. We utilized SOPMA (https://npsa-prabi.ibcp.fr/cgi-bin/
npsa_automat.pl?page=npsa%20_sopma.html, accessed on 26 February 2024) for predicting
the secondary structure of the protein [39], while signal peptide prediction analysis was
carried out using SignalP 4.0 Server (https://services.healthtech.dtu.dk/, accessed on
26 February 2024) [40]. Additionally, we used the DeepTMHMM server (https://dtu.biolib.
com/DeepTMHMM, accessed on 26 February 2024) to predict the membrane topology and
estimate the number of transmembrane helices in the complete protein dataset [41].

2.4. Prediction of Gene Structure and Cis-Acting Elements in the SbCalS Gene Family

Predicting conserved domains of SbCalS was done using MEME software (version
5.5.5) (https://meme-suite.org/meme/, accessed on 5 March 2024), with a total of 12 motifs
selected while maintaining default parameters [42]. Extracting gene structure information
from the sorghum GFF annotation file for SbCalS was accomplished using TBtools (version
2.096). Furthermore, TBtools searched the sorghum whole-genome database to retrieve
a 2000 bp nucleotide sequence upstream of the SbCalS gene’s start codon (ATG) [43].
Subsequent analysis of the sequence was carried out using the PlantCARE online tool
(https://bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 10 March
2024) to predict cis-acting elements in SbCalS of sorghum [44]. Finally, TBtools (version
2.096) was used to visualize the conserved motifs, gene structure, and cis-acting elements
information [43].

2.5. Chromosomal Mapping and Intraspecific Collinearity and Ka/Ks Value Analysis of SbCalS
Gene Family

Using the sorghum genome and annotation files downloaded from NCBI [45], the
chromosome length file was generated by inputting the relevant files into the Fasta Stats
tool within the TBtools suite as directed. To derive the gene density file, we employed
the Gene Density Profile tool and utilized One Step MCScanX to produce the intraspecific
collinearity file for sorghum. The Advanced Circos tool was used to create visualizations of
chromosome localization and collinearity relationships, which were subsequently refined
using Adobe Illustrator (2023). Genes were designated as SbCalS1 through SbCalS11
according to their chromosomal locations. The Simple Ka/Ks Calculator (NG) within
TBtools was used to compute the non-synonymous (Ka) and synonymous (Ks) substitution
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rates for the genes (Table S1) [43], with Ka/Ks ratios indicating positive evolution when
greater than 1, negative evolution when less than 1, and neutral evolution when equal to
1 [46].

2.6. Interspecific Collinearity Analysis of SbCalS and Construction of Phylogenetic Tree

Using the One Step MCScanX tool with default parameters in the TBtools toolbox [47],
collinearity files between sorghum, maize, and rice were obtained. Subsequently, the
Multiple Synteny Plot tool was used to generate plots, and Adobe Illustrator (2023) was
used for aesthetic enhancement. The neighbor-joining (NJ) method in MEGA11 software
(version 11.0.13) was applied to construct an evolutionary tree for the callose gene families
of sorghum, maize, and rice. To ensure data accuracy, bootstrap replications were set
to 1000 [48]. Finally, the evolutionary tree was beautified using iTOLv6 (version 6.8.2)
(https://itol.embl.de/, accessed on 12 March 2024) [49].

2.7. Analysis of the SbCalS Gene Family Using Published RNA-Seq Data

Publicly available sorghum transcriptome data were downloaded from NCBI to assess
the specific expression of the sorghum CalS gene family under aphid infestation (PR-
JNA716317) [50,51]. To ensure the quality of the Fastq data, the FastQC software (version
0.12.1) (https://github.com/s-andrews/FastQC, accessed on 20 March 2024) was utilized.
Subsequently, Trimmomatic software (version 0.40) was employed to remove duplicates
and low-quality sequences, resulting in clean, filtered data [52]. The filtered data were then
processed using the Kallisto Super Wrapper V3 package within the TBtools toolkit. Finally,
differential gene expression was analyzed using the HeatMap plugin in TBtools [53].

