First Steps towards Pre-Breeding of Sideritis scardica: A Phenotypic, Agronomic, and Phytochemical Profiling Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Phenotypic and Agronomic Measurements
2.3. Essential Oil Isolation and Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
2.4. Polyphenols Extraction
2.5. Analysis of Phenolic Compounds and Flavonoid Aglycones
2.6. Analysis of Flavones
2.7. Statistical Analysis
3. Results
3.1. Main Agronomic and Phenotypic Characteristics of the Three Clones of S. scardica
3.2. Phytochemical Evaluation of the Three S. scardica Clones and NMS Ordination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Evstatieva, L.N.; Alipieva, K.I. Conservation and Sustainable Use of Threatened Medicinal Plant Sideritis scardica in Bulgaria. Acta Hortic. 2012, 955, 89–92. [Google Scholar] [CrossRef]
- Duman, H.; Sideritis, L. Flora of Turkey and East Aegean Islands (Supplement 2); University Press: Edinburgh, UK, 2000; Volume 11, pp. 201–205. [Google Scholar]
- Petrova, A.; Vladimirov, V. Red List of Bulgarian Vascular Plants. Phytol. Balc. 2008, 15, 63–94. [Google Scholar]
- Todorova, M.; Trendafilova, A. Sideritis Scardica Griseb., an Endemic Species of Balkan Peninsula: Traditional Uses, Cultivation, Chemical Composition, Biological Activity. J. Ethnopharmacol. 2014, 152, 256–265. [Google Scholar] [CrossRef]
- González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis spp.: Uses, Chemical Composition and Pharmacological Activities—A Review. J. Ethnopharmacol. 2011, 135, 209–225. [Google Scholar] [CrossRef]
- Tadić, V.M.; Jeremic, I.; Dobric, S.; Isakovic, A.; Markovic, I.; Trajkovic, V.; Bojovic, D.; Arsic, I. Anti-Inflammatory, Gastroprotective, and Cytotoxic Effects of Sideritis scardica Extracts. Planta Med. 2012, 78, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.; Tsifodimou, K.; Sarrou, E.; Chatzopoulou, P. Optimization Infusions Conditions for Improving Phenolic Content and Antioxidant Activity in Sideritis scardica Tea Using Response Surface Methodology. J. Appl. Res. Med. Aromat. Plants 2018, 8, 67–74. [Google Scholar] [CrossRef]
- Hofrichter, J.; Krohn, M.; Schumacher, T.; Lange, C.; Feistel, B.; Walbroel, B.; Pahnke, J. Sideritis spp. Extracts Enhance Memory and Learning in Alzheimer’s β-Amyloidosis Mouse Models and Aged C57Bl/6 Mice. J. Alzheimers Dis. 2016, 53, 967–980. [Google Scholar] [CrossRef]
- Heiner, F.; Feistel, B.; Wink, M. Sideritis scardica Extracts Inhibit Aggregation and Toxicity of Amyloid-β in Caenorhabditis Elegans Used as a Model for Alzheimer’s Disease. PeerJ 2018, 6, e4683. [Google Scholar] [CrossRef] [PubMed]
- Aligiannis, N.; Kalpoutzakis, E.; Chinou, I.B.; Mitakou, S.; Gikas, E.; Tsarbopoulos, A. Composition and Antimicrobial Activity of the Essential Oils of Five Taxa of Sideritis from Greece. J. Agric. Food Chem. 2001, 49, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Petreska Stanoeva, J.; Stefova, M. Assay of Urinary Excretion of Polyphenols after Ingestion of a Cup of Mountain Tea (Sideritis scardica) Measured by HPLC-DAD-ESI-MS/MS. J. Agric. Food Chem. 2013, 61, 10488–10497. [Google Scholar] [CrossRef]
