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Abstract: Peanut stem rot, also known as white mold, poses a significant threat to peanut production.
It is typically managed using fungicides and moderately resistant cultivars. Cultivars with higher
resistance can reduce fungicide dependency and increase sustainability. This study explores the
potential of wild peanut species in stem rot resistance breeding programs by enhancing genetic
diversity in cultivated peanut. Through greenhouse and field evaluations, 13 allotetraploid hybrids
with Arachis stenosperma as one of the parents showed superior resistance compared to other wild
genotypes. The genomic regions that confer the stem rot resistance were further identified by
genotyping and phenotyping an F, population derived from the allotetraploid ValSten1 (A. valida x A.
stenosperma)** and A. hypogaea cv. TifGP-2. A linkage map was constructed from 1926 SNP markers.
QTL analysis revealed both beneficial and deleterious loci, with two resistance-associated QTLs
derived from A. stenosperma and four susceptibility loci, two from A. stenosperma and two from A.
valida. This is the first study that evaluated peanut-compatible wild-derived allotetraploids for stem
rot resistance and that identified wild-derived QTLs for resistance to this pathogen. The allotetraploid
hybrid ValSten1, that has A. stenosperma as one of the parents, offers a resource for resistance breeding.
Markers associated with resistance QTLs can facilitate introgression from ValSten1 into cultivated
peanut varieties in future breeding efforts, potentially reducing reliance on chemical control measures.

Keywords: stem rot; white mold; peanut; wild Arachis; QTL mapping; crop wild relatives

1. Introduction

Peanut, or groundnut (Arachis hypogaea L.), is an essential oilseed crop and food
legume cultivated in more than 100 countries, mainly in tropical and subtropical regions.
In 2023, the world'’s total production of peanut accounted for 50.5 million tonnes, whereas
the United States accounted for 5% of the world’s total production (U.S. Department
of Agriculture, 2023; https://ipad.fas.usda.gov/cropexplorer/cropview /Default.aspx,
accessed on 28 February 2024). According to the United States Department of Agriculture
database, the total harvested area of peanuts in 2023 was 637 thousand hectares producing
2.7 million tonnes. The warm and humid weather in the southeastern U.S. benefits peanut
cultivation but also favors pests and diseases. Numerous fungi, nematodes, and virus
pathogens cause significant economic losses, incurred through yield reduction and millions
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of dollars in chemicals for plant protection. Pests and diseases also reduce the market value
by decreasing the quality of pods and seeds. Hence, breeding cultivars with high yields
along with disease resistance is the main objective of multiple peanut breeding programs.

Peanut stem rot caused by the fungus Athelia rolfsii (Curzi) C. C. Tu & Kimbr (syn.
Sclerotium rolfsii Sacc.), also known as peanut white mold, is one of the most damaging
soilborne diseases [1]. In Georgia, the largest producing state, the estimated losses caused
by stem rot from 2017 to 2021 averaged $88.3 million per year [2-6]. Extensive screening
programs for stem rot-resistant germplasm and breeding resistant cultivars were initiated
in the late 1980s in the United States. Complete resistance to A. rolfsii has not been identified,
but a few commercial cultivars present moderate resistance, including Georgia-12Y, Georgia-
07W, Georgia-10T, Bailey, Florida-07, York, C-99R, TUFRunner ‘511°, and TUFRunner
297" [7-14]. Among these resistant cultivars, Georgia-12Y is the most grown Runner-type
peanut. The germplasm NC 3033 also shows partial stem rot resistance [15,16].

Peanut belongs to the genus Arachis, which has over 80 wild species in nine botanical
sections [17-22]. These wild species, especially in the botanical section Arachis, are sources
of genetic variation potentially conferring resistance to pathogens, tolerance to abiotic stress,
and other desirable traits. Multiple resistances to diseases and pests have been identified in
accessions of the wild species, A. batizocoi, A. cardenasii, A. diogoi, and A. stenosperma [23-29].
Though wild species show resistance to several diseases, their resistances are not readily
transferable into cultivated peanuts by hybridization due to the ploidy barrier: while
cultivated peanut is tetraploid, wild Arachis are diploid (except for A. monticola [17]). The
development of interspecific hybridization techniques provided peanut breeders access to
wild resistance sources and introgression of wild species into cultivated peanut is described
in detail in the literature [30-33], allowing the production of lines and cultivars with
superior performance and resistance to several peanut diseases [34-36]. Several commercial
cultivars have already harnessed resistance from the wild species A. cardenasii [16,37-47].
Besides A. cardenasii, A. stenosperma serves as a new source of RKN resistance [48,49].
Resistance to stem rot, which is the focus of this study, has been found in the taxonomic
sections Arachis (A. duranensis, A. microsperma, and A. monticola), Heteranthae (A. pusilla), and
Procumbentes (A. appressipila) [50-52]. However, to date, no peanut-compatible wild-derived
induced allotetraploid has been identified as having resistance to stem rot.

In plant breeding, selecting individuals based on phenotype is time-consuming and
labor-intensive. When there are molecular markers strongly linked to the phenotype of
interest, marker-assisted selection (MAS) aids in selecting desirable individuals based
on genotype, significantly reducing the time needed and precision of selection by, for
example, allowing selection at the seedling stage. Quantitative trait locus (QTL) analysis is
an approach to finding genomic regions that confer the targeted trait, such as resistance.
Generally, the QTL analysis method requires a population derived from two parents
with different alleles that affect the variation in a trait [53,54]. After genotyping and
phenotyping the targeted trait in the population, QTL analysis involves constructing the
linkage maps for the population, mapping and characterizing the QTLs that affect the
trait [55]. In peanut, QTL analysis has been applied in studying resistances to pathogens,
such as leaf spots, rust, stem rot, and RKN; agronomic traits, such as seed size and seed
weight; and plant morphology, such as main stem height and branch length [56-63]. Few
QTL studies reported stem rot resistance loci. Earlier research reported single simple
sequence repeat (SSR) markers weakly associated with stem rot disease in F, populations
derived from crossing one susceptible and one resistant cultivated peanut [64,65]. A large-
scale SNP array was developed specifically for peanut (‘Axiom_Arachis’) [66]. This SNP
array has been used in QTL mapping studies for resistances against pests and diseases,
such as root-knot nematode, late leaf spot, and peanut rosette, and for agronomic traits
associated with yield and pod and seed characteristics [59,66-69]. Regarding stem rot,
QTLs linked to ‘Axiom_Arachis’ markers were identified in recombinant inbred line (RIL)
populations [57,70,71]. Notably, none of the above-mentioned studies utilized wild species
as resistance donors.
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This study has two main focuses: (1) the evaluation of stem rot resistance in wild-
derived induced allotetraploids was conducted in greenhouse assays and field trials to
understand their potential in resistance breeding; and (2) genetic analyses of the wild-
derived segments that confer resistance and susceptibility. This is part of an introgression
program that can aid the development of peanut cultivars with stem rot resistance. This is
the first study evaluating and dissecting the genetic contribution of wild-derived allote-
traploids for stem rot resistance.

2. Materials and Methods
2.1. Screening of Induced Allotetraploids for Peanut Stem Rot Resistance
2.1.1. Genotypes Tested in Greenhouse Assay and Field Evaluations

Thirteen induced allotetraploids derived from 12 wild species were screened for
resistance to peanut stem rot (Figure 1; [33-35,72-75]). Resistances were assessed by
greenhouse assay [76] and/or field evaluation [70] (Tables 1 and 2). Controls were the pure
pedigree A. hypogaea cultivars Georgia-09B (susceptible) and Georgia-12Y (resistant) [8,77].