2.8. Expression Characteristics of SbCalS Genes under Aphid Infestation

Sampling was performed at the early stages (6 h, 24 h, 48 h) and the late stage (7 d)
after aphid infestation in sorghum. Samples were also taken at 0 h and 7 d from uninfested
plants to serve as controls for the early and late stages. These samples were used for RNA
extraction, following the method described in reference [54]. Primers for qPCR targeting
SbCalS genes were designed using Premier 6 software (Table S2). The sorghum endogenous
control gene was referenced from the study by J Li et al. [55]. Primer specificity was
verified using Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.
cgi?LINK_LOC=BlastHome, accessed on 25 March 2024) [56]. The qPCR experiments
were conducted according to the method of Jin et al. [57]. PCR was conducted on an ABI
ViiA 7 Real-Time PCR System (Life Technologies, Carlsbad, CA, USA), and data were
analyzed using the 2−∆∆Ct method [58]. Statistical analysis and data visualization were
performed using GraphPad Prism 8 software. Each qPCR reaction included three technical
replicates [59].

2.9. Determination of Callose Content in Sorghum

To investigate the effect of callose content on aphids, we selected the highly resistant
sorghum HX133 and the susceptible sorghum HX141. We inoculated the leaves with ten
third- to fourth-instar aphids and recorded the number of aphids daily for 7 days. The
experiment was conducted in a climate-controlled chamber with a photoperiod of 16 h
light and 8 h dark, a temperature of 28 ◦C, and relative humidity of 50–60%. Sampling
was performed at the early stages (6 h, 24 h, and 48 h) and the later stage (7 d) after aphid
infestation. We used the Plant Callose ELISA KIT from Shanghai Yuanye Bio-Technology
Co., Ltd., Shanghai, China, following the manufacturer’s instructions meticulously. The
microplate reader used was the SpectraMax®190 from Molecular Devices Ltd., San Jose,
CA, USA. All treatments in this experiment were replicated three times.

https://itol.embl.de/
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3. Results
3.1. Identification of SbCalS Gene Family

We identified 11 genes encoding callose synthase in the sorghum genome. These
SbCalS genes were annotated using the SMART website, and all of them contained both cal-
lose synthase and Fks1 domains. Among the 11 SbCalS genes, 7 contained the Vta1 domain
(Figure 2). The callose synthase domain serves as a typical catalytic function (Figure S1),
while the Vta1 domain is involved in transport to the vacuole, where it participates in sort-
ing membrane proteins for degradation in the lysosome [60]. Fks1 is a type of β-1,3-glucan,
and in the Fks1 structure, various lipid-binding and significant membrane distortions were
observed, indicating Fks1’s interaction with membranes [61]. To elucidate the relation-
ship between the classification and structure of SbCalS, we conducted a determination of
gene structure and conserved motifs in SbCalS proteins. Initially, a phylogenetic tree was
constructed for the 11 SbCalS proteins in sorghum. Based on evolutionary relationships,
SbCalS was categorized into three branches. Specifically, all Fks1 domains contained motifs
8 and 10, while the majority of glycosyltransferase domains contained motifs 7, 3, 6, 1, 4, 2,
and 5. In the glycosyltransferase domain, the SbCalS6 gene repeated motif 4, SbCalS8 and
SbCalS10 had an additional motif 11, and SbCalS3 lacked motif6. Overall, conservation was
relatively high in the Fks1 and glycosyltransferase domains, providing favorable evidence
for the functional consistency among members of the SbCalS family.
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3.2. Chromosome Localization and Intraspecific Colinear and Ka/Ks Analysis of SbCalS
Gene Family