- Romanucci, V.; Di Fabio, G.; D’Alonzo, D.; Guaragna, A.; Scapagnini, G.; Zarrelli, A. Traditional Uses, Chemical Composition and Biological Activities of Sideritis raeseri Boiss. & Heldr. J. Sci. Food Agric. 2017, 97, 373–383. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Kloukina, C.; Vassiliou, R.; Tomou, E.-M.; Skaltsa, H.; Tzortzakis, N. Cultivation Strategy to Improve Chemical Profile and Anti-Oxidant Activity of Sideritis perfoliata L. subsp. perfoliata. Ind. Crops Prod. 2019, 140, 111694. [Google Scholar] [CrossRef]
- Sarrou, E.; Doukidou, L.; Avramidou, E.V.; Martens, S.; Angeli, A.; Stagiopoulou, R.; Fyllas, N.M.; Tourvas, N.; Abraham, E.; Maloupa, E.; et al. Chemodiversity Is Closely Linked to Genetic and Environmental Diversity: Insights into the Endangered Populations of the Local Endemic Plant Sideritis euboea Heldr. of Evia Island (Greece). J. Appl. Res. Med. Aromat. Plants 2022, 31, 100426. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Kirimer, N.; Tümen, G. Essential Oil of Sideritis scardica Griseb. subsp. scardica. J. Essent. Oil Res. 1997, 9, 205–207. [Google Scholar] [CrossRef]
- Todorova, M.; Trendafilova, A.; Evstatieva, L.; Antonova, D. Volatile Components in Sideritis scardica Griseb. Cultivar. Proc. Bulg. Acad. Sci. 2013, 66, 507–512. [Google Scholar] [CrossRef]
- Trendafilova, A.B.; Todorova, M.N.; Evstatieva, L.N.; Antonova, D.V. Variability in the Essential-Oil Composition of Sideritis scardica Griseb. from Native Bulgarian Populations. Chem. Biodivers. 2013, 10, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Venturella, P.; Bellino, A. Isolation and Partial Synthesis of Ent-18-Acetoxykaur-16-Ene-3β,7α,15β-Triol from Sideritis scardica. Phytochemistry 1979, 18, 1571–1572. [Google Scholar] [CrossRef]
- Karapandzova, M.; Qazimi, B.; Stefkov, G.; Bačeva, K.; Stafilov, T.; Panovska, T.K.; Kulevanova, S. Chemical Characterization, Mineral Content and Radical Scavenging Activity of Sideritis scardica and S. raeseri from R. Macedonia and R. Albania. Nat. Prod. Commun. 2013, 8, 639–644. [Google Scholar] [CrossRef]
- Petreska, J.; Stefkov, G.; Kulevanova, S.; Alipieva, K.; Bankova, V.; Stefova, M. Phenolic Compounds of Mountain Tea from the Balkans: LC/DAD/ESI/MSn Profile and Content. Nat. Prod. Commun. 2011, 6, 21–30. [Google Scholar] [CrossRef]
- Petreska, J.; Stefova, M.; Ferreres, F.; Moreno, D.A.; Tomás-Barberán, F.A.; Stefkov, G.; Kulevanova, S.; Gil-Izquierdo, A. Potential Bioactive Phenolics of Macedonian Sideritis Species Used for Medicinal “Mountain Tea”. Food Chem. 2011, 125, 13–20. [Google Scholar] [CrossRef]
- Sarrou, E.; Martens, S.; Chatzopoulou, P. Metabolite Profiling and Antioxidative Activity of Sage (Salvia fruticosa Mill.) under the Influence of Genotype and Harvesting Period. Ind. Crops Prod. 2016, 94, 240–250. [Google Scholar] [CrossRef]