A. duranensis A. gregoryi
sesn2848 V 6389
BatDur2 GregSten1
: A. batizocoi A. stenosperma A. valida
A. duranensis BatSten1 ValSten1
A. villosa K 30060 Kg4s4 V 10309 G 30011
V 12812
BatDur1 MagSten1
IpaVillo1 IpaDur3
. P IpaDur1 :
A. correntina A. ipaénsis A. duranensis A. magna
G 9530 IpaCor2 K 30076 | V 14167 MagDurt K 30097
paDur2
IpaCor1
A. correntina
G 9548
Figure 1. Thirteen induced allotetraploids (bold text) and their 12 diploid Arachis parents (shown in
box). The boxes highlighted in orange contain the A genome parents of the induced allotetraploids,
the others contain B or K (A. batizocoi) genome parents.
Table 1. Average lesion lengths and AUDPC value on stem cutting of 13 induced allotetraploids
inoculated with A. rolfsii mycelial plugs in greenhouse assays.
Genotype 5 DPI &b 7 DPI 9 DPI AUDPC
- = Genotype Reference
Abbreviation Avg. € Avg. Avg. Avg.
GregStenl [A. gregoryi V 6389 x A. stenosperma V 10309]** [72] 0674 ac 091 a 2.04 a 5.78 a
ValSten1 [A. valida G 30011 x A. stenosperma V 10309]** [34,74] 0.87 a 1.23 a 172  ab  6.57 a
MagStenl [A. magna K 30097 x A. stenosperma V 10309]** [35] 0.89 a 124 ab 195 ab 697 ab
IpaDur3 [A. ipaénsis K 30076 x A. duranensis K 30060]+* [34] 0.94 a 1.23 a 1.93 ab 6.96 a
IpaVillol [A. ipaénsis K 30076 x A. villosa V 12812]4* [72] 0.98 a 1.53 ab 2.92 ab 8.63 ab
IpaDur2 [A. ipaénsis K 30076 x A. duranensis V 14167]** [75] 1.00 a 1.64 ab 3.86 ab 9.95 ab
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Table 1. Cont.
Genotype 5 DPI &P 7 DPI 9 DPI AUDPC
Abbreviation Genotype Reference Avg. © Avg. Avg. Avg.
IpaCorl [A. ipaénsis K 30076 x A. correntina G 9548]*% [72] 1.09 a 1.54 ab 291 ab 9.06 ab
BatSten1 [A. batizocoi K 9484 x A. stenosperma V 10309]** [33] 1.10 a 1.26 a 1.74 a 7.41 a
IpaDurl [A. ipaénsis K 30076 x A. duranensis V 14167]** [73] 1.11 a 164 ab 385 ab 10.02 ab
IpaCor2 [A. ipaénsis K 30076 x A. correntina G 953014 [34] 1.13 ab 2.08 ab 3.48 ab 10.80 ab
BatDur2 [A. batizocoi K 9484 x A. duranensis sesn 2848]** [33] 1.15 ab 1.89 ab 3.32 ab 10.32 ab
BatDurl [A. batizocoi K 9484 x A. duranensis V 14167]** [33] 1.20 ab 1.72 ab 3.52 ab 10.32 ab
GA-12Y f A. hypogaea Georgia-12Y [8] 132 ab 151 ab 199 ab 853 ab
MagDurl [A. magna K 30097 x A. duranensis V 14167]** NP 1.51 ab 213 ab 463 ab 1310 ab
GA-09Bf A. hypogaea Georgia-09B [77] 2.27 b 2.85 b 3.84 b 1540 b
p-value of Kruskal-Wallis test <0.001 * <0.01* 0.023 * <0.01*
2 days post inoculation; 3 DPI not shown in the table, no significant difference was found among genotypes;
¢ avg. represents the abbreviation of average; ¢ unit of lesion length: mm; ¢ means within columns for individual
evaluations that are not followed by a common letter are significantly different according to Conover-Iman
post hoc test; f Georgia-12Y (GA-12Y) and Georgia-09B (GA-09B) are the commercial cultivars used as resistant
and susceptible control, respectively; NP = not published; * p-value of Kruskal-Wallis test < 0.05 = significant
differences between means.
Table 2. Field evaluation of 11 induced allotetraploids for stem rot resistance on field evaluations.
Genotype 2019 End-of-.Season 2020 Mid§eas:m 2020 End-of-.Season
Genotype Evaluation Evaluation Evaluation
Abbreviation Average Average Average
ValSten1 [A. valida G 30011 x A. stenosperma V 10309]** 2.28 ab 0.76 a 2.31 a
GA-12Y°P A. hypogaea Georgia-12Y 1.44 b€ 1.23 a 2.84 a
GA-09B P A. hypogaea Georgia-09B 3.28 cd 1.45 ab 2.97 ab
GregStenl [A. gregoryi V 6389 x A. stenosperma V 10309]** 3.15 c 2.26 bc 3.79 bc
MagSten1 ¢ [A. magna K 30097 x A. stenosperma V 10309]** 2.33 bc 3.64 bc
IpaVillol [A. ipaénsis K 30076 x A. villosa V 12812]** 3.88 cd 248 cd 442 cd
IpaCor2 d [A. ipaénsis K 30076 x A. correntina G 9530]** 2.44 cd 3.75 cd
IpaCorl [A. ipaénsis K 3076 x A. correntina G 9548]4 342 acd 2.77 cde 4.00 cde
MagDurl 4 [A. magna K 30097 x A. duranensis V 14167]** 2.92 cde 4.68 cde
BatSten1 [A. batizocoi K 9484 x A. stenosperma V 10309]** 3.76 od 2.92 cde 4.50 cde
BatDur2 [A. batizocoi K 9484 x A. duranensis sesn 2848]** 4.32 d 3.08 cde 4.94 cde
IpaDur3 4 [A. ipaénsis K 30076 x A. duranensis K 30060]** 3.26 de 4.86 de
IpaDurl [A. ipaénsis K 30076 x A. duranensis V 14167]** 4.05 cd 3.45 e 4.84 e
<0.001 * <0.001 * <0.001 *

2 midseason evaluation data only collected in 2020; b Georgia-12Y (GA-12Y) and Georgia-09B (GA-09B) are
the commercial cultivars used as resistant and susceptible control, respectively; ¢ means within columns for
individual evaluations that are not followed by a common letter are significantly different according to Conover—

Iman post hoc test; ¢ MagSten1, IpaCor2, MagDurl, IpaDur3 only tested in 2020; * p-value of Kruskal-Wallis
test < 0.05 = significant differences between means within columns.

2.1.2. Greenhouse Assay

Seeds were germinated on Whatman No.1 filter paper (ThermoFisher Scientific,
Waltham, MA, USA)) saturated with approximately 5 mL growth regulator (5% Florel, Mon-
terey, Fresno, CA, USA) in a Petri dish at 28 °C for 24 h for breaking dormancy. Germinated
seeds were transferred to six-cell seedling trays filled with potting mix (Pro-Mix Bx, Grow-
Generation, Greenwood Village, CO, USA) and placed in a greenhouse. The 14-day-old
seedlings were transplanted to a 25 cm round pot filled with soil with 4:2:2:1 sand /steamed
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field soil/Pro-Mix (GrowGeneration)/perlite (Industries, Inc., Orwell, OH, USA). The
controls were germinated two weeks later than the allotetraploids due to the differences
in growth rate. The greenhouse assay was conducted using the method described by Tsai
etal. [76]. In brief, A. rolfsii SR-18 strain [78] was grown on a 15 mL potato dextrose agar
(PDA) in a Petri dish at room temperature with 8:16 h light/dark for four days as inoculum
preparation. Stem cuttings were collected from primary lateral branches of sixty-day-old
plants and were placed in a 355 mL cup filled with wet potting mix (Pro-Mix Bx, GrowGener-
ation). Cuttings were inoculated with a 0.7 cm diameter plug grown with active A. rolfsii on
the next day of stem-cutting-in-cup preparation. Inoculated cuttings were placed in a mist
chamber with a randomized complete block design (RCBD). Free water in the base of the
mist chamber ensured the high humidity for disease development. About 5 mL of sterilized
distilled water was carefully dripped on the potting mix using a wash bottle every two days.
Lesion lengths on the stem were measured at 3, 5, 7, and 9 days post inoculation (DPI) using
a digital caliper (Ted Pella, Inc., Redding, CA, USA). These four evaluations were used to
calculate the area under the disease progress curve (AUDPC) to assess disease development
over time [79]. The formula of AUPDC A(ty), at t = t, is the total accumulated disease until
t =t, given by Ay = Efi;l W X (t;1q —t;). Hence, the calculation in this study was
AUDPC = ((DPI3 + DPI5)/2) x 2 + ((DPI5 + DPI7)/2) x 2 + ((DPI7 + DPI9)/2) x 2. Nor-
mally, eight replications per genotype were evaluated. Experiments were conducted
three times in May, July, and October 2020. Average temperatures in the greenhouse were
242 °C,26.4 °C, and 23.1 °C, respectively.

