Optimizing Slow-Release Fertilizer Rate for Crop and Soil Productivity in Kimchi Cabbage Cropping Systems in the Highlands of Gangwon Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Initial Soil Sampling and Analysis
2.3. Treatment Application and Experimental Design
2.4. Land Preparation, Kimchi Cabbage Planting and Agronomic Practices
2.5. Rainfall Distribution in the Two Experiments
2.6. Data Collection
2.6.1. Soil Data
2.6.2. Plant Production and Yield Data
2.7. Partial Budget Analysis
2.8. Nitrogen, Use Efficiency, Supply and Uptake Calculations
2.9. Statistical Analysis
3. Results
3.1. Crop Performance
3.1.1. Plant Growth and Yield Parameters
3.1.2. Kimchi Cabbage Yield Response to SRF
3.1.3. Economic Analysis of Fertilizers
3.2. Nutrient Mineralization, Uptake and Use Efficiency
3.2.1. Nitrogen
3.2.2. Uptake of Other Nutrients
3.3. Soil Chemical Properties after Harvest
4. Discussion
4.1. Crop Performance and N Use
4.2. Uptake of Other Nutrients and Soil Quality after Harvest
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mckenzie-Mohr and Associates. Reducing Fertilizer Use and Increasing the Use of Slow-Release Fertilizer. Southwest Florida Water Mgt District. 2005. Available online: https://www.swfwmd.state.fl.us/sites/default/files/medias/documents/Fertilizer_Final_Report.pdf (accessed on 22 March 2024).
- Bahar, F.A.; Lone, A.A.; Makhdoomi, M.; Dar, E.A.; Ahmad, M.; Akhone, M.M.; Hussain, N.; Mushtaq, T.; Bhat, F.N.; Aziz, M.A. Slow release nitrogen fertilizers—An ideal approach for reducing nitrogen losses and improving crop yields. Chem. Sci. Rev. Lett. 2019, 8, 159–172. [Google Scholar]
- Wesolowska, M.; Rymarczyk, J.; Gora, R.; Baranowski, P.; Slawiriski, C.; Klimczyk, M.; Schimmelpfening, G. New slow-release fertilizers-economic, legal and practical aspects: A review. Int. Agrophys. 2021, 35, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Ma, Q.; Zhang, M.; Li, C.; Liu, Z.; Lyu, X.; Zheng, W. Synchronized relationships between nitrogen release of controlled release nitrogen fertilizers and nitrogen requirements of cotton. Field Crops Res. 2015, 184, 9–16. [Google Scholar] [CrossRef]
- Chen, X.; Xu, W.; Wang, C.; Chen, Y.; Chi, S.; Xiong, S.; Xie, W.; Chen, R.; Zhang, J.; Xiong, Z. Slow release fertilizer containing urease and nitrification inhibitors on nitrogen release characteristics and uptake and utilization of nitrogen, phosphorus and potassium in tomato. Trans. Chin. Soc. Agric. Eng. 2015, 31, 168–176. [Google Scholar] [CrossRef]
- Colipano, J.M.; Cagasan, U.A. A review on the impact of organic, conventional and nano-fertilizer application in crop production. Eurasian J. Agric. Res. 2022, 6, 101–109. [Google Scholar]
- Ni, B.; Liu, M.; Lu, S.; Xie, L. Environmentally friendly slow release nitrogen fertilizer. J. Agric. Food Chem. 2011, 59, 10169–10175. [Google Scholar] [CrossRef] [PubMed]
- Nardi, P.; Neri, U.; Di Matteo, G.; Trinchera, A.; Napoli, R.; Farina, R.; Subbarao, G.; Benedetti, A. Nitrogen release from slow release fertilizers in soils with different microbial activities. Pedosphere 2018, 28, 332–340. [Google Scholar] [CrossRef]
