The Application of MgO-Modified Biochars for the Immobilization of Ni, Cu, Pb, and Cr in Stone Crushing and Mining-Polluted Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Soil Sampling
2.3. Material Collection and Preparation of MgO-Modified Biochars
Parameters | SCPS | MPS | TWMgO-MBC | WSMgO-MBC | WCMgO-MBC | PPMgO-MBC | Soil Environmental Quality Standards * |
---|---|---|---|---|---|---|---|
pH | 7.2 ± 0.2 | 7.4 ± 0.1 | 8.5 ± 0.8 | 8.8 ± 0.6 | 9.1 ± 1 | 8.9 ± 0.9 | - |
EC dS/cm | 2.11 ± 1 | 2.90 ± 0.3 | 2.10 ± 0.6 | 1.90 ± 1 | 1.95 ± 0.2 | 1.40 ± 0.1 | - |
OM (%) | 0.87 ± 0.9 | 0.76 ± 0.2 | - | - | - | - | - |
CEC | 11.14 ± 0.7 | 8.49 ± 0.1 | - | - | - | - | - |
CaCO3 (%) | 9.21 ± 0.5 | 4.01 ± 0.3 | - | - | - | - | - |
Organic carbon (mg kg−1) | 19.3 ± 0.4 | 15.8 ± 0.3 | 33.4 ± 0.1 | 21.1 ± 0.3 | 23.6 ± 0.2 | 19.8 ± 0.4 | - |
Dissolved organic carbon (mg kg−1) | 17.9 ± 1 | 10.4 ± 0.2 | 31.2 ± 0.5 | 19.6 ± 0.4 | 16.1 ± 0.1 | 14.8 ± 0.7 | - |
Particle density (g/cm3) | 2.34 ± 0.4 | 2.51 ± 0.9 | - | - | - | - | - |
Buk density (g/cm3) | 1.39 ± 0.6 | 1.48 ± 0.2 | - | - | - | - | - |
Total (Ni mg/kg) | 47.6 ± 0.8 | 63.9 ± 0.3 | nd | 0.008 ± 0.002 | 0.1 ± 0.004 | nd | 40 |
Total (Cu mg/kg) | 51.1 ± 0.3 | 76.3 ± 0.1 | 0.002 ± 0.001 | 0.04 ± 0.006 | 0.09 ± 0.008 | 0.03 ± 0.002 | 35 |
Total (Pb mg/kg) | 91.4 ± 0.1 | 88.5 ± 0.7 | nd | 0.006 ± 0.001 | 0.3 ± 0.002 | nd | 35 |
Total (Cr mg/kg) | 129.8 ± 0.9 | 147.4 ± 0.2 | nd | 0.03 ± 0.009 | 0.07 ± 0.01 | nd | 90 |
Biochar yield g/100g | - | - | 33.7 ± 0.3 | 34.5 ± 0.8 | 31.8 ± 0.7 | 32.7 ± 1 | - |
2.4. Experimental Set-Up
2.5. Analysis of Soils and MgO-Modified Biochars
2.6. Pearl Millet Plant Analysis
2.7. Statistical analysis
3. Results and Discussion
3.1. Effect of MgO-Modified Biochars on Pearl Millet Fresh and Dry Biomasses
3.2. Effect of MgO-Modified Biochars on Soil Chemical Properties
3.3. Effect of MgO-Modified Biochars on the Immobilization of Total Ni, Cu, Pb, and Cr in Soils
3.4. Effect of MgO-Modified Biochars on the Uptake of Ni, Cu, Pb, and Cr by Plant Shoot
3.5. Effect of MgO-Modified Biochars on the Uptake of Ni, Cu, Pb, and Cr by Plant Root
3.6. Redundancy Analysis among the Parameters under Investigation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yang, M.; Lan, J.; Huang, Y.; Zhang, J.; Huang, S.; Yang, Y.; Ru, J. Water Quality Degradation Due to Heavy Metal Contamination: Health Impacts and Eco-Friendly Approaches for Heavy Metal Remediation. Toxics 2023, 11, 828. [Google Scholar] [CrossRef] [PubMed]
- Saleem, I.; Ahmed, S.R.; Lahori, A.H.; Mierzwa-Hersztek, M.; Bano, S.; Afzal, A.; Muhammad, M.T.; Afzal, M.; Vambol, V.; Vambol, S.; et al. Utilizing thiourea-modified biochars to mitigate toxic metal pollution and promote mustard (Brassica campestris) plant growth in contaminated soils. J. Geochem. Explor. 2024, 257, 107331. [Google Scholar] [CrossRef]
- Petryk, A. Case Study on the Use of Sewage Sludge for the Reclamation of Mining Sites Contaminated with Heavy Metals. J. Ecol. Eng. 2023, 24, 171–182. [Google Scholar] [CrossRef]
- Singh, J.; Kalamdhad, A.S. Effects of heavy metals on soil, plants, human health and aquatic life. Int. J. Res. Chem. Environ. 2011, 1, 15–21. [Google Scholar]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef] [PubMed]
- Paithankar, J.G.; Saini, S.; Dwivedi, S.; Sharma, A.; Chowdhuri, D.K. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere 2021, 262, 128350. [Google Scholar] [CrossRef] [PubMed]