With the sorghum genome database, we identified 11 members of the SbCalS family,
named sequentially according to their chromosomal locations from top to bottom and
left to right. The 11 SbCalS were assigned to chromosomes 1, 3, 4, and 10 of sorghum
(Figure 3). Specifically, SbCalS1, SbCalS2, and SbCalS3 are located on chromosome 1; Sb-
CalS4, SbCalS5, SbCalS6, and SbCalS7 reside are located on chromosome 3; SbCalS8 and
SbCalS9 are positioned on chromosome 4; and SbCalS10 and SbCalS11 are on chromosome
10. No tandem gene duplication events were observed in the SbCalS family, with only
one pair of SbCalS genes undergoing segmental duplication. It was found that the Ka/Ks
ratio of SbCalS < 1, indicating negative selection pressure acting on the gene family mem-
bers. The approximate age of gene duplication events was estimated using the equation
T = Ks/(2λ) (λ = 6.5 × 10−9) [62]. Based on the data, the first segmental duplication event
of this gene pair likely occurred approximately 76.42 million years ago, indicating that this
segmental duplication happened after the origin of sorghum [63].
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3.3. Physiochemical Properties and Subcellular Localization Analysis of SbCalS Gene Family

Based on the findings in (Table S3), SbCalS proteins range in length from 1779
to 1992 amino acids. The molecular weights (MW) of SbCalS proteins vary between
205,550.20 Da (SbCalS6) and 228,905.52 Da (SbCalS8), while their isoelectric points (pI)
range from 8.54 (SbCalS2) to 9.34 (SbCalS6). The instability index ranges from 37.82 (Sb-
CalS1) to 44.69 (SbCalS8), and the grand average of hydropathy (GRAVY) values range from
−0.149 (SbCalS4) to −0.02 (SbCalS5), indicating that SbCalS is a hydrophilic protein contain-
ing 14–18 transmembrane domains. According to the subcellular localization prediction
(Table S4), ten SbCalS proteins are located in the plasma membrane, with SbCalS7 alone
in the nucleus, suggesting possible involvement in callose synthesis regulation through
coordination between different organelles, with the cell membrane being the primary work-
place. Protein secondary structure mainly consists of α-helices, β-turns, irregular coils, and
extended strands, which form the basis of protein tertiary structure. Different amino acid
residues tend to form different secondary structure elements. This study determined that
α-helices constitute the majority of the secondary structure in the 11 SbCalS amino acid
sequences, indicating their predominant role in the protein’s secondary structure.

3.4. Structural Analysis of the SbCalS Gene Family

We compared the exon-intron numbers, arrangement, and lengths of the 11 SbCalS
genes and found significant differences (Figure 4). The number of exons ranged from 1 to
51. Gene structure diversity is a direct cause of protein diversity and contributes to their
different functions. Both SbCalS2 and SbCalS3 possess 51 exons, yet their exon distributions
differ significantly. SbCalS6 and SbCalS7 exhibit strikingly similar gene lengths, exon
positions, and numbers. These findings suggest that variations in exon distribution and
quantity may contribute to functional divergence [64].
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3.5. Cis-Acting Element Analysis of SbCalS Gene Family

The CalS gene is vital for resistance to both biotic and abiotic stresses and is potentially
regulated by plant hormones. Analysis of the upstream 2000 bp region of CalS promoters
(Figure 5A) revealed numerous plant hormone response elements, including those for
MeJA (methyl jasmonate), ABA (abscisic acid), GA (gibberellin), Auxin, and SA. Elements
associated with seed development were also found, including seed-specific regulatory
elements and embryo-expressed cis-regulatory elements. Various factors associated with
plant resistance were identified, including drought-inducible factors, anaerobic induction
essential cis-regulatory elements, low-temperature responsive cis-acting elements, hypoxia-
specific induction factors, and defense and stress-responsive cis-acting elements. Among
these, the SA response element was the least abundant, while the three most prevalent
elements were the MeJA response element, ABA response element, and anaerobic induction
essential cis-regulatory element, in that order (Figure 5B). The SbCalS promoter region con-
tains cis-acting elements that indicate its expression is regulated by multiple stress-related
hormones and factors, contributing to the plant’s stress resistance and seed development.
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3.6. Analysis of SbCalS Interspecific Covariates and Phylogenetic Trees