- Skendi, A.; Irakli, M.; Chatzopoulou, P. Analysis of Phenolic Compounds in Greek Plants of Lamiaceae Family by HPLC. J. Appl. Res. Med. Aromat. Plants 2017, 6, 62–69. [Google Scholar] [CrossRef]
- Rafique, M.Z.; Carvalho, E.; Stracke, R.; Palmieri, L.; Herrera, L.; Feller, A.; Malnoy, M.; Martens, S. Nonsense Mutation Inside Anthocyanidin Synthase Gene Controls Pigmentation in Yellow Raspberry (Rubus idaeus L.). Front. Plant Sci. 2016, 7, 1892. [Google Scholar] [CrossRef] [PubMed]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002. [Google Scholar]
- McCune, B.; Mefford, M.J. PC-ORD Version 7. Multivariate Analysis of Ecological Data; MjM Software: Gleneden Beach, OR, 2015. [Google Scholar]
- Canter, P.H.; Thomas, H.; Ernst, E. Bringing Medicinal Plants into Cultivation: Opportunities and Challenges for Biotechnology. Trends Biotechnol. 2005, 23, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Sarrou, E.; Tsivelika, N.; Chatzopoulou, P.; Tsakalidis, G.; Menexes, G.; Mavromatis, A. Conventional Breeding of Greek Oregano (Origanum vulgare ssp. hirtum) and Development of Improved Cultivars for Yield Potential and Essential Oil Quality. Euphytica 2017, 213, 104. [Google Scholar] [CrossRef]
- Acquaah, G. Principles of Plant Genetics and Breeding; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Grdiša, M.; Radosavljević, I.; Liber, Z.; Stefkov, G.; Ralli, P.; Chatzopoulou, P.S.; Carović-Stanko, K.; Šatović, Z. Divergent Selection and Genetic Structure of Sideritis scardica Populations from Southern Balkan Peninsula as Revealed by AFLP Fingerprinting. Sci. Rep. 2019, 9, 12767. [Google Scholar] [CrossRef] [PubMed]
- Gratani, L. Plant Phenotypic Plasticity in Response to Environmental Factors. Adv. Bot. 2014, 2014, e208747. [Google Scholar] [CrossRef]
- Price, T.D.; Qvarnström, A.; Irwin, D.E. The Role of Phenotypic Plasticity in Driving Genetic Evolution. Proc. R. Soc. Lond. B Biol. Sci. 2003, 270, 1433–1440. [Google Scholar] [CrossRef]
- Mathe, A. An Ecological Approach to Medicinal Plant Introduction. In Herbs, Spices, and Medicinal Plants: Recent Advances in Botany. Horticulture, and Pharmacology; Craker, L.E., Simon, J.E., Eds.; Oryx Press: Phoenix, Arizona, 1988; pp. 175–205. [Google Scholar]
- Milla, R.; Matesanz, S. Growing Larger with Domestication: A Matter of Physiology, Morphology or Allocation? Plant Biol. 2017, 19, 475–483. [Google Scholar] [CrossRef]
- Maiti, B.; Nagori, B.P.; Singh, R. Recent Trends in Herbal Drugs: A Review. Int. J. Drug Res. Technol. 2011, 1, 17–25. [Google Scholar]