2.1.3. Field Evaluation

Induced allotetraploids (Figure 1) were evaluated during the summer from May to
October 2019 and 2020 at the University of Georgia Blackshank Farm, Tifton, Georgia using
the method described in Cui et al. with modifications [70]. The field was fumigated by
injecting TRI-PIC 100 (336.26 kg/ha, TriEst Ag Group, Inc., Greenville, NC, USA) into
the soil, and a plastic sheet covered the field for seven days to remove residual inoculum
of A. rolfsii from the soil. Beds were 457.2 cm x 182.88 c¢m in size, and a strip-till rig
with shanks spaced 91.4 cm was then run on each bed to break any compaction zones
from equipment used to remove the plastic. Standard production practices were followed,
including pre-plant incorporation of herbicide with a rototiller. Allotetraploids have a very
distinct architecture from that of cultivated peanut. Therefore, Georgia-12Y seeds were
planted to provide a canopy for adequate fungal development (referred to as background-
GA-12Y hereafter). Seeds of background-GA-12Y were planted as 6 seeds per 30.48 cm in
each of two rows per bed with a 91.5 cm row spacing. Planting dates for GA-12Y were
6 May 2019 and 18 May 2020.

Seed dormancy of the tested genotypes (allotetraploids and controls) was broken as
described above. Seedlings were transferred to an 8 cm peat pot (Jiffy pots S8-15, Jiffy,
Zwijndrecht, Netherland) filled with potting mix (Pro-Mix Bx, GrowGeneration) and kept
in the greenhouse for 28 days prior to transplanting in the field. Georgia-12Y and Georgia-
09B, the resistant and susceptible controls, respectively, were germinated two weeks after
the allotetraploids. Four-week-old seedlings (grown in a greenhouse) were labeled with a
plastic band at the base of the stem. All 40 seedlings per genotype were transplanted directly
into the field, arranged in rows interspersed among two rows per bed of background-GA-
12Y. Transplanting dates were 4 June 2019 and 2 June 2020. Eight rows of five individuals
were planted for each genotype, with row distribution following an RCBD (Figure 2a).
The objective was to achieve a more homogeneous microclimate among the tested plants
(allotetraploids), as they exhibit a sparse canopy (Figure 2b,c).
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Figure 2. Schematic representation of the evaluation method of induced allotetraploids for stem
rot resistance in the field. (a) Top-view of the field plan. Each set (e.g., G1-G5) was assigned to
the field using a randomized complete block design. Each set has five reps of the same genotypes.
(b) Side-view of the field evaluation; the tested genotype was nested under the canopy of background-
GA-12Y peanut. (c) A close-up of the experiment: an individual being tested is surrounded by the
background-GA-12Y and marked by a plastic band. The inoculum was placed inside of the band to
keep it in place.

For inoculation, A. rolfsii SR-18 strain [78] was grown on PDA for three days. Individ-
ual tested plants were inoculated with a 1 cm diameter active mycelial plug cut from a PDA
plate with the aid of a cork borer. Inoculation was performed 60 days after the seedlings
were transplanting into the field (7 August 2019 and 11 August 2020). The mycelial plug
was positioned between the plastic band and the plant to secure it in place, with the mycelial
side directly in contact with the peanut stem. Acephate (Orthene 0.84 kg/ha) was applied
once prior to the inoculation to control fire ants that can consume the agar plug. After the
inoculation, three days of overhead irrigation were applied to the field to maintain high
humidity long enough to achieve successful infection of the plants. Additional irrigation
was applied as needed during the season to maintain plant growth. Standard management
practices were employed, including applications of chlorothalonil (1.26 kg active ingredient
per ha) every 14 days to control foliar diseases. Stem rot severity was evaluated before
harvest (9 September of 2019 (32 DPI) and 6 October of 2020 (56 DPI)) by examining lesion
development from the plant crown where the inoculum was placed. An additional midsea-
son evaluation was undertaken in the 2020 field trial (27 August of 2020 (16 DPI)). A 0 to
5 rating scale modified from Cui et al. [70] was developed for disease evaluation, taking
into account the wild phenotype of the plants (Table 3, Figure 3).
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Table 3. The rating scale used for stem rot disease assessment of individual plants in the field.

Score

Description of Disease Development

No disease shown

A small lesion on the mainstem (<1 cm)

Larger lesions on the mainstem (1-4 cm), clean or small lesions on the laterals stem (<1 cm)

Larger lesions on the mainstem (>4 cm), more lesions on the lateral stem (1-4 cm)

Main stems dying, laterals largely affected (>4 cm)

Q|| W[ N =

Dead plant

Figure 3. Rating scale used in field evaluation. The tested plants were labeled with a plastic band
(a—e) and a field flag (f). Ratings are as follows: (a) score 0: no disease observed; (b) score 1: a small
lesion on the mainstem (<1 cm) (yellow arrow); (c) score 2: a larger lesion (1-4 cm) on the mainstem
and no or small lesions (<1 cm) on the lateral stem (yellow bracket); (d) score 3: a larger lesion (>4 cm)
on the mainstem (yellow bracket) and secondary lesions on the lateral stem (1-4 cm) (red bracket);
(e) score 4: main stem with large lesion and already dying (yellow bracket) and lateral stems largely
affected (lesions > 4 cm) (red bracket); (f) score 5: dead plant (yellow bracket).

2.1.4. Statistical Analysis

The statistical analyses of data collected in the greenhouse assay and field evaluation
were performed using the software RStudio (RStudio version 1.2.1335, Boston, MA, USA).
First, the normality of datasets was verified with the Shapiro-Wilk test using the function
shapiro.test [80]. As datasets did not follow normal distribution, means were compared by
using the non-parametric Kruskal-Wallis rank sum test using the function kruskal.test, with
significance levels set at 5% [81]. When significance levels were lower than 5%, the Dunn
test was used post hoc for pairwise comparisons of means [82].
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2.2. QTLs Mapping of Stem Rot Resistance
2.2.1. Population Development

The allotetraploid ValStenl had the highest level of resistance in both greenhouse
and field evaluations (Tables 1 and 2, Figures 4 and 5). ValStenl is an allotetraploid
derived from a cross of A. valida G 30011 and A. stenosperma V 10309 [34,74]. It was further
crossed with the advanced line Arachis hypogaea cv. TifGP-2 [83], and the resulting F;
hybrids were selfed to produce an F, population with 325 individuals. TifGP-2 is the sister
line of Tifguard, which is moderately susceptible to stem rot with an Rx index value of
15 (https:/ /site.extension.uga.edu/ tiftcoag/files /2019 /06 /2019-Peanut-RX-Syngenta.pdf,
accessed on 25 February 2021) [42,83]. Since ValStenl showed resistance to stem rot among
tested allotetraploids, we judged it very likely that the TifGP-2 x ValStenl F, population
would segregate for stem rot resistance and would be suitable for QTL mapping.

(a)
4
€ 34
E
£
£
=)
c
x1)
[
9.
73
o
o P
1+
T T
3DPI 5DPI 70PI 9DPI
(b) a a a ab a ab ab ab ab ab ab ab ab ab b
15 I
[ !
£ 10 |
S |
2| | |
5101
0
N N > N N & N & & & & 3
N 'S $ N N o N g $ & d { S K
Y F S TGS ST S
0@9 W R V@‘% P R & N & F & & ¢

Figure 4. Greenhouse evaluation of induced allotetraploids for stem rot resistance. (a) Disease
progress curves of stem rot based on the lesion length (mm). Black bold lines represent susceptible
(Georgia-09B) and resistant (Georgia-12Y) controls. The x-axis shows the time after inoculation (3,
5,7, and 9 days) and y-axis, the average length of stem rot lesion. (b) AUDPC value (y-axis) and
standard error (bar on the top of each bar) of tested genotypes and controls (x-axis). Genotypes with
different letters on the top of the bar are significantly different from each other at a p-value < 0.05.
Blue boxes represent allotetraploids. Coral boxes represent resistant (Georgia-12Y) and susceptible
(Georgia-09B) controls.
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Figure 5. Two-year combined data of stem rot disease on induced allotetraploids evaluated in 2019
and 2020 in the field in Tifton GA. The x-axis shows the genotypes tested and the y-axis, the disease
rating. Genotypes with different letters are significantly different from each other at a p-value < 0.05.
Blue boxes represent allotetraploids. Coral boxes represent resistant (Georgia-12Y) and susceptible
(Georgia-09B) controls. The two-year evaluations are significantly correlated (r = 0.87, p-value of
r < 0.01).