- Alazaiza, M.Y.; Albahnasawi, A.; Copty, N.K.; Bashir, M.J.; Nassani, D.E.; Al Maskari, T.; Abu Amr, S.S.; Abujazar, M.S.S. Nanoscale zero-valent iron application for the treatment of soil, wastewater and groundwater contaminated with heavy metals: A review. Desalin. Water Treat. 2021, 253, 194–210. [Google Scholar] [CrossRef]
- Patel, K.; Chaurasia, M.; Rao, K.S. Impacts of Pb-Induced oxidative stress on morphological, physiological and biochemical properties of tree species. Environ. Process 2022, 9, 60. [Google Scholar] [CrossRef]
- Aborisade, M.A.; Oba, B.T.; Kumar, A.; Liu, J.; Chen, D.; Okimiji, O.P.; Zhao, L. Remediation of metal toxicity and alleviation of toxic metals-induced oxidative stress in Brassica chinensis L. using biochar-iron nanocomposites. Plant Soil. 2023, 493, 629–645. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal (loid) s contaminated soils–to mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef] [PubMed]
- Tauqeer, H.M.; Fatima, M.; Rashid, A.; Shahbaz, A.K.; Ramzani, P.M.A.; Farhad, M.; Basharat, Z.; Turan, V.; Iqbal, M. The current scenario and prospects of immobilization remediation technique for the management of heavy metals contaminated soils. In Approaches to the Remediation of Inorganic Pollutants; Springer: Berlin/Heidelberg, Germany, 2021; pp. 155–185. [Google Scholar]
- Sharma, S.; Tiwari, S.; Hasan, A.; Saxena, V.; Pandey, L.M. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech. 2018, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Lahori, A.H.; Zhang, Z.; Guo, Z.; Li, R.; Mahar, A.; Awasthi, M.K.; Wang, P.; Shen, F.; Kumbhar, F.; Sial, T.A.; et al. Beneficial effects of tobacco biochar combined with mineral additives on (im) mobilization and (bio) availability of Pb, Cd, Cu and Zn from Pb/Zn smelter contaminated soils. Ecotoxicol. Environ. Saf. 2017, 145, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhao, D.; Wang, Q. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Res. 2018, 147, 440–460. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, S.; Wu, J.; Yi, X.; Dai, G.; Shu, Y. Three-year field experiments revealed the immobilization effect of natural aging biochar on typical heavy metals (Pb, Cu, Cd). Sci. Total Environ. 2024, 912, 169384. [Google Scholar] [CrossRef] [PubMed]
- Hamid, Y.; Tang, L.; Hussain, B.; Usman, M.; Lin, Q.; Rashid, M.S.; He, Z.; Yang, X. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review. Sci. Total Environ. 2020, 707, 136121. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, H.S.; Tang, C.S.; Gu, K.; Shi, B. Remediation of heavy-metal-contaminated soils by biochar: A review. Environ. Geotech. 2019, 9, 135–148. [Google Scholar] [CrossRef]
- Emenike, E.C.; Iwuozor, K.O.; Ighalo, J.O.; Bamigbola, J.O.; Omonayin, E.O.; Ojo, H.T.; Adeleke, J.; Adeniyi, A.G. Advancing the circular economy through the thermochemical conversion of waste to biochar: A review on sawdust waste-derived fuel. Biofuels 2024, 15, 433–447. [Google Scholar] [CrossRef]
- Amalina, F.; Krishnan, S.; Zularisam, A.W.; Nasrullah, M. Recent advancement and applications of biochar technology as a multifunctional component towards sustainable environment. Env. Dev. 2023, 46, 100819. [Google Scholar] [CrossRef]
- Ngambia, A.; Mašek, O.; Erastova, V. Development of biochar molecular models with controlled porosity. Biomass Bioenergy 2024, 184, 107199. [Google Scholar] [CrossRef]