- Sarrou, E.; Giassafaki, L.-P.; Masuero, D.; Perenzoni, D.; Vizirianakis, I.S.; Irakli, M.; Chatzopoulou, P.; Martens, S. Metabolomics Assisted Fingerprint of Hypericum perforatum Chemotypes and Assessment of Their Cytotoxic Activity. Food Chem. Toxicol. 2018, 114, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Chalatsa, I.; Arvanitis, D.A.; Mikropoulou, E.V.; Giagini, A.; Papadopoulou-Daifoti, Z.; Aligiannis, N.; Halabalaki, M.; Tsarbopoulos, A.; Skaltsounis, L.A.; Sanoudou, D. Beneficial Effects of Sideritis scardica and Cichorium spinosum against Amyloidogenic Pathway and Tau Misprocessing in Alzheimer’s Disease Neuronal Cell Culture Models. J. Alzheimers Dis. 2018, 64, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Danesi, F.; Saha, S.; Kroon, P.A.; Glibetić, M.; Konić-Ristić, A.; D’Antuono, L.F.; Bordoni, A. Bioactive-Rich Sideritis scardica Tea (Mountain Tea) is as Potent as Camellia sinensis Tea at Inducing Cellular Antioxidant Defences and Preventing Oxidative Stress. J. Sci. Food Agric. 2013, 93, 3558–3564. [Google Scholar] [CrossRef] [PubMed]
- Janeska, B.; Stefova, M.; Alipieva, K. Assay of Flavonoid Aglycones from Species of the Genus Sideritis (Lamiaceae) from Macedonia with HPLC UV DAD. Acta Pharm. 2007, 57, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Alipieva, K.; Petreska, J.; Gil-Izquierdo, Á.; Stefova, M.; Evstatieva, L.; Bankova, V. Influence of the Extraction Method on the Yield of Flavonoids and Phenolics from Sideritis spp. (Pirin Mountain Tea). Nat. Prod. Commun. 2010, 5, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Pljevljakušić, D.; Šavikin, K.; Janković, T.; Zdunić, G.; Ristić, M.; Godjevac, D.; Konić-Ristić, A. Chemical Properties of the Cultivated Sideritis raeseri Boiss. & Heldr. subsp. raeseri. Food Chem. 2011, 124, 226–233. [Google Scholar] [CrossRef]
- Stanoeva, J.P.; Stefova, M.; Stefkov, G.; Kulevanova, S.; Alipieva, K.; Bankova, V.; Aneva, I.; Evstatieva, L.N. Chemotaxonomic Contribution to the Sideritis Species Dilemma on the Balkans. Biochem. Syst. Ecol. 2015, 61, 477–487. [Google Scholar] [CrossRef]
- Todorova, M.N.; Christov, R.C.; Evstatieva, L.N. Essential Oil Composition of Three Sideritis Species from Bulgaria. J. Essent. Oil Res. 2000, 12, 418–420. [Google Scholar] [CrossRef]
- Qazimi, B.; Stefkov, G.; Karapandzova, M.; Cvetkovikj, I.; Kulevanova, S. Aroma Compounds of Mountain Tea (Sideritis scardica and S. raeseri) from Western Balkan. Nat. Prod. Commun. 2014, 9, 1369–1372. [Google Scholar] [CrossRef]
- Żyżelewicz, D.; Kulbat-Warycha, K.; Oracz, J.; Żyżelewicz, K. Polyphenols and Other Bioactive Compounds of Sideritis Plants and Their Potential Biological Activity. Molecules 2020, 25, 3763. [Google Scholar] [CrossRef]
- Kaparakou, E.H.; Daferera, D.; Kanakis, C.D.; Skotti, E.; Kokotou, M.G.; Tarantilis, P.A. Chemical Composition of the Essential Oils of Three Popular Sideritis Species Cultivated in Greece Using GC-MS Analysis. Biomolecules 2023, 13, 1157. [Google Scholar] [CrossRef] [PubMed]
- Kostadinova, E.; Nikolova, D.; Alipieva, K.; Stefova, M.; Stefkov, G.; Evstatieva, L.; Matevski, V.; Bankova, V. Chemical Constituents of the Essential Oils of Sideritis scardica Griseb. and Sideritis raeseri Boiss and Heldr. from Bulgaria and Macedonia. Nat. Prod. Res. 2007, 21, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Skaltsa, H.; Tomou, E.; Kloukina, C. Essential Oil Composition of Two Greek Cultivated Sideritis spp. Nat. Volatiles Essent. Oils 2019, 6, 16–23. [Google Scholar]