2.2.2. Plant Germination and Leaf Tissue Collection

Seeds of the F, individuals and their parents were placed in a Petri dish on a Whatman
No.1 filter paper (ThermoFisher Scientific) saturated with 5 mL of growth regulator to break
the dormancy (5% Florel, Monterey). After incubating at 28 °C for 24 h, germinated seeds
were transplanted to an 8 cm square peat pot (Huvai) filled with wet potting mix (Pro-Mix
Bx, GrowGeneration) and cultivated in a greenhouse. The seeds of allotetraploid ValSten1
were germinated at the same time as the Fs. As A. hypogaea genotypes grew faster and more
vigorously than the wild-derived genotypes, they were germinated two weeks later using
the same procedure. Each germinated individual was assigned a unique identification.
Before transplanting plants into the field, 2-3 young leaves (around 100 mg) were collected
and put into a 15 mL Falcon tube. The tubes were sealed with surgical tape (Micropore,
3M, St. Paul, MN, USA)) and lyophilized for 24 h. The dried leaves were stored on the
laboratory bench at room temperature for further DNA extraction.

2.2.3. Stem Rot Resistance Evaluation

The individuals of the F, population were field evaluated along with the parents,
ValStenl and TifGP-2, and the susceptible and resistant controls, Georgia-09B and Georgia-
12Y. There were 325 F; individuals, and as each F, individual was a unique genotype, there
were no replications. The parents (ValSten1 and TifGP-2) and controls (Georgia-09B and
Georgia-12Y), had 35, 35, 40, and 35 replications, respectively. Evaluations were conducted
in the summer from May to October as described above at the same location, the University
of Georgia Blackshank Farm in Tifton, Georgia. All plants in the same genotype (ValStenl,
TifGP-2, Georgia-09B, and Georgia-12Y) or belonging to F, were randomly grouped into
sets of five individuals each. There were 94 sets; each set was assigned to a row using
an RCBD. The background-GA-12Y was planted in a fumigated field on 18 May. The use
of background peanut is to provide a homogenous microclimate; the transplanting and
inoculation were carried out as described above. Overhead irrigation was applied for
three days to initiate the disease progress. Stem rot was evaluated twice: at midseason
(7 August) and just before harvesting (4-5 October). The disease was rated individually
based on the scale shown in Table 3 and Figure 3. The differences in stem rot resistance
among ValSten1, TifGP-2, Georgia-09B, and Georgia-12Y were tested by the non-parametric
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Kruskal-Wallis rank sum test using the function kruskal.test in R (RStudio version 1.2.1335,
Boston, MA, USA) [81], with significance levels set at 5% as the dataset failed the normality
test using the function shapiro.test [80].

2.2.4. SNP Genotyping, Analysis, and Data Filtering

DNAs were extracted from lyophilized dried leaves using the DNeasy Plant Mini Kit
(QIAGEN, Germantown, MD, USA) according to the manufacturer’s instructions. DNA
was quantified with a Qubit 4 Fluorometer (Invitrogen, Fisher Scientific, Pittsburgh, PA,
USA), and samples were submitted for genotyping with the ‘Axiom_Arachis v02' 58K SNP
array [84] (ThermoFisher Scientific, Affymetrix, Inc., Santa Clara, CA, USA). Two sets of
markers were filtered, processed, and analyzed using the Axiom Analysis Suite software
v5.1 (http:/ /www.thermofisher.com, Santa Barbara, CA, USA, accessed on 7 June 2023)
to construct an informative linkage map using the genotyping data (set 1) markers that
specifically detect wild SNPs (referred to here as wild-species-specific markers) and (set 2)
markers that differentiate the allotetraploid and cultivated parents (referred to here as
parent-differentiation markers).

Wild-species-specific markers were classified as A. stenosperma-specific or A. val-
ida-specific using the following procedures. First, raw genotyping data from A. valida,
A. stenosperma, and TifGP-2 was extracted by the Axiom Analysis Suite software v5.1
using the diploid function. Then a Unix script (adapted from Ballén-Taborda et al. [59];
Supplemental File S1) was used to identify A. stenosperma-specific markers where the geno-
type of A. stenosperma was different from both A. valida and TifGP-2 (A. stenosperma #*
(A. valida = TifGP-2)), and A. valida-specific markers where the genotype of A. valida was
different from both A. stenosperma and TifGP-2 (A. valida # (A. stenosperma = TifGP-2)). An
initial set of 1753 A. stenosperma-specific and 973 A. valida-specific markers (a total of 2726)
were identified. Then, genotypes of these markers were extracted from the tetraploids
(325 Fys and tetraploid controls; diploids were not included) using the Axiom Analy-
sis Suite software v5.1 in polyploid mode. Each locus could then be assigned to one
of four types: (1) homozygous wild, (2) heterozygous, (3) homozygous cultivated, and
(4) missing data. Then, observing segregation in the F;s, 1392 markers that did not fit the
Mendelian segregation ratio 1:2:1 were filtered (using goodness-of-fit chi-square test for the
F, population, p-value of the test < 0.05). The final set of wild-specific markers comprised
1334 markers (1011 A. stenosperma-specific, 323 A. valida-specific). These were combined
with parent-differentiation markers (detailed in the following paragraph) and used for
linkage map construction.

We identified an initial set of 16,423 parent-differentiation markers using the fitPoly
package [85] in RStudio as markers that differentiated A. hypogaea TifGP-2 and the allote-
traploid ValStenl. This initial set of 16,423 markers was evaluated in the two parents,
A. hypogaea TifGP-2 and allotetraploid ValStenl, and 325 F; individuals. Markers were
then filtered for missing data to reduce the marker set to 3978. The fitPoly package scores
markers on a scale of 0 to 4, representing the five allele dosage possibilities in any par-
ticular allotetraploid genotype. Of the 3978 markers, 1758 demonstrated the expected
single-dosage marker parental scores of 2 vs. 0 and 2 vs. 4 and were retained. The marker
set was further filtered by retaining only markers whose modal scores in the F, popula-
tion were the expected heterozygous score (1 for 2 vs. 0 and 3 for 2 vs. 4) and whose
segregation in the Fys fit the Mendelian ratio 1:2:1 (using the goodness-of-fit chi-square
test for the F, population; p-value of the test > 0.05). This resulted in a filtered set of
1691 parent-differentiation markers. Dosages, as called in the fitPoly package, were then
converted to diploid-like markers, where 2 and 0 represent opposite parents” homozygous
states, and 1 represents the heterozygous state; or where 2 and 4 represent opposite parents’
homozygous states, and 3 represents the heterozygous state. Subsequently, the alleles at
each locus within the F, population were categorized as either cultivated-peanut-derived
(TifGP-2) or allotetraploid-derived (ValStenl).


http://www.thermofisher.com
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2.2.5. Genetic Mapping and QTL Discovery

Before constructing a genetic map using the two sets of markers (wild-species-specific
and parent-differentiation markers), two further criteria were employed to filter markers,
those with minor allele frequency in the F, population lower than 0.05 or with a proportion
of missing data higher than 0.1 were excluded. In total, 2007 markers within 321 individuals
were kept after filtering: 161 markers belonged to both A. stenosperma-characteristic markers
and parent-differentiation markers; 26 markers were classified as A. valida-characteristic
markers and also parent-differentiation markers; 499 were kept as only A. stenosperma-
characteristic markers; 175 as only A. valida-characteristic markers; and 1146 as only parent-
differentiation markers.