- Zareabyaneh, H.; Bayatvarkeshi, M. Effects of slow release fertilizers on nitrate leaching, its distribution in soil profile, N use efficiency, and yield in potato crop. Environ. Earth Sci. 2015, 74, 3385–3393. [Google Scholar] [CrossRef]
- Li, G.; Wang, M.; Ma, C.; Tao, R. Effects of soil heterogeneity and species on plant interactions. Front. Ecol. Evol. 2021, 9, 756344. [Google Scholar] [CrossRef]
- Wang, C.; Lv, J.; Xie, J.; Yu, J.; Li, J.; Zhang, J.; Tang, C.; Niu, T.; Bakpa, E.P. Effect of slow-release fertilizer on soil fertility and growth and quality of wintering Chinese chives (Allium tuberum Rottler ex Spreng.) in greenhouses. Sci. Rep. 2021, 11, 8070. [Google Scholar] [CrossRef]
- Wang, C.; Lv, J.; Coulter, J.A.; Xie, J.; Yu, J.; Li, J.; Zhang, J.; Tang, C.; Niu, T.; Gan, Y. Slow release fertilizer improves the growth, quality and nutrient utilization of wintering Chinese chives (Allium tuberosum Rottler ex Spreng). Agronomy 2020, 10, 381. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, Y. Preparation and performance of degradable slow release fertilizer coating material by a new iconic cross-linked hydrogel material. J. Environ. Chem. Eng. 2023, 11, 110785. [Google Scholar] [CrossRef]
- Xiao, X.; Yu, L.; Xie, F.; Bao, X.; Liu, H.; Ji, Z.; Chen, L. One-step method to prepare starch-based superabsorbent polymer for slow release fertilizer. Chem. Eng. J. 2017, 309, 607–616. [Google Scholar] [CrossRef]
- Trenkel, M.E. Slow and Controlled Release Stabilized Fertilizers: An Option for Enhancing Nutrient Efficiency in Agriculture, 2nd ed.; IFA: Paris, France, 2010; ISBN 978-2-9523139-7-1. Available online: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1846413 (accessed on 22 March 2024).
- Li, G.-H.; Cheng, G.-G.; Lu, W.-P.; Lu, D.-L. Differences of yield and nitrogen use efficiency under different applications of slow release fertilizer in spring maize. J. Integr. Agric. 2021, 20, 554–564. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Brempong, M.B.; Bak, G.-R.; Lee, J.-T. Yield of KCand Soil Chemical Properties Following Slow Release Fertilizer Use in the Highlands of Gangwon. Korean J. Soil. Sci. Fert. 2023, 56, 499–512. [Google Scholar] [CrossRef]
- Eagle, A.J.; Olander, L.P.; Locklier, K.L.; Heifferman, J.B.; Bernhardt, E.S. Fertilizer management and environmental factors drive N2O and NO3 losses in corn: Meta-analysis. Soil Sci. Soc. Am. J. 2017, 81, 1191. [Google Scholar] [CrossRef]
- Rurinda, J.; Zingore, S.; Jibrin, J.M.; Balemi, T.; Masuki, K.; Anderson, J.A.; Pampolino, M.F.; Mohammed, I.; Mutegi, J.; Kamara, A.Y.; et al. Science-based decision support for formulating crop fertilizer recommendations in sub-Saharana Africa. Agric. Syst. 2020, 180, 102790. [Google Scholar] [CrossRef]
- Cereal Systems Initiative for South Asia (CSISA). Smart Tools for Farmers in South. Asia to Help Increase Yield. 2017. Available online: https://csisa.org/tag/precision-agriculture (accessed on 2 April 2024).