- Rehman, R.; Asif Hanif, M. Biosynthetic Factories of Essential Oils: The Aromatic Plants. Nat. Prod. Chem. Res. 2016, 04. [Google Scholar] [CrossRef]
- Giuliani, C.; Maleci Bini, L.; Papa, F.; Cristalli, G.; Sagratini, G.; Vittori, S.; Lucarini, D.; Maggi, F. Glandular Trichomes and Essential Oil Composition of Endemic Sideritis italica (Mill.) Greuter et Burdet from Central Italy. Chem. Biodivers. 2011, 8, 2179–2194. [Google Scholar] [CrossRef] [PubMed]
- Hassiotis, C.N.; Ntana, F.; Lazari, D.M.; Poulios, S.; Vlachonasios, K.E. Environmental and Developmental Factors Affect Essential Oil Production and Quality of Lavandula angustifolia during Flowering Period. Ind. Crops Prod. 2014, 62, 359–366. [Google Scholar] [CrossRef]
- Lane, A.; Boecklemann, A.; Woronuk, G.N.; Sarker, L.; Mahmoud, S.S. A Genomics Resource for Investigating Regulation of Essential Oil Production in Lavandula angustifolia. Planta 2010, 231, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Liu, C.; Zheng, R.; Cai, X.; Luo, J.; Zou, J.; Wang, C. Emission and Accumulation of Monoterpene and the Key Terpene Synthase (TPS) Associated with Monoterpene Biosynthesis in Osmanthus fragrans Lour. Front. Plant Sci. 2016, 6, 1232. [Google Scholar] [CrossRef]
- Maiti, S.; Mitra, A. Morphological, Physiological and Ultrastructural Changes in Flowers Explain the Spatio-Temporal Emission of Scent Volatiles in Polianthes tuberosa L. Plant Cell Physiol. 2017, 58, 2095–2111. [Google Scholar] [CrossRef]
Clone | Plant Surface (m2) | Number of Stems | Stem Length (cm) | Plant Fresh Weight (g) | Plant Dry Weight (g) |
---|---|---|---|---|---|
SID1 | 1.0 ± 0.2 b | 232.0 ± 89.0 a | 45.0 ± 5.3 b | 1789.6 ± 695.9 b | 454.5 ± 218.7 b |
SID2 | 1.1 ± 0.2 ab | 277.0 ± 85.0 a | 55.7 ± 7.3 a | 2968.1 ± 1055.8 a | 636.1 ± 270.7 a |
SID3 | 1.2 ± 0.2 a | 261.0 ± 77.0 a | 44.7 ± 5.6 b | 1760.1 ± 722.6 b | 502.2 ± 160.8 ab |
CV (%) | |||||
SID1 | 20.5 | 38.4 | 11.8 | 38.9 | 48.1 |
SID2 | 18.2 | 30.9 | 13.1 | 35.6 | 42.6 |
SID3 | 16.0 | 29.9 | 12.5 | 41.1 | 30.0 |
Morphological Characteristics | SID1 | SID2 | SID3 | |
---|---|---|---|---|
Plant | ||||
1 | Growth habit | Semi-upright * | Semi-upright | Upright |
2 | Height | Tall | Tall | Medium |
3 | Width | Medium | Medium | Medium |
4 | Density of shoots | Medium | Medium | Medium |
5 | Stem: pubescence | Dense | Dense | Dense |
Leaf | ||||
6 | Type | Simple | Simple | Simple |
7 | Petiole: length (mm) | 2.7 ** | 2.9 | 1.9 |
8 | Leaf blade: length (cm) | 6.5 | 6.7 | 6.3 |
9 | Leaf blade: width (cm) | 1.0 | 0.9 | 1.2 |
10 | Leaf blade: length/width ratio | 6.9 | 7.7 | 5.3 |
11 | Leaf blade: position of broadest part | At middle | At middle | At middle |
12 | Leaf blade: shape of base | Acute | Acute | Acute |