Subsequently, the 2007 markers were used to construct a genetic map using JoinMap
software v4.1 with Kosambi’s genetic map function and the maximum likelihood algo-
rithm [86-88]. The resulting map consisted of 21 linkage groups (LGs), with 1926 markers
clustered into groups and 81 markers not clustered. To further define the chromosomes
of the LGs in the mapping results, each marker was then assigned to a chromosome of
either the A or B subgenome. The LGs with A. stenosperma-specific markers are classified
into the A subgenome, and those with A. valida-specific markers are classified into the B
subgenome, as ValSten1 derived its A subgenome from A. stenosperma and its B subgenome
from A. valida. Of these groups, 11 of 21 belonged to the A subgenome, and 10 belonged
to the B subgenome. The corresponding physical position of each marker is based on the
annotation by Bertioli et al. [75,89].

The genetic map, the F, genotyping data ("W’ denotes the locus of an F, derived from a
wild species, either A. stenosperma or A. valida on the A or B subgenomes, respectively), and
phenotyping data from two stem rot evaluations (midseason and end-of-season) were used
for QTL identification using R/QTL software v1.5. The analysis followed the procedure
described by Broman et al. [90]. Composite interval mapping was employed chromosome
by chromosome using the cim function with the arguments, map.function = “kosambi”,
imp.method = “imp”, and method = “hk”. The identified QTL with the logarithm of the
odds (LOD) score was returned, representing the strength of evidence for the presence
of a QTL at the particular location. The LOD score calculates the logjg likelihood ratio,
comparing the hypothesis that there is a QTL to the hypothesis that there is no QTL. The
1000 permutations were used to identify genome-wise LOD significance thresholds for
identified QTL at 1% and 5% significance levels. The nearest marker of the identified
QTL was identified using find.marker function. The LOD support interval was calculated
with lodint function. The percentage of phenotypic variance explained by each QTL was
calculated with the fitqtl function [90]. The average stem rot rating for each identified
QTL’s nearest marker was extracted using the effectplot function in R/QTL. Subsequently,
the percentage of decreased or increased disease levels between individuals with homozy-
gous wild alleles and homozygous TifGP-2 alleles was calculated manually. The barplot
function in RStudio was then utilized to visualize the stem rot ratings among F,s with
three genotypes (homozygous wild, heterozygous, and homozygous cultivated).

3. Results
3.1. Identification of Peanut Stem Rot Resistance in Induced Allotetraploids
3.1.1. Greenhouse Assay

Greenhouse assay enabled the successful development of stem rot lesions. Differentia-
tion between genotypes was not very large; this bioassay distinguished susceptible controls
from the resistant controls numerically, but the results were not statistically significant. All
thirteen induced allotetraploids showed numerically lower AUDPC than the susceptible
control Georgia-09B (Figure 4a,b). Five of them (GregSten1, ValStenl, IpaDur3, MagStenl,
and BatSten1) had numerically lower AUDPC than the resistant control Georgia-12Y. The
lesion lengths were statistically different among genotypes at 5, 7, and 9 days post inocula-
tion (DPI), and the p-values of the AUDPC values are lower than 0.05 in the Kruskal-Wallis
test (Table 1). Nine allotetraploids (GregStenl, ValStenl, MagStenl, IpaDur3, IpaVillol,
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IpaDur2, IpaCorl, BatSten1, and IpaDurl) had similar disease levels as the resistant control,
Georgia-12Y, and statistically lower disease than the susceptible control Georgia-09B at
5 DPI. Four allotetraploids (GregSten1, ValStenl1, IpaDur3, and BatSten1) were statistically
more resistant than the susceptible control, Georgia-09B, at 7 and 9 DPI and AUDPC.

3.1.2. Field Evaluation

Both field evaluations showed disease development in every tested genotype. The
resistant control Georgia-12Y and susceptible control Georgia-09B exhibited statistical dif-
ferences in 2019 and numerical differences for the midseason and end-of-season evaluations
in 2020. Disease scores in almost all wild-derived allotetraploids were significantly higher
than those in the resistant control Georgia-12Y in both 2019 and 2020. ValSten1 was the only
allotetraploid with a significantly lower disease score than the susceptible control Georgia-
09B, and it exhibited a resistance level similar to Georgia-12Y in the 2019 end-of-season
evaluation. In the 2020 midseason evaluation, 2020 end-of-season evaluation, and two-year
combined data of the end-of-season evaluation, ValStenl showed numerically lower disease
ratings than the resistant control Georgia-12Y and susceptible control Georgia-09B (Table 2
and Figure 5). Therefore, we used ValSten1 for molecular mapping of stem rot resistance.

3.2. Mapping QTLs Associated with Allotetraploid ValSten1 Conferring Stem Rot Resistance
3.2.1. Stem Rot Resistance Evaluation of F,g, Parents, and Controls

F, individuals were evaluated in one field season as the experiment was destructive.
Inoculation was successful as most plants developed stem rot symptoms. In this experiment,
one extra peanut genotype was included—TifGP-2—as it was a parent of the F, population
being tested. The differences between controls and parents are shown in Table 4. Symptom
ratings of the resistant control Georgia-12Y were only numerically lower than those of the
susceptible control Georgia-09B. During the midseason, three cultivated peanuts (Georgia-
12Y, Georgia-09B, and TifGP-2) showed similar stem rot ratings. Two parents of the F;
(TifGP-2 and ValSten1) had similar disease severity, grouping with the susceptible control
Georgia-09B. Surprisingly, ValSten1, which was more resistant both in the greenhouse and
field evaluations in the first study (Tables 1 and 2, Figures 4 and 5), was numerically the
most susceptible genotype here, and it was statistically more susceptible than Georgia-12Y
during the midseason. In the end-of-season evaluation, the scores were not statistically
different from each other (Table 4).

Table 4. Stem rot disease of F,’s parents, the controls, and the F, evaluated in the field.

Genotype Evaluation
Midseason @ End of Season ?
Average b Average
GA-12Y € 1.68 + 1.07 a 234 +0.76
TifGP-2 4 1.81 +0.82 ab 2.48 +0.83
GA-09B © 2.00 £1.26 ab 2.57 + 1.09
ValSten1 4 2.46 £ 0.82 b 2.83 £0.92
F; 2.29 (data range 0-5) 2.82 (data range 0-5)
p-value of Kruskal-Wallis 0.013 ¢ 0.328 ¢

2 midseason evaluation was undertaken on 7 August 2021, the end-of-season evaluation was undertaken on
4-5 October 2021; ® means within columns for individual evaluations that are not followed by a common letter
are significantly different according to Conover-Iman post hoc test;  cultivated peanut Georgia-12Y (GA-12Y)
and Georgia-09B (GA-09B) were resistant and susceptible control; ¢ parents of the F, population; ¢ p-value of
Kruskal-Wallis test. When < 0.05 = significant differences between means; the normality assumption of the data is
not satisfied.

The stem rot disease scores of segregating F, individuals averaged 2.29 and 2.82 during
the midseason and end-of-season evaluation, respectively, ranging from the lowest (score
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0 = no symptoms) to the highest (score 5 = dead plant) for both (Table 4). Transgressive
segregation was observed: many F; individuals exhibited scores lower than those of
the more resistant parent (ValSten1) or higher than those of the more susceptible parent
(TifGP-2) in both evaluations (Figure 6).

(a)

ValSten1 [2.46]

GA-09B [2.00]

l

TifGP-2[1.81]

GA-12Y [1.68]

m .. l..
0
0 1 2 3 4 5

midseason rating

(b)

ValSten1 [2.83]

GA-09B [2.57]

TiIfGP-2 [2.48]
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Figure 6. Frequency distribution of stem rot rating of 321 individuals of an (TifGP-2 x ValSten1) F,
population at (a) midseason and (b) end of season. The ratings of parents for the F, population and
controls (resistant GA-12Y, susceptible GA-09B) are shown by the different colors of arrows, and the
averaged disease ratings are indicated in brackets.