- Agyeman, K.; Brempong, M.B.; Ofosu, A.; Danquah, O.E.; Keteku, A.K.; Marno, P.; Atta Poku, P.S.; Quaye, M.O.; Berchie, J.N. Yield potential of improved maize achieved from optimal rates of YARA crop nutrition fertilizers for sustainable maize production in the Semi- Deciduous Forest Agro-Ecological Zone of Ghana. Pelagia Research Library. Asian J. Plant Sci. 2023, 13, 311. [Google Scholar]
- Colla, G.; Cadarelli, M.; Bonini, P.; Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. Hortscience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- NAAS. Soil and Plant Analyses; National Academy of Agricultural Science, RDA: Suwon, Republic of Korea, 2011. [Google Scholar]
- NIAS. Fertilizer Recommendation for Crop Production, 5th ed.; National Institute of Agricultural Sciences, RDA: Wanju, Republic of Korea, 2022. [Google Scholar]
- Augarten, A.; Radatz, A.; Ruark, M.; Olson, E. Nitrogen Use Efficiency: State-Wide NUE Benchmarking for Corn grAIN and Silage; Extension, University of Wisconsin-Madison: Madison, WI, USA, 2019; Available online: https://www.uwdiscoveryfarms.org/wp-content/uploads/sites/1255/2020/08/DiscoveryFarms-NUE-ForOnline.pdf (accessed on 2 April 2024).
- Fernanadez-Escobar, R.; Antonaya-Baena, F.; Almeida-Lavado, S. Nitrogen uptake efficiency of olive cultivars. Horticulturae 2021, 7, 136. [Google Scholar] [CrossRef]
- Godebo, T.; Laekemariam, F.; Loha, G. Nutrient uptake, use efficiency and productivity of bread wheat (Triticum aestivum L.) as affected by nitrogen and potassium fertilizer in Keddida Gamela Woreda, Southern Ethiopia. Environ. Syst. Res. 2021, 10, 12. [Google Scholar] [CrossRef]
- Salem, E.H.; Ali, H. Effect of slow release fertilizers on growth and fruiting of Khalas date palm. SVU—Int. J. Agric. Sci. 2020, 2, 30–44. [Google Scholar] [CrossRef]
- Abu-Zied, S.T.; Abd El-Lateef, E.M.; Hanem, A.S.; Hozayn, M.M.; Soad, M.E.; Amel, L.; Abd, E.; Essa, R.E. Effects of different slow release nitrogen fertilizer forms on yield and chemical constituents of maize and soybean. Middle East. J. Agric. Res. 2014, 3, 645–652. [Google Scholar]
- Kaplan, I.; Tlustos, P.; Szakova, J.; Najmanova, J. The influence of slow release fertilizers on potted chrysanthemum growth and nutrient composition. Plant Soil. Environ. 2013, 59, 385–391. Available online: https://www.agriculturejournals.cz/pdfs/pse/2013/09/01.pdf (accessed on 16 March 2024). [CrossRef]
- Brentrup, F.; Palliere, C. Nitrogen use efficiency as an agro-environmental indicator. In Proceedings of the OECD Workshop on Agri-Environmental Indicators, Leysin, Switzerland, 23–26 March 2010; Available online: https://www.researchgate.net/publication/312595805_Nitrogen_Use_Efficiency_as_an_Agro-_Environmental_Indicator (accessed on 15 March 2024).
- Mamathashree, C.M.; Shilpha, S.M.; Pradeep. Nutrient mining by selected cereal crops and strategies to sustain soil productivity. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2932–2941. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Wu, J.; An, Z.; Suo, L.; Ding, J.; Li, S.; Wei, D.; Jin, L. Effects of the rainfall intensity and slope gradient on soil erosion and nitrogen loss on the sloping field of Myun Reservoir. Plants 2023, 12, 423. [Google Scholar] [CrossRef]
- Ferreira, I.E.P.; Zocchi, S.S.; Baron, D. Reconciling the Mitscherlich’s law of diminishing returns with Liebig’s law of the minimum. Some results on crop modelling. Math. Biosci. 2017, 293, 29–37. [Google Scholar] [CrossRef]
- Robles-Aguilar, A.A.; Schrey, S.D.; Postma, J.A.; Temperton, V.M.; Jablonowski, N.D. Phosphorus uptake from struvite is modulated by the nitrogen form applied. J. Plant Nutr. Soil. Sci. 2020, 183, 80–90. [Google Scholar] [CrossRef]
- Li, L.; Tang, C.; Rengel, Z.; Zhang, F.S. Calcium, magnesium and microelemet uptake as affected by phosphorus sources and interspecific root interactions between wheat and chickpea. Plant Soil. 2004, 261, 29–37. [Google Scholar] [CrossRef]
- Ding, W.; Clode, P.L.; Clements, J.C.; Lambers, H. Effects of Calcium and Its Interaction with Phosphorus on the Nutrient Status and Growth of Three Lupinus Species. Master’s Dissertation, School of Biological Sciences, University of Western Australia, Crawley, Australia, 2018. Available online: https://api.research-repository.uwa.edu.au/ws/portalfiles/portal/33839982/Ding_et_al_2018_Effects_of_calcium_and.pdf (accessed on 3 April 2024).