- Tang, J.; Zhu, W.; Kookana, R.; Katayama, A. Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 2013, 116, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Břendová, K.; Tlustoš, P.; Száková, J. Can biochar from contaminated biomass be applied into soil for remediation purposes? Wat. Air Soil. Poll. 2015, 226, 193. [Google Scholar] [CrossRef]
- O'Connor, D.; Peng, T.; Zhang, J.; Tsang, D.C.; Alessi, D.S.; Shen, Z.; Bolan, N.S.; Hou, D. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ. 2018, 619, 815–826. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhong, H.; Liu, G.; Dai, Z.; Brookes, P.C.; Xu, J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019, 252, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Dike, C.C.; Rani Batra, A.; Khudur, L.S.; Nahar, K.; Ball, A.S. Effect of the application of ochrobactrum sp.-immobilised biochar on the remediation of diesel-contaminated soil. Toxics 2024, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Gotore, O.; Masere, T.P.; Muronda, M.T. The immobilization and adsorption mechanisms of agro-waste based biochar: A review on the effectiveness of pyrolytic temperatures on heavy metal removal. Environ. Chem. Ecotoxicol. 2024, 6, 92–103. [Google Scholar] [CrossRef]
- Ji, M.; Wang, X.; Usman, M.; Liu, F.; Dan, Y.; Zhou, L.; Campanaro, S.; Luo, G.; Sang, W. Effects of different feedstocks-based biochar on soil remediation: A review. Environ. Pollut. 2022, 294, 118655. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi-Golezani, K.; Rahimzadeh, S. Biochar-based nutritional nanocomposites: A superior treatment for alleviating salt toxicity and improving physiological performance of dill (Anethum graveolens). Environ. Geochem. Health 2023, 45, 3089–3111. [Google Scholar] [CrossRef]
- Sizmur, T.; Fresno, T.; Akgül, G.; Frost, H.; Moreno-Jiménez, E. Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 2017, 246, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Chen, M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol. 2016, 214, 836–851. [Google Scholar] [CrossRef]
- Zhang, A.; Li, X.; Xing, J.; Xu, G. Adsorption of potentially toxic elements in water by modified biochar: A review. J. Environ. Chem. Eng. 2020, 8, 104196. [Google Scholar] [CrossRef]
- Garcıa, M.A.; Chimenos, J.M.; Fernández, A.I.; Miralles, L.; Segarra, M.; Espiell, F. Low-grade MgO used to stabilize heavy metals in highly contaminated soils. Chemosphere 2004, 56, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Padhi, P.; Bora, N.; Sohtun, P.; Athparia, M.; Kumar, M.; Kataki, R.; Sarangi, P.K. Remediation of mine overburden and contaminated water with activated biochar derived from low-value biowaste. J. Taiwan. Inst. Chem. Eng. 2024, 159, 105472. [Google Scholar] [CrossRef]
- Mandal, S.; Sarkar, B.; Bolan, N.; Ok, Y.S.; Naidu, R. Enhancement of chromate reduction in soils by surface modified biochar. J. Environ. Manag. 2017, 186, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, S.; Ju, M.; Liu, L. Preparation and modification of biochar materials and their application in soil remediation. Appl. Sci. 2019, 9, 1365. [Google Scholar] [CrossRef]
- Yu, X.; Wang, X.; Sun, M.; Liu, H.; Liu, D.; Dai, J. Cadmium immobilization in soil using phosphate modified biochar derived from wheat straw. Sci. Total Environ. 2024, 926, 171614. [Google Scholar] [CrossRef]
- Lu, H.P.; Li, Z.A.; Gasco, G.; Mendez, A.; Shen, Y.; Paz-Ferreiro, J. Use of magnetic biochars for the immobilization of heavy metals in a multi-contaminated soil. Sci. Total Environ. 2018, 622, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhang, J.; Hou, D.; Tsang, D.C.; Ok, Y.S.; Alessi, D.S. Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. Environ. Int. 2019, 122, 357–362. [Google Scholar] [CrossRef]