3.2.2. Genetic Mapping and the Genotyping Result of Fys

The genotyping of 321 individual F;s with 2007 informative markers was used for
genetic mapping. In total, 1926 loci were clustered into 21 linkage groups (LGs), with details
shown in Table 5 and Figure 7. Based on the information of chromosome and physical posi-
tion annotated by Bertioli et al. [75,89], 11 LGs with 1220 markers were assigned to the A01
to A10 peanut subgenome, and the other 10 LGs with 706 markers were arranged into the
BO01 to B10 subgenome. One linkage group, LG A03.2 was inferred as partial chromosomes
of A03. The mapped SNP markers spanned a total genetic distance of 3856.27 cM (Table 5).
The LG results with markers are detailed in Figure 7 and Supplemental File S2. Sizes of
the 21 LGs vary from 97.42 cM (LG B07) to 353.45 <M (LG A03.2), the average distance of
LGs ranged from 0.85 cM (LG A01) to 6.31 cM (LG A03.2); the maximum distance between
adjacent markers of LGs ranged from 6.58 cM (LG B07) to 30.4 <M (LG B03). The Marey
plots in Supplemental File S3, generated using the scatter plot function in Excel, display
the markers identified in each LG, illustrating the correlation between the genetic map
of the 21 linkage groups and the physical map annotated by Bertioli et al. [75,89]. These
21 Marey plots correspond to markers in the 21 LGs (A01-A10, A03.2, and B01-B10), with
an additional plot for the original A03 linkage group. In these plots, the x-axis represents
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each marker’s genetic position within the respective LG, while the y-axis indicates the phys-
ical position in the diploid ancestors of cultivated peanut: A. duranensis for LG A01-A10,
and A03.2; A. ipaénsis for LG B01-B10. The genotyping results of 321 F; individuals with
1926 markers of 21 LGs are shown in detail in Supplemental File S4.

Table 5. Statistical data of the genetic map obtained by the analysis of the 321 TifGP-2 x ValStenl
F, population.

LG? No. of Mapped SNPs P Map Length ¢ Average Distance ¢ Maximum Distance €

AQ1 214 181.25 0.85 14.46
AQ2 110 239.23 217 20.02
AQ3 73 201.25 2.76 14.69
A04 30 173.73 5.79 15.97
AQ5 74 130.70 1.77 15.74
AQ6 118 284.70 241 19.83
AQ7 122 213.28 1.75 19.97
AQ8 171 157.17 0.92 14.03
A09 136 132.75 0.98 7.90
A10 116 162.76 1.40 9.69
BO1 82 109.20 1.33 8.91
B02 57 192.06 3.37 12.70
BO3 65 205.21 3.16 30.40
B04 51 154.71 3.03 18.83
B05 63 159.16 2.53 10.76
B06 60 188.52 3.14 29.58
B07 86 97.42 1.13 6.58
B08 98 158.05 1.61 21.33
B09 78 174.89 2.24 15.16
B10 66 186.78 2.83 14.10
Subtotal 1870 3502.82

A03.2 56 353.45 6.31 20.40

Total 1926 3856.27

2 LG = linkage group; ® the SNP markers per linkage group (LG) are expressed in absolute numbers; © map length,
average distance between markers, and maximum distance between markers are expressed in Kosambi cM.
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Figure 7. The genetic linkage map constructed from a population with 321 F,s obtained from a cross
of A. hypogaea TifGP-2 and the induced allotetraploid ValSten1 [A. valida G 30011 x A. stenosperma
V 10309]**. The map has 11 LGs of the A subgenome (a) and 10 LGs of the B subgenome (b). The
name of each linkage group (LG) is shown at the top of each group. The 1926 SNP markers are
indicated on the right side of the 21 LGs. The position of a marker on the LG is shown on the left
side. Markers are termed by the probe set name in the 48K “Axiom_Arachis v02" SNP array [84]. The
co-localized markers are shown parallelly on the right. Identified quantitative trait loci (QTLs) are
highlighted in green (resistance) or red (susceptibility to stem rot). The underlined colored marker is
the nearest marker of the identified QTL. The visualization of the LGs with QTLs was graphed using
MapChart [91].

3.2.3. QTL Discovery

Two sets of QTLs were detected using the phenotypic and genotypic data: one set
is associated with lower stem rot disease, and the other is related to higher disease. In
the first set, two QTLs were identified on LG A10 and LG AO08 (Figure 8a,b), therefore
originating from A. stenosperma. In the other set, four QTLs correlated with higher stem rot
ratings on LGs of A06, B06, and B09 (Figure 8c—f), originating from A. valida. Detailed QTL
information and the correlation between the QTL and phenotypes are shown in Table 6
and Figure 8.
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Figure 8. Bar graph of the contribution of wild and cultivated-derived alleles to stem rot ratings:
in (a,b) the wild alleles decrease, and in (c—f) wild alleles increase stem rot ratings. Each graph
displays the name of the identified quantitative trait locus (QTL), with the linkage group where it is
located (e.g., A10) and the evaluation time (Mid = midseason, Final = end of season). Below the QTL
name is the nearest single nucleotide polymorphism marker from the Axiom_Arachis v02. The y-axis
represents the rating score of stem rot, while the x-axis depicts three groups of individuals: those
with homozygous alleles derived from the wild (WW), heterozygous (WC), and homozygous TifGP-2
alleles (CC). The p-value in the top right corner of each plot indicates significant differences among
the three genotypes, as determined by the Kruskal-Wallis test in RStudio (when p < 0.05). Columns
marked by different letters denote significant differences among groups according to the post hoc
Dunn test in R Studio (RStudio version 1.2.1335, Boston, MA, USA).

Set 1: QTLs associated with lower stem rot rating

Two QTLs were identified to be associated with either midseason or end-of-season
lower stem rot rating. The QTL qWm.A10.Mid, associated with lower disease at midseason,
was detected at LG A10 with an LOD score of 2.88, above the genome-wise empirical
threshold at p-value = 0.05. The nearest SNP marker of gWm.A10.Mid is AX-176791779
(Table 6). The QTL qWm.A08.Final, associated with a lower rating at the end of season,
was detected at LG A08 with an LOD score of 2.60, and the nearest SNP marker is AX-
177637728. The QTLs qWm.A10.Mid and qWm.A08.Final have PVE values of 0.02% and
3.13%, respectively (Table 6). F, individuals with homozygous wild alleles (WW) at markers
AX-176791779 and AX-177637728 exhibited stem rot ratings that were 8.60% and 13.64%
lower, respectively, compared to individuals with homozygous TifGP-2 alleles (CC) (Table 6
and Figure 8a,b).
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Table 6. QTLs associated with lower or higher stem rot disease identified from 321 TifGP-2 x ValSten1
F, population.

. Nearest Physical Position LOD Effect on
QTL Name LG® chrtliet:b Marker ¢ of Nearest In}?le e LODf Threshold (I:/\;];:, % i Disease
ositio (Position) Markers ¢ erva 8 ° Evaluation
AX- o Lower
qWin.A10.Mid * A10 154 176791779 Aradu.A10 148.52- 2.88 378(1%) g0 _g60 disease @
694,007 156.87 2.86 (5%) .
(156.87) midseason
AX- 42 (1%) Lower
qWm.A08.Final A08 89.5 177637728 ambiguous 87.60-90.92 2.60 5 '79 (50; 5 3.13 —13.64 disease @
(89.49) ’ ° end of season
AX- o Higher
GWin.d.AO6Mid*  A06 153 147225650 Aradu.A06 15051~ 3.16 355(1%), 438 3314 disease @
82,779,126 155.08 2.96 (5%) .
(153.03) midseason
Win.d.AO6.Final *  A06 182 147295626 Aradu.A06 18153~ 3.5 348 (1% 470 2669
q . : 81,148,227 187.31 ) 2.88 (5%) : :
(181.53)
AX Higher
) g . 109.95- 3.46 (1%), disease @
qWm.d.B06.Final B06 140 14(117?392651330 ambiguous 143.48 2.37 2.70 (5%) 2.96 11.15 end of season
AX- 3.36 (1%)
qWm.d.B09.Final B09 73.7 176816364 ambiguous 66.71-82.71 249 | o o 3.50 22.16
) 2.7 (5%)

2 linkage group of identified QTL; ® mapped position in cM; ¢ probe set name of ‘Axiom_Arachis v02' SNP
marker which was mostly near the identified QTL; the position on LG for each marker was represented in
parentheses; ¢ physical positions of nearest marker for identified QTL are based on the diploid genomes annotated
by Bertioli et al. 2016 [75,89]. Aradu. means the marker is on the diploid ancestor of cultivated peanut Arachis
duranensis; © logarithm of the odds (LOD) support interval; f LOD score at QTL peak; 8 LOD threshold based on
1000 permutations at 1% and 5% significance levels; ! proportion of the phenotypic variance explained by the
QTL;  percentage of change in peanut stem rot disease score (calculated the disease between individuals with
homozygous wild-derived genotype and homozygous TifGP-2-derived genotype).; * The LOD of QTL is higher
than the 5% LOD threshold.