- International Plant Nutrition Institute (IPNI). Functions of phosphorus in plants. Better Crops 1999, 83, 6–7. [Google Scholar]
- Chakraborty, D.; Prasad, R.; Brantley, E. Phosphorus Basics: Understanding Pathways of Soil Phosphorus Loss. Alabama Cooperative Extension System. 2020. Available online: https://www.aces.edu/wp-content/uploads/2020/05/ANR-2662-Phosphorus-Basics-Pathways-of-Soil-Phosphorus-Loss_052020L-G.pdf (accessed on 4 March 2024).
- Azam, H.M.; Alam, S.T.; Hasan, M.; Yameogo, D.D.S.; Kannan, A.D.; Rahman, A.; Kwon, M.J. Phosphorus in the environment: Characteristics with distribution an effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems. Environ. Sci. Pollut. Res. Int. 2019, 26, 20183–20207. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Liu, C.; Li, Y.; Wang, X.; Liu, Y.; Zou, C.; Chen, X.; Zhang, W. Reducing the environmental risks related to phosphorus surplus resulting from greenhouse cucumber production in China. J. Cleaner Prod. 2022, 332, 130076. [Google Scholar] [CrossRef]
- Goulding, K.; Mirrell, T.S.; Mikkelsen, R.L.; Rosolem, C.; Johnson, J.; Wang, H.; Alfaro, M.A. Outputs: Potassium losses from agricultural systems. In Improving Potassium Recommendations for Agricultural Crops; Murrell, T.S., Mikkelsen, R.L., Sulewski, G., Norton, R., Thompson, M.L., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Soil Electrical Conductivity. Soil. Health-Guide for Educators. 2014. Available online: https://cropwatch.unl.edu/documents/USDA_NRCS_EC_guide.pdf (accessed on 21 March 2024).
- Wang, X.; Wang, X.; Sheng, H.; Wang, X.; Wang, X.; Zhao, H.; Feng, K. Excessive nitrogen fertilizer application causes rapid degradation of greenhouse soil in China. Polish J. Environ. Stud. 2022, 31, 1527–1534. [Google Scholar] [CrossRef]
- Hassin, A.M.; Mohammed, H.A.E.; Ahmed, G.L.; Emhammed, M.A. Integrated effect of fertilizers on soil pH, EC and organic matter content. J. Pure Appl. Sci. 2022, 21. [Google Scholar] [CrossRef]
- USDA-NRCS. Soil Quality Indicators. 2011. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-10/Soil%20Electrical%20Conductivity.pdf (accessed on 21 March 2024).
- Ullah, M.S.; Islam, M.S.; Islam, M.A.; Haque, T. Effects of organic manures and chemical fertilizers on the yield of brinjal and soil properties. J. Bangladesh Agric. Univ. 2008, 6, 271–276. [Google Scholar] [CrossRef]
- Nemera, F.; Zewdu, T.; Ebro, A. Effect to organic and inorganic fertilizers applications on the Highlands Grasslands of the acidic soil physical and chemical properties: The case of meta- Robi District. J. Biol. Agric. Healthc. 2018, 8. Available online: https://core.ac.uk/download/pdf/234662511.pdf (accessed on 28 March 2024).