- Bao, Z.; Shi, C.; Tu, W.; Li, L.; Li, Q. Recent developments in modification of biochar and its application in soil pollution control and ecoregulation. Environ. Pollut. 2022, 313, 120184. [Google Scholar] [CrossRef]
- Li, A.; Xie, H.; Qiu, Y.; Liu, L.; Lu, T.; Wang, W.; Qiu, G. Resource utilization of rice husk biomass: Preparation of MgO flake-modified biochar for simultaneous removal of heavy metals from aqueous solution and polluted soil. Environ. Pollut. 2022, 310, 119869. [Google Scholar] [CrossRef]
- Su, J.; Guo, Z.; Zhang, M.; Xie, Y.; Shi, R.; Huang, X.; Tuo, Y.; He, X.; Xiang, P. Mn-modified bamboo biochar improves soil quality and immobilizes heavy metals in contaminated soils. Environ. Technol. Innov. 2024, 34, 103630. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, G.; Li, X.; Zhang, X.; Hang, W.; Tang, M.; Gao, Y. Effects of biochar on the transformation of cadmium fractions in alkaline soil. Heliyon 2023, 9, e12949. [Google Scholar] [CrossRef]
- Jackson, M.L. Mineral fraction for soils. In Soil Chemical Analyses Advanced Course; Jackson, M.L., Ed.; University of Wisconsin-Madison Libraries: Madison, WI, USA, 1969; pp. 100–168. [Google Scholar]
- GB15618-1995; State Environmental Protection Administration of China. Environment Quality Standard for Soils. Chinese National Standard Agency: Beijing, China, 1995.
- Mridha, D.; Sarkar, J.; Majumdar, A.; Sarkar, K.; Maiti, A.; Acharya, K.; Das, M.; Chen, H.; Niazi, N.K.; Roychowdhury, T. Evaluation of iron-modified biochar on arsenic accumulation by rice: A pathway to assess human health risk from cooked rice. Environ. Sci. Pollut. Res. 2024, 31, 23549–23567. [Google Scholar] [CrossRef] [PubMed]
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Ed.; SSSA: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil. Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- USEPA. Method 9080: Cation-Exchange Capacity of Soils (Ammonium Acetate); USEPA: Washington, DC, USA, 1986.
- Antoniadis, V.; Alloway, B.J. The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environ. Pollut. 2002, 117, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Brogowski, Z.; Kwasowski, W.; Madyniak, R. Calculating particle density, bulk density, and total porosity of soil based on its texture. Soil. Sci. Annu. 2014, 65, 139. [Google Scholar] [CrossRef]
- USEPA. Volume IB: Laboratory manual: Physical/chemical methods. In Test Methods for Evaluating Solid Waste, Volume SW-846; USEPA: Duluth, MN, USA, 1986; Volume 1. [Google Scholar]
- Bao, S.D. Soil Agricultural Chemistry Analysis Method, 3rd ed.; China Agriculture Press: Beijing, China, 2008. [Google Scholar]
- Zhu, G.; Xiao, H.; Guo, Q.; Song, B.; Zheng, G.; Zhang, Z.; Zhao, J.; Okoli, C.P. Heavy metal contents and enrichment charac-teristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicol. Environ. Saf. 2018, 151, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Ibraheem, T.; Hajabbasi, M.A.; Shariatmadari, H.; Khalili, B.; Feizi, M. Effects of applied biochar and municipal solid waste compost on saline soil properties and sorghum plant attributes. Pol. J. Soil. Sci. 2022, 55, 51–65. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Ma, S.; Zhao, K.; Ding, F.; Liu, X. Exploring metal (loid) s dynamics and bacterial community shifts in contaminated paddy soil: Impact of MgO-laden biochar under different water conditions. Environ. Pollut. 2024, 345, 123416. [Google Scholar] [CrossRef]