Set 2: QTLs associated with higher stem rot rating

Four QTLs correlated with higher stem rot ratings, with two on subgenome A and two
on subgenome B. Both QTLs on subgenome A were located on LG A06. The gWm.d.A06.Mid,
associated with higher disease during the midseason, was detected with LOD scores of 3.16,
surpassing the genome-wise empirical threshold at p-value = 0.05. The nearest marker of
this segment is AX-147225650, with a 4.38 PVE value for this QTL (Table 6). Comparing the
disease in individuals with homozygous wild alleles (WW) and homozygous TifGP-2 alleles
(CC) of marker AX-147225650, a 33.14% higher disease rating was observed in individuals
with wild alleles (Table 6 and Figure 8c). Individuals with two different homozygous
derivations showed significant differences from each other (Figure 8c). Another QTL,
qWm.d.A06.Final, had an LOD score of 3.25, surpassing the genome-wise empirical threshold
at p-value = 0.05. The nearest marker is AX-147225626, with a 4.7 PVE value for this QTL.
A 26.69% higher disease rating was observed in F, individuals with homozygous wild
alleles (WW) compared to individuals with homozygous TifGP-2 alleles (CC), showing
statistically higher disease (Table 6 and Figure 8d).

Two QTLs were associated with higher disease on the B subgenome. The gWm.d.B06.Final,
located on LG B06, had an LOD score of 2.37, with the nearest marker being AX-147226180.
The qWm.d.B09.Final, situated on LG B09, had an LOD score of 2.49, with the nearest
marker being AX-176816364. The QTLs gWm.d.B06.Final and QTL qWm.d.B09.Final have
PVE values of 2.96% and 3.50%, respectively. F, individuals with homozygous wild alleles
(WW) in markers AX-147226180 and AX-176816364 showed 11.15% and 22.16% higher stem
rot ratings, respectively, compared to individuals with homozygous cultivated alleles (CC),
indicating significantly higher disease levels of marker AX-176816364 (Table 6, Figure 8e,f).

4. Discussion

Peanut stem rot is challenging to control because of its broad host range and persistent
presence in the field. The cost of controlling it is high. There is no strong resistance in the
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primary gene pool of peanut. For this reason, tapping into the secondary gene pool of
peanuts with resistance, its wild relatives, is promising [52]. However, the process of intro-
gressing wild alleles can be time-consuming, typically beginning with the production of
wild species-derived allotetraploids that are compatible with peanut, followed by multiple
rounds of backcrossing [92]. Therefore, we screened several newly induced allotetraploids
before initiating introgression.

Screening for stem rot resistance is not straightforward on cultivated peanuts. Screen-
ing wild-derived genotypes has the extra complication that there are significant differences
in plant architecture between wild-derived allotetraploids and cultivated peanut [74]. To
try to circumvent these difficulties, we screened allotetraploids in both field and greenhouse
assays that were designed to make the comparisons as meaningful as possible. We recently
developed the greenhouse method and showed that its results correlate with those of field
assays [76]. However, the resistant and susceptible controls did not exhibit significant
differentiation from each other in the greenhouse assays, nor did they show substantial
distinction in the field evaluations. This lack of differentiation can be attributed to the
highly aggressive nature of this necrotrophic pathogen. In traditional field assays, the
measurement is typically not on the effect of the fungus on individual plants but rather
on the spread of infections within a row of plants after inoculation [93,94]. More resis-
tant genotypes are expected to allow for less spread of the pathogen. However, for such
evaluations to be effective, genotypes must be genetically homogeneous, and those being
compared should have a similar architecture. Additionally, enough seeds (in the range of
hundreds to thousands) should be available for all genotypes being tested. Most of these
requirements are not met in the case of a peanut pre-breeding program using wild species:
induced allotetraploids exhibit a very different architecture from cultivated peanut and
produce few seeds. Consequently, the only feasible method to evaluate them is by inoculat-
ing and assessing the pathogen development on individual plants. However, the highly
aggressive nature of the pathogen complicates screening. Thus, while we acknowledge that
our methods may not capture the full differential response to the pathogen, pragmatically,
the general trends need to be used to guide research and the formation of hypotheses
to be tested. During the development of the greenhouse evaluation method, it became
apparent that even small numerical differences underscored field resistance in cultivated
peanuts [76].

Results from the field and greenhouse tended to follow the same general trends.
However, in the field, induced allotetraploids were less resistant. This can be explained
by the lack of adaptation of the wild-derived plants to field conditions, which influences
their growth, vigor, and overall health, subsequently affecting their resistance response
to A. rolfsii. Moreover, in the field evaluation, background peanut plants were planted
next to the tested allotetraploids to make the environment more homogeneous. However,
as the background peanut plants had a well-developed canopy, and the allotetraploids
were shaded beneath it, they received insufficient sunlight for vegetative development
and, therefore, were disadvantaged in the field evaluation. Considering these factors, the
potential of the wild genetics as resistance donors was likely underestimated by field assays.
In the greenhouse assay, a clearer trend was observed, with all allotetraploids being more
resistant than the susceptible controls. Four induced allotetraploids, GregSten1, ValStenl,
IpaDur3, and BatStenl, among the tested genotypes, exhibited significantly shorter lesion
lengths from 5 DPI to 9 DPI and lower AUDPC values compared to the susceptible control
(Georgia-09B). The evaluations of these four allotetraploids closely resemble those of the
resistant control (Georgia-12Y) in the greenhouse assay (Table 1 and Figure 4). The wild
parent, donor of the A-subgenome of three of the most resistant allotetraploids, GregSten1,
ValSten1, and BatSten1, is A. stenosperma accession V 10309. This accession is also resistant
to several other pests and diseases, such as root-knot nematode, rust, late leaf spot, and
tomato spotted wilt virus [34,59,74,95-97]; therefore, the use of these allotetraploids to
breed for stem rot resistance also has the potential to improve the resistance to these other
diseases. Three allotetraploids that have as parents the progenitor species of peanut (Arachis
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ipaénsis and A. duranensis) were also assessed, IpaDurl, IpaDur2, and IpaDur3. Among
them, only IpaDur3 displayed resistance to stem rot (Table 1 and Figure 4). The discrepancy
in resistance levels between allotetraploids with parents from the same species can be
attributed to the fact that IpaDurl and IpaDur2 are the result of the cross using the same
accessions (A. ipaénsis K 30076 and A. duranensis V 14167; in different labs and at different
times) [73,75]. IpaDur3, however, is derived from a different accession of A. duranensis
K 30060 [34], which is likely the source of resistance. IpaDur3 has also been found to be
resistant to fall armyworm [34,98].

One of the most resistant allotetraploids in the greenhouse test, ValSten1, was also
confirmed to exhibit partial resistance in field evaluation. It is noteworthy that, although
there is variability in the placement of ValSten1’s resistance score over the years, the 4-year
field evaluation (2019 to 2022) confirms that Georgia-12Y is more resistant than Georgia-09B
and suggests that ValSten1 is more resistant than Georgia-09B and comparable to Georgia-
12Y (Table 4, Supplemental File S5). Results obtained in the greenhouse were much clearer,
showing the superior resistance of ValStenl compared to the susceptible control (Figure 4).
ValSten1 was chosen as the material for subsequent resistance breeding due to its partial
resistance to stem rot and also for its vigorous growth, prolific seed production, and
excellent compatibility with peanut. ValStenl was crossed with the A. hypogaea advanced
line, TifGP-2, and the highly prolific F; hybrid obtained yielded a large F, population
consisting of 325 individuals for further study. To identify the genomic regions that encode
for stem rot resistance, all 325 individuals were field evaluated and subsequently genotyped.
During field evaluations, numerical differences were observed between the resistant control
Georgia-12Y and the susceptible control Georgia-09B; however, this difference was not
statistically significant. The symptoms that developed during midseason on Georgia-12Y
and Georgia-09B are shown in Figure 9. Most plants of Georgia-12Y and Georgia-09B
were scored as 2 or 3 both in the midseason and end-of-season evaluations. Differentiating
the disease at this stage using the current evaluation system and rating scale proved
challenging, and the rating scale will probably need to be further refined. Surprisingly,
ValSten1 exhibited an unexpectedly similar rating to Georgia-09B and higher than Georgia-
12Y (Table 4).