- Rocci, K.S.; Lavallee, J.M.; Stewart, C.E.; Cotrufo, M.F. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. Sci. Total Environ. 2021, 793, 148567. [Google Scholar] [CrossRef]
- Wade, J.; McGuire, A. Nitrogen Fertilizer and Soil Organic Matter: What Does the Evidence Say? Perspectives on Sustainability; Center for Sustaining Agriculture and Natural Resources: Wenatchee, WA, USA, 2023; Available online: https://csanr.wsu.edu/nitrogen-fertilizer-and-soil-organic-matter-what-does-the-evidence-say/ (accessed on 16 March 2024).
pH | E.C | OM | NO3−-N | NH4+-N | Av.P2O5 | K | Ca | Mg | |
---|---|---|---|---|---|---|---|---|---|
(1:5) | (dS m−1) | (g kg−1) | (mg kg−1) | (cmolc kg−1) | |||||
First experiment | 6.3 | 0.6 | 33.5 | 13.9 | 13.3 | 328.8 | 0.4 | 4.2 | 1.2 |
Second experiment | 6.3 | 0.2 | 26.2 | 10.43 | 4.41 | 170.2 | 0.72 | 5.79 | 1.34 |
Treatment | Head Height (cm) | Head Weight (g) | Head Width (cm) | Leaf Length (cm) | Leaf Number | Leaf Width (cm) | Plant Weight (g) | Marketable Yield (Mg ha−1) |
---|---|---|---|---|---|---|---|---|
First experiment | ||||||||
nf | 26.04 ± 2.3 b | 599.19 ± 202.6 e | 12.97 ± 1.8 c | 28.89 ± 2.6 c | 67.60 ± 4.0 d | 15.96 ± 1.5 b | 936.29 ± 286.9 d | 24.42 ± 8.3 c |
SF0.5 | 32.02 ± 0.4 a | 1611.13 ± 249.9 c | 18.69 ± 0.7 a | 36.17 ± 1.5 ab | 89.80 ± 1.3 b | 21.30 ± 1.1 a | 2412.97 ± 291.4 b | 65.65 ± 10.2 a |
SF1 | 31.74 ± 0.6 a | 1789.96 ± 112.2 b | 19.55 ± 0.7 a | 37.64 ± 0.7 a | 95.93 ± 3.0 a | 21.09 ± 0.5 a | 2676.97 ± 149.6 ab | 72.94 ± 4.6 a |
SF2 | 33.71 ± 0.9 a | 1833.67 ± 71.8 a | 19.81 ± 0.5 a | 38.33 ± 0.5 a | 93.87 ± 2.2 a | 22.84 ± 0.3 a | 2727.97 ± 95.7 a | 74.72 ± 2.9 a |
FF | 32.49 ± 0.4 a | 1158.92 ± 177.3 d | 16.78 ± 1.0 b | 35.31 ± 0.91 b | 77.93 ± 4.7 c | 20.29 ± 0.4 a | 1695.59 ± 234.1 c | 47.23 ± 7.2 b |
Second experiment | ||||||||
nf | 24.33 ± 0.3 c | 534.00 ± 69.5 e | 11.67 ± 0.3 c | 32.33 ± 0.3 d | 59.33 ± 2.2 d | 19.33 ± 0.3 d | 925.67± 87.8 d | 18.73 ± 2.4 e |
SF0.5 | 26.67 ± 0.3 b | 1225.00 ± 87.7 c | 14.33 ± 0.3 b | 38.00 ± 0.6 b | 74.67 ± 1.8 b | 23.67 ± 1.2 b | 1853.00 ± 139.7 c | 42.83 ± 3.1 c |
SF1 | 26.67± 0.3 b | 1571.67 ± 64.5 b | 16.00 ± 0.0 a | 39.67 ± 0.3 ab | 81.33 ± 2.9 a | 24.67 ± 0.3 ab | 2260.67 ± 96.0 b | 55.00 ± 2.2 b |
SF2 | 28.00 ± 0.6 a | 1877.00 ± 29.9 a | 16.67 ± 0.3 a | 41.33 ± 0.7 a | 83.33 ± 2.7 a | 25.33 ± 0.3 a | 2733.67 ± 44.1 a | 65.67 ± 1.0 a |
FF | 26.33 ± 0.7 b | 1082.00 ± 149.8 d | 14.00 ± 0.6 b | 36.67 ± 0.9 c | 68.67 ± 1.7 c | 21.67 ± 0.9 c | 1604.00 ± 154.7 c | 37.90 ± 5.2 d |