Through retrieval from the NCBI database and detection using Smart and CDD
programs, a total of 11 SbCalS genes were ultimately identified. Homologous callose
genes from maize (Zea mays L.) and rice (Oryza sativa L.) were used, with each having
ten callose genes [65]. To further elucidate the evolutionary relationships of the SbCalS
genes, synteny and phylogenetic analyses were conducted among sorghum, rice, and
maize. Using MEGA11 software (version 11.0.13), a phylogenetic tree of the CalS family
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was constructed. As depicted in (Figure 6), the CalS genes were categorized into three
sub-branches based on their homology. Sub-branch A contained the fewest CalS genes,
with a total of 8 genes from the 3 species: 3 from sorghum, 3 from rice, and 2 from maize.
Sub-branch B included 11 CalS genes: 4 from sorghum, 4 from maize, and 3 from rice.
Sub-branch C had the highest number of CalS genes, with a total of 12, including 4 from
each species. Overall, the number of CalS genes in each sub-branch from different species
was relatively balanced, indicating a high degree of homology among the CalS genes of
sorghum, maize, and rice. This suggests that CalS genes from the same sub-branch in
different species may have similar functions and close evolutionary relationships. The
synteny analysis, illustrated in (Figure 7) and created using TBtools, further supports this
finding. The analysis revealed 17 pairs of homologous CalS genes, with 9 pairs between
sorghum and maize, and 8 pairs between sorghum and rice. Although sorghum shares one
more homologous CalS gene with maize than with rice, the overall high homology among
the three species is evident. In conclusion, the high degree of homology and balanced
distribution of CalS genes across the three species suggest that these genes likely share
similar functions and have evolved closely, providing insights into their evolutionary
relationships and functional conservation.
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3.7. Transcriptome Analysis of the SbCalS Gene Family Following Aphid Infestation

Using publicly available RNA-seq data from the NCBI transcriptome database [50],
we analyzed the expression levels of the SbCalS gene family. A heatmap was constructed
using hierarchical clustering, revealing differential expression patterns of the CalS genes in
sorghum varieties in response to aphid infestation (Figure 8). Specifically, SbCalS1, SbCalS7,
and SbCalS8 exhibited higher expression levels at the early time points in all three sorghum
varieties, but their expression decreased at the late time point. However, SbCalS5 showed
an increase in expression with the duration of aphid infestation in the resistant variety,
reaching its highest level at 7 days post-infestation, with minimal changes observed in the
reference and susceptible varieties. SbCalS11 consistently exhibited low expression levels
across all treatments.
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Figure 8. Differential expression of the SbCalS gene family transcriptome under aphid infestation.
RTx430 served as the reference sorghum, SC265 served as the resistant sorghum, and SC1345 served
as the susceptible sorghum. Sampling occurred at early time points (6 h, 24 h, and 48 h) and a late
time point (7 d) following aphid infestation, with samples collected from non-infested plants at 0 h
and 7 d serving as controls. Genes demonstrating high expression levels were indicated in orange,
while those displaying low expression levels were marked in blue.

3.8. Expression Pattern Analysis of the SbCalS Gene Family Following Aphid Infestation

To elucidate the role of the SbCalS gene family in response to aphid infestation, we
subjected the highly resistant variety HX133 and the susceptible variety HX141 to aphid
stress induction. The results are depicted in (Figure 9). SbCalS1 and SbCalS2 exhibited
similar expression patterns, showing significant expression in the early stages of resistance
and susceptibility, respectively. At 6 h post-aphid stress induction, HX133 displayed
heightened sensitivity compared to HX141, which showed no significant difference from the
control. While SbCalS1 gradually downregulated in the later stages, SbCalS2, particularly
in HX133, exhibited significant upregulation. SbCalS3 and SbCalS9 showed no significant
difference in expression between resistant and susceptible sorghum. In SbCalS6, HX141
consistently exhibited higher expression levels throughout the time course compared to
HX133. For SbCalS8 and SbCalS10, HX141 displayed slightly higher expression levels
in the early stages compared to HX133, but in the later stages, particularly for SbCalS10,
HX133 surpassed HX141 by 2.16-fold. The major differences were observed in SbCalS5,
SbCalS7, and SbCalS11, where the expression levels of HX133 and HX141 exhibited two
extreme patterns throughout the entire stage. HX133 showed significant downregulation
in the early stages, while HX141 exhibited significant upregulation, especially in SbCalS11,
where it was upregulated by 6.8-fold at 24 h. In the later stages, HX141 showed significant
downregulation, while HX133 displayed notable upregulation. Notably, the expression of
SbCalS5 was markedly upregulated by 4.4-fold, consistent with the aforementioned RNA-
seq data. SbCalS4 exhibited similar early-stage expression patterns to SbCalS5, SbCalS7,
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and SbCalS11, but in the later stages, the upregulation in HX141 was more pronounced
compared to HX133.
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3.9. Analysis of Sorghum Aphid Population and Callose Content