- Kane, S.; Ulrich, R.; Harrington, A.; Stadie, N.P.; Ryan, C. Physical and chemical mechanisms that influence the electrical conductivity of lignin-derived biochar. Carbon. Trends 2021, 5, 100088. [Google Scholar] [CrossRef]
- Zheng, X.J.; Chen, M.; Wang, J.F.; Liu, Y.; Liao, Y.Q.; Liu, Y.C. Assessment of zeolite, biochar, and their combination for stabilization of multimetal-contaminated soil. ACS omega 2020, 5, 27374–27382. [Google Scholar] [CrossRef] [PubMed]
- Nkoh, J.N.; Baquy, M.A.; Mia, S.; Shi, R.; Kamran, M.A.; Mehmood, K.; Xu, R.A. Critical-systematic review of the interactions of biochar with soils and the observable outcomes. Sustainability 2021, 13, 13726. [Google Scholar] [CrossRef]
- Ghassemi-Golezani, K.; Rahimzadeh, S. Biochar modification and application to improve soil fertility and crop productivity. Agriculture 2022, 68, 45–61. [Google Scholar] [CrossRef]
- Toková, L.; Igaz, D.; Horák, J.; Aydin, E. Effect of Biochar Application and Re-Application on Soil Bulk Density, Porosity, Saturated Hydraulic Conductivity, Water Content and Soil Water Availability in a Silty Loam Haplic Luvisol. Agronomy 2020, 10, 1005. [Google Scholar] [CrossRef]
- Liu, H.K.; Xu, F.; Xie, Y.L.; Wang, C.; Zhang, A.K.; Li, L.L.; Xu, H. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil. Sci. Total Environ. 2018, 645, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Yang, L.; Zhao, H.T.; Wang, W. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: Simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils. Sci. Total Environ. 2020, 708, 134479. [Google Scholar] [CrossRef]
- Leng, L.J.; Yuan, X.Z.; Huang, H.J. Characterization and application of biochars from liquefaction of microalgae, lignocellulosic biomass and sewage sludge. Fuel Process. Technol. 2015, 129, 8–14. [Google Scholar] [CrossRef]
- Liang, M.; Lu, L.; He, H.; Li, J.; Zhu, Z.; Zhu, Y. Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review. Sustainability 2021, 13, 14041. [Google Scholar] [CrossRef]
- Shahbaz, A.K.; Lewińska, K.; Iqbal, J.; Ali, Q.; Iqbal, M.; Abbas, F.; Tauqeer, H.M.; Ramzani, P.M.A. Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios. J. Environ. Manag. 2018, 218, 256–270. [Google Scholar] [CrossRef]
- Rajput, V.D.; Gorovtsov, A.V.; Fedorenko, G.M.; Minkina, T.M.; Fedorenko, A.G.; Lysenko, V.S.; Sushkova, S.S.; Mandzhieva, S.S.; Elinson, M.A. The influence of application of biochar and metal-tolerant bacteria in polluted soil on morpho-physiological and anatomical parameters of spring barley. Environ. Geochem. Health 2021, 43, 1477–1489. [Google Scholar] [CrossRef]
- ur Rehman, M.Z.; Zafar, M.; Waris, A.A.; Rizwan, M.; Ali, S.; Sabir, M.; Usman, M.; Ayub, M.A.; Ahmad, Z. Residual effects of frequently available organic amendments on cadmium bioavailability and accumulation in wheat. Chemosphere 2019, 244, 125548. [Google Scholar] [CrossRef] [PubMed]
- Sehrish, A.K.; Aziz, R.; Hussain, M.M.; Rafiq, M.T.; Rizwan, M.; Muhammad, N.; Rafiq, M.K.; Sehar, A.; Din, U.D.J.; Al-Wabel, M.I.; et al. Effect of poultry litter biochar on chromium (Cr) bioavailability and accumulation in spinach (Spinacia oleracea) grown in Cr-polluted soil. Arab. J. Geosci. 2019, 12, 57. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Yang, J.E.; Ro, H.M.; Lee, Y.H.; Ok, Y.S. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pbavailability and phytotoxicity in military shooting range soil. Ecotoxicol. Environ. Saf. 2012, 79, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, C.; Liu, X.; Chen, Z. Immobilization of heavy metals in e-waste contaminated soils by combined application of biochar and phosphate fertilizer. Water Air Soil. Pollut. 2019, 230, 26. [Google Scholar] [CrossRef]