Treatments | Added Marketable Yield (kg ha−1) | Added Gross Return ha−1 (KRW) | Added Variable Costs (KRW) | |||
---|---|---|---|---|---|---|
Fertilizer Cost ha−1 (KRW) | Fertilizer Application Cost ha−1 (KRW) | Added Total Costs ha−1 (KRW) | Added Net Return ha−1 (KRW) | |||
First experiment | ||||||
SF0.5 | 41,230 | 85,069,859 | 1,136,100 | 257,813 | 1,393,913 | 83,675,946 |
SF1 | 48,520 | 100,111,316 | 2,272,200 | 257,813 | 2,530,013 | 97,581,303 |
SF2 | 50,300 | 103,783,990 | 4,544,400 | 257,813 | 4,802,213 | 98,981,777 |
FF | 22,810 | 47,063,873 | 1,040,850 | 773,438 | 1,814,288 | 45,249,585 |
Second experiment | ||||||
SF0.5 | 24,100 | 23,581,850 | 1,136,100 | 257,813 | 1,393,913 | 22,187,937 |
SF1 | 36,270 | 35,490,195 | 2,272,200 | 257,813 | 2,530,013 | 32,960,182 |
SF2 | 46,940 | 45,930,790 | 4,544,400 | 257,813 | 4,802,213 | 41,128,577 |
FF | 19,170 | 18,757,845 | 1,040,850 | 773,438 | 1,814,288 | 16,943,557 |
Treatments | nf | SF0.5 | SF1 | SF2 | FF |
---|---|---|---|---|---|
First experiment | |||||
N supplied (kg ha−1) | 54.40 | 173.40 | 292.40 | 530.40 | 292.40 |
N uptake (kg ha−1) | 70.86 d | 178.79 bc | 181.48 b | 223.24 a | 165.43 c |
NUE (%) | N/A | 90.69 a | 46.48 b | 32.01 b | 39.73 b |
Second experiment | |||||
N supplied (kg ha−1) | 29.68 | 148.68 | 267.68 | 505.68 | 267.68 |
N uptake (kg ha−1) | 54.39 d | 92.99 c | 131.13 b | 209.11 a | 141.20 b |
NUE (%) | N/A | 25.97 | 28.67 | 32.43 | 30.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badu Brempong, M.; Kim, Y.X.; Bak, G.-R.; Lee, J.-T. Optimizing Slow-Release Fertilizer Rate for Crop and Soil Productivity in Kimchi Cabbage Cropping Systems in the Highlands of Gangwon Province. Agronomy 2024, 14, 1428. https://doi.org/10.3390/agronomy14071428
Badu Brempong M, Kim YX, Bak G-R, Lee J-T. Optimizing Slow-Release Fertilizer Rate for Crop and Soil Productivity in Kimchi Cabbage Cropping Systems in the Highlands of Gangwon Province. Agronomy. 2024; 14(7):1428. https://doi.org/10.3390/agronomy14071428
Chicago/Turabian StyleBadu Brempong, Mavis, Yangmin X. Kim, Gye-Ryeong Bak, and Jeong-Tae Lee. 2024. "Optimizing Slow-Release Fertilizer Rate for Crop and Soil Productivity in Kimchi Cabbage Cropping Systems in the Highlands of Gangwon Province" Agronomy 14, no. 7: 1428. https://doi.org/10.3390/agronomy14071428
APA StyleBadu Brempong, M., Kim, Y. X., Bak, G. -R., & Lee, J. -T. (2024). Optimizing Slow-Release Fertilizer Rate for Crop and Soil Productivity in Kimchi Cabbage Cropping Systems in the Highlands of Gangwon Province. Agronomy, 14(7), 1428. https://doi.org/10.3390/agronomy14071428