Figure 9. The disease developed on (a) resistant control Georgia-12Y with lesions mainly developed
on the main stem (yellow bracket) and (b) susceptible control Georgia-09B with longer lesions on
the mainstem (yellow bracket) and lesions on the lateral branch (red bracket). The evaluation was
undertaken during midseason.

In our mapping analysis, we report 21 linkage groups (LGs). Although the JoinMap
software v4.1 initially returned 19 LGs, these effectively represent the A01 to A10 of the
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peanut A subgenome, B01-06, and B08-B10 of the peanut B subgenome. After examining
the sizes of LGs in centimorgans (cM) and comparing the genetic position of each group
with the coordinated physical position of the peanut chromosome in the Marey plot, we
manually split original LG 07 and LG 03 into two groups due to insufficient separation
from clusters in the JoinMap. The original LG 07 clustered chromosomes A07 and B07
of the peanut genome together, with a large gap of about 10,000 cM in between. There-
fore, LG 07 was manually split as A07 and B07. Furthermore, a manual separation was
also applied to LG 03 due to an obvious distorted pattern observed in the Marey plot
(Supplemental File S3). The LG 03 was split into LG A03 and LG A03.2, with the LG A03
mainly constructed from stenosperma-specific markers and A03.2 primarily grouping parent-
differentiation markers. The sizes of the 21 LGs ranged from 97.42 cM (LG B07) to 353.45 cM
(LG A03.2), spanning a total map distance of 3856.27 cM (Table 5). This mapping result is
comparable to other similar studies conducted recently. For example, Ballén-Taborda et al.
(2019) reported peanut root-knot nematode resistance QTL mapping in 2019 with 20 LGs
ranging in size from 100.7 cM to 359.5 cM, spanning a total map distance of 3984.9 cM,
mapped from an interspecific population developed from crosses between an allotetraploid
(also derived from A. stenosperma V 10309) and cultivated peanut lines [59]. Similarly, de
Blas et al. reported peanut smut resistance QTL mapping in 2021 with 21 LGs ranging in
size from 17.29 cM to 236.22 cM, spanning a total map distance of 2531.81 cM, mapped
from another interspecific population developed from crosses between an allotetraploid
and elite lines [99].

The QTL analysis identified two sets of QTLs: one set correlated with lower disease
ratings and the other with higher disease ratings (Table 6 and Figure 8). The QTLs associated
with lower disease ratings are both derived from A. stenosperma V 10309; one is linked to
midseason, and the other is correlated with the end-of-season’s lower rating, located at
LG A10 and AO08, respectively. Two QTLs associated with higher disease ratings are also
from A. stenosperma V 10309, both located at A06. One is related to the midseason, while
the other is associated with the end-of-season’s higher stem rot rating. The coexistence of
beneficial and deleterious QTLs in A. stenosperma V 10309 complicates its utilization for
resistance breeding, and QTL-linked markers may facilitate the transfer of resistance into the
target population while avoiding the transfer of the regions associated with susceptibility.
Additionally, the B subgenome donor A. valida G 30011 contributed two deleterious QTLs
at LG B06 and B09.

The identified QTLs in this study are all estimated to be minor QTLs (PVE < 10%,
Table 6). This is consistent with published studies that mostly report stem rot QTLs as being
minor [57,70,71,100]. Among these published studies, one QTL associated with lower stem
rot disease colocalized with the QTL related to the branching habit. The weak-effect QTLs
identified in this study may not solely arise from their genetic characteristics but could
also be because analyses were conducted in a single season/location, lacking confirmation
in other locations. Moreover, phenotyping wild-derived materials presented inherent
difficulties, with the differences in architecture between wild-derived and pure cultivated
peanuts and the genetic uniqueness of each F; plant constraining experimental design. In
the context of both evaluation methods used here, a small single lesion that encircles the
main stem can result in a severe disease rating by causing the demise of the entire stem. This
contrasts with standard field evaluations where the spread from plant to plant in a row is the
most crucial factor. The difficulties in evaluation effectively add noise to the phenotyping,
very probably contributing to the weak-effect QTLs observed in this study. Despite the
small effect estimated by the software and the low LOD scores, when we calculated the
effect of identified QTL on the susceptibility of genotypes by comparing individuals with
or without the QTLs, the results showed that the effects were larger than estimated (Table 6
and Figure 8). Notably, the QTL qWm.A08.Final, which had an estimated PVE of only
3.13%, showed an observed reduction in disease of approximately 13%, highlighting its
significance as the primary QTL for subsequent focus in resistance breeding.



Agronomy 2024, 14, 1442

22 of 26

The polyploid origin and selection during domestication and breeding have resulted
in peanut having very limited genetic diversity. This constrains the advances that can
be made in breeding programs using only pure pedigree cultivated peanut. Crop wild
relatives, which are subjected to natural selection in their native environments, represent
crucial reservoirs of genetic diversity for crop breeding programs. In the case of peanut
breeding, the narrow genetic diversity poses a significant challenge. However, although
wild relatives of cultivated peanut have been identified as potential sources of resistance
to stem rot [50-52], they have yet to be extensively utilized in peanut breeding programs
targeting stem rot resistance. Therefore, the identification of stem rot resistance in allote-
traploid species in this study underscores their potential as valuable resources in peanut
breeding efforts, particularly due to their readily crossable ploidy level. Resistance breeding
involves stacking different sources of resistance into one cultivar to achieve stronger and
more durable resistance to a particular disease. The practice of stacking resistance genes
has been increasingly adopted worldwide for nearly a century. A prime example is the
control of wheat stem rust through the stacking of resistance genes [101]. Other examples
are resistance against bean rust, wheat powdery mildew, and potato late blight [102-104].
Currently, cultivated peanuts exhibit only moderate to low stem rot resistance. Combin-
ing multiple resistances into a single genotype should enhance durability and provide
more effective resistance than cultivars with a single source of resistance. Therefore, while
ValSten1 exhibits similar resistance to the most resistant cultivar, Georgia-12Y, it likely re-
mains valuable to include this wild-derived allotetraploid in breeding programs to achieve
even higher levels of resistance. Pyramiding resistance to various diseases together can
be another objective for breeders. Given that the three allotetraploids derived from A.
stenosperma V 10309 revealed superior stem rot resistance [34,59,74,95-97], breeding stem
rot resistance with any allotetraploid derived from A. stenosperma V 10309 may additionally
improve other disease resistances.

5. Conclusions

This is the first report on the evaluation of peanut-compatible wild-derived allote-
traploids for peanut stem rot resistance. Allotetraploids derived from Arachis stenosperma
exhibit the highest levels of resistance, with ValStenl performing the best in both green-
house assays and field evaluations. Additionally, this study identified wild chromosome
segments associated with the disease using a ValStenl-derived population. While the
validation of these QTLs in different populations is still needed, this represents a crucial
step toward identifying wild-derived chromosome segments that contribute to increased
resistance to stem rot. The breeding program can be more informed by choosing individuals
with markers linked to lower stem rot-associated QTLs and excluding those with markers
linked to higher stem rot-associated QTLs. This is the first study that reports wild-derived
QTLs related to resistance to stem rot. ValSten1 is a promising candidate donor for stem rot
resistance breeding.

Supplementary Materials: The following supporting information can be downloaded at
https:/ /www.mdpi.com/article/10.3390/agronomy14071442 /s1; Supplemental File S1: Unix script
used for distinguishing wild-species specific markers and identifying which loci in F, individuals
derived from the wild species A. valida or A. stenosperma, Supplemental File S2: detailed genetic
position and physical position for 1926 SNP markers, Supplemental File S3: Marey Plot of 1926 SNP
markers with genetic position and physical position information, Supplemental File S4: genotyping
color map of 321 F, individuals arranged in 21 linkage groups, Supplemental File S5: Four-year stem
rot disease evaluation of allotetraploid ValStenl, resistant control (Georgia-12Y), and susceptible
control (Georgia-09B).
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