To further explore the function of callose in sorghum, I evaluated the aphid populations
and callose levels in different sorghum varieties. The findings indicated that in HX141,
the aphid population increased continuously, reaching its peak at 6 days, followed by a
decline on the 7th day, primarily due to sorghum wilting. In contrast, the aphid population
growth rate in HX133 was significantly slower than in HX141 and stabilized between 4 and
7 days (Figure 10A). Upon measuring the callose levels, it was evident that HX133 had
a markedly higher callose content compared to HX141(Figure 10B). At 6 h post-aphid
infestation, HX133 exhibited an increase in callose content, whereas HX141 showed no
significant change, suggesting a quicker defense response in HX133. The pattern observed
in HX141 was similar to the control, implying that HX141 is not highly responsive to aphid
feeding. Nevertheless, in the initial stages of aphid infestation, both sorghum varieties
exhibited higher callose levels than the control group, indicating that aphid feeding triggers
an increase in callose production.
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4. Discussion
4.1. The Role and Mechanism of the CalS Gene Family in Plant Defense

Over 120 years ago, callose was reported as an important component of the cell
wall [66]. The cell wall acts as the primary defense against environmental and biological
stresses. Regulating callose synthase can result in the formation of protrusive structures
on the cell wall, which effectively prevents the infiltration of parasitic microorganisms.
Although recent advances in molecular and genetic techniques have led to studies on the
role of callose and the regulation of callose synthase activity in bacteria, yeast, and plants,
many aspects remain to be explored [10]. Callose is widely present in the intercellular
matrix as well as in the cells of leaves and stems [67], controlling molecular transport and
regulating plasmodesmata transport. External environmental changes and pest invasions
are the main causes of callose accumulation, controlled by various signaling pathways. In
some plants, calcium ions and phosphoproteins also appear to be involved in the regulation
of callose synthesis [68]. The callose synthase complex is found in at least two distinct forms
across various tissues and interacts with membrane proteins, UDP-glucose transferases,
Rop1, and potentially other membrane-associated proteins [69]. Currently, the structural
synthesis and regulatory mechanisms of callose synthase are not yet fully understood.

4.2. The Multiple Roles and Regulation of the CalS Gene Family in Plants

Callose is found in almost all plant tissues and is crucial at various stages of plant
growth and development [10]. The members of the callose synthase gene family differ
among different plants. In Paeonia lactiflora, there are 8 CalS genes [70]; in rice and maize,
there are 10 CalS genes; in Arabidopsis thaliana, there are 12 CalS genes; and in this study,
11 SbCalS genes were identified. The observed differences are likely due to gene loss during
the evolution from Arabidopsis thaliana to angiosperms like rice and Paeonia lactiflora. We
propose that the functions of callose synthase gene family members have diversified. For
instance, GSL2 is essential for callose synthesis in Arabidopsis thaliana, especially in the exine
of pollen walls, and CalS5 gene knockout mutants show significant fertility reduction [71].
In Arabidopsis thaliana, the GSL1 and GSL5 genes collaboratively contribute to the formation
of the callose wall, playing a crucial role in pollen development [72]. Qunkai Niu et al.
found that the ZmCals5, ZmCals10, and ZmCals12 genes are expressed in maize anthers
and pollen, suggesting a potential collaborative role in reproductive development [65]. In
rice, the expression of OsGSL5 is downregulated in Osspl (OsSPOROCYTELESS) mutants,
leading to defects in callose deposition in the male-sterile anthers [73]. Therefore, the
mechanisms and functions of interactions among callose synthase gene family members
remain to be further studied.