- Ali, U.; Shaaban, M.; Bashir, S.; Fu, Q.; Zhu, J.; Islam, M.S.; Hu, H. Effect of rice straw, biochar and calcite on maize plant and Ni bio-availability in acidic Ni contaminated soil. J. Environ. Manage 2020, 259, 109674. [Google Scholar] [CrossRef] [PubMed]
- Ghandali, M.V.; Safarzadeh, S.; Ghasemi-Fasaei, R.; Zeinali, S. Heavy metals immobilization and bioavailability in multi-metal contaminated soil under ryegrass cultivation as affected by ZnO and MnO2 nanoparticle-modified biochar. Sci. Rep. 2024, 14, 10684. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.A.; Bedade, D.K.; Al-Ethawi, L.; Al-Waleed, S.M. Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon 2020, 6, e05224. [Google Scholar] [CrossRef]
- Lahori, A.H.; Ahmed, S.R.; Hersztek, M.M.; Afzal, M.; Afzal, A.; Bano, S.; Muhammad, M.T.; Aqsa, A.; Vambol, V.; Vambol, S. Comparative role of charcoal, biochar, hydrochar and modified biochar on bioavailability of heavy metal (loid) s and machine learning regression analysis in alkaline polluted soil. Sci. Total Environ. 2024, 930, 172810. [Google Scholar] [CrossRef]
Code | Treatment Description |
---|---|
T1= Control | 1 kg soil |
T2= TWMgO-MBC 0.5% | 1 kg soil + Tea waste MgO-modified biochar 0.5% |
T3= TWMgO-MBC 1% | 1 kg soil + Tea waste MgO-modified biochar 1% |
T4= WSMgO-MBC 0.5% | 1 kg soil + Wood shave MgO-modified biochar 0.5% |
T5= WSMgO-MBC 1% | 1 kg soil + Wood shave MgO-modified biochar 1% |
T6= WCMgO-MBC 0.5% | 1 kg soil + Water chestnut MgO-modified biochar 0.5% |
T7= WCMgO-MBC 1% | 1 kg soil + Water chestnut MgO-modified biochar 1% |
T8= PPMgO-MBC 0.5% | 1 kg soil + Pomegranate peel MgO-modified biochar 0.5% |
T9= PPMgO-MBC 1% | 1 kg soil + Pomegranate peel MgO-modified biochar 1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, I.; Lahori, A.H.; Mierzwa-Hersztek, M.; Afzal, A.; Muhammad, M.T.; Ahmed, M.S.; Vambol, V.; Vambol, S. The Application of MgO-Modified Biochars for the Immobilization of Ni, Cu, Pb, and Cr in Stone Crushing and Mining-Polluted Soil. Agronomy 2024, 14, 1423. https://doi.org/10.3390/agronomy14071423
Saleem I, Lahori AH, Mierzwa-Hersztek M, Afzal A, Muhammad MT, Ahmed MS, Vambol V, Vambol S. The Application of MgO-Modified Biochars for the Immobilization of Ni, Cu, Pb, and Cr in Stone Crushing and Mining-Polluted Soil. Agronomy. 2024; 14(7):1423. https://doi.org/10.3390/agronomy14071423
Chicago/Turabian StyleSaleem, Irfan, Altaf Hussain Lahori, Monika Mierzwa-Hersztek, Ambreen Afzal, Maria Taj Muhammad, Muhammad Shoaib Ahmed, Viola Vambol, and Sergij Vambol. 2024. "The Application of MgO-Modified Biochars for the Immobilization of Ni, Cu, Pb, and Cr in Stone Crushing and Mining-Polluted Soil" Agronomy 14, no. 7: 1423. https://doi.org/10.3390/agronomy14071423
APA StyleSaleem, I., Lahori, A. H., Mierzwa-Hersztek, M., Afzal, A., Muhammad, M. T., Ahmed, M. S., Vambol, V., & Vambol, S. (2024). The Application of MgO-Modified Biochars for the Immobilization of Ni, Cu, Pb, and Cr in Stone Crushing and Mining-Polluted Soil. Agronomy, 14(7), 1423. https://doi.org/10.3390/agronomy14071423