The deposition of callose is of significant importance in the cell wall’s defense against
pathogens and pests. Different Chrysanthemum (Chrysanthemum morifolium) varieties
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were inoculated with Chrysanthemum stunt virus (CSVd) [74], and the intercellular callose
content in resistant varieties was significantly higher than in susceptible ones. This suggests
that callose deposition is a defense mechanism against pathogens. When different resistance
levels of Brassica napus were inoculated with Leptosphaeria maculans, it was found that
callose deposition in susceptible canola gradually dispersed over time, whereas it remained
relatively constant in resistant canola [75]. The brown planthopper’s (Nilaparvata lugens)
effector NlG14 can stimulate the production of reactive oxygen species, which subsequently
promotes callose accumulation [76]. Mengjing Sun et al. found that, in screening resistant
and susceptible peppers (Capsicum spp.), callose deposition was detected in varieties
resistant to the green peach aphid (Myzus persicae), but not in susceptible varieties [77].

In the regulation of callose synthase, plant hormones are believed to play a crucial
role. Auxin [78], ABA [79], GA, and SA [80] regulate the expression of callose synthase. In
our study, it was found that cis-acting elements related to JA, ABA, and GA were more
abundant. Treatment of sorghum seedlings with JA revealed that JA-induced plant defense
responses effectively prevented aphid infestation [81]. Exogenous application of JA can
induce the expression of CmAOS and CmCOI1 in Chrysanthemum, thereby enhancing
aphid resistance [82]. In cases where fungal pathogens penetrate or sap-feeding pests pierce
plant tissues, cell wall deposition materials can form rings or protrusions, with callose
being a major component [83]. SA and ABA can influence the deposition of callose in
intercellular spaces [66]. V. Repka et al. found that JA can also induce callose deposition in
grapevine leaves [84]. Recent studies have shown that transient overexpression of CsCalS11
in citrus enhances callose deposition [85]. According to previous studies, JA and ABA play
significant roles in resisting both biotic and abiotic stresses. [86,87]. Most plant defenses
against herbivorous insects are induced by mechanical damage and saliva [88]. Mechanical
damage can trigger phloem and xylem electrical signals, leading to an increase in cytosolic
calcium ion concentration [89]. Wang et al. identified a dominant aphid-resistant major
gene, RMES1, in the Chinese sorghum variety HN16, which confers resistance to sorghum
aphids [90]. Interestingly, Puri et al. discovered a close relationship between the RMES1
gene and the formation of callose. The RMES1 gene may influence the synthesis and
deposition of callose by regulating Ca2+ signaling pathways, thereby enhancing plant
resistance [91]. In summary, plant defense is a complex regulatory network. Additionally,
plant hormones play a crucial role in the regulation of callose deposition. Callose deposition
is vital in sorghum’s defense mechanism against aphids, yet its regulation and mediation
mechanisms require further validation and exploration.

5. Conclusions

We have identified 11 CalS genes in the sorghum genome, which are unevenly dis-
tributed across four chromosomes. Interspecies collinearity analysis revealed a close
phylogenetic relationship among sorghum, maize, and rice. The cis-acting elements in
sorghum CalS genes include numerous plant hormones, defense, and stress response ele-
ments. qPCR analysis showed significant changes in the expression of SbCalS5, SbCalS7,
and SbCalS11 genes under aphid stress. Additionally, we assessed callose content, discover-
ing that HX133 sorghum exhibited significantly higher levels compared to the susceptible
HX141 variety. Integrating transcriptome data with cis-acting element analysis, we propose
that the SbCalS5 gene plays a pivotal role in sorghum’s defense against aphids. Although
this study does not extensively investigate the regulation and molecular mechanisms of the
SbCalS gene, it lays the groundwork for future research into the function of the sorghum
CalS gene family in aphid resistance.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/agronomy14071393/s1, Figure S1: The multiple sequence
alignment of conserved domains in SbCalS gene family; Table S1: SbCalS protein ka/ks values; Table
S2: Primers used for qPCR of the SbCalS gene family; Table S3: Analysis of the Physicochemical
Properties and Subcellular Localization of the SbCalS Gene Family; Table S4: Secondary structure
and predicted signal peptide of CalS protein in Sorghum.
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