13 | Leaf blade: shape of apex | Acute | Acute | Acute |
14 | Leaf blade: main color | Gray-green | Gray-green | Gray-green |
15 | Leaf blade: pubescence | Dense | Dense | Dense |
16 | Leaf blade: incision of margin | Absent or very weak | Absent or very weak | Absent or very weak |
17 | Leaf blade: undulation of margin | Medium | Medium | Medium |
Inflorescence | ||||
18 | Length (cm) | 20.3 | 23.3 | 18.6 |
19 | Length of internode | Absent | Absent | Absent |
20 | Number of florets per node | 6 | 6 | 6 |
21 | Number of lateral branches | Absent or very few | Few | Medium |
22 | Attitude of tip | Erect | Semi-erect | Erect |
23 | Bract: length (cm) *** | 2.1 | 2.1 | 2.2 |
24 | Bract: main color of outer side | Light green | Light green | Light green |
25 | Calyx: length (cm) | 0.7 | 0.7 | 0.7 |
26 | Calyx: main color of outer side | Light green | Light green | Light green |
27 | Calyx: pubescence on outer side | Dense | Dense | Dense |
28 | Corolla: length (cm) | 1.0 | 1.1 | 1.1 |
29 | Corolla: height (cm) | 0.4 | 0.4 | 0.4 |
30 | Corolla tube: main color of outer side | Light yellow | Light yellow | Light yellow |
31 | Upper lip: main color of outer side | Light yellow | Light yellow | Light yellow |
32 | Upper lip: pubescence on outer side | Sparse | Sparse | Sparse |
33 | Lower lip: width | Medium | Medium | Medium |
34 | Lower lip: attitude relative to corolla tube | Moderately downwards | Moderately downwards | Moderately downwards |
35 | Lower lip: main color of inner side | Light yellow | Light yellow | Light yellow |
36 | Lower lip: secondary color of inner side | Absent | Absent | Absent |
Inflorescence | Leaves | ||||
---|---|---|---|---|---|
Clone | Length (cm) | Surface (cm2) | Perimeter (cm) | Length (cm) | Width (cm) |
SID1 | 20.3 ± 1.7 a | 4.6 ± 2.8 b | 13.1 ± 4.9 b | 6.5 ± 0.9 a | 1.0 ± 0.1 a |
SID2 | 23.3 ± 2.4 a | 5.0 ± 2.1 a | 14.1 ± 5.3 a | 6.7 ± 1.2 a | 0.9 ± 0.2 a |
SID3 | 18.6 ± 4.6 a | 4.6 ± 2.0 b | 13.2 ± 4.8 b | 6.3 ± 1.4 a | 1.2 ± 0.2 a |
CV% | |||||
SID1 | 8.4 | 60.9 | 37.4 | 14.3 | 13.6 |
SID2 | 10.2 | 42.0 | 37.6 | 18.5 | 24.0 |
SID3 | 24.8 | 43.5 | 36.4 | 22.4 | 20.0 |
Compounds | SID1 | SID2 | SID3 | |
---|---|---|---|---|
Hydrocarbon monoterpenes | % | |||
1 | a-Pinene | 31.26 ± 0.27 a | 7.94 ± 0.63 c | 12.45 ± 1.62 b |
2 | 2.4 Thujadiene | 0.39 | nd | 0.75 |
3 | Sabinene | 1.14 | 2.25 | 0.72 |
4 | β-Pinene | 14.34 ± 0.29 a | 16.43 ± 1.30 a | 7.52 ± 0.64 b |
5 | 1-Octen-3-ol | 4.1 ± 0.14 a | 5.54 ± 0.64 a | 5.89 ± 0.58 a |
6 | β-Myrcene | 0.94 | 0.84 | 0.64 |
7 | p-Cymene | 0.25 | 0.07 | 1.82 |
8 | Limonene | 2.47 ± 0.06 b | 5.98 ± 0.58 a | 2.69 ± 024 b |
9 | β-Phellandrene | 0.74 | 0.94 | 0.75 |
10 | γ-Terpinene | 0.19 | 0.48 | 0.40 |
11 | α-Terpinolene | 0.14 | 0.26 | 0.23 |
12 | cis β-Ocimene | 3.62 | 3.34 | 1.31 |
13 | tr β-Ocimene | 0.71 | 0.50 | 0.19 |
Oxygenated monoterpenes | ||||
14 | 1.8 Cineol | 0.10 | 0.05 | 0.22 |
15 | Linalool | 0.78 | 1.53 | 1.07 |
16 | n-Nonalal | 0.28 | 0.50 | 0.35 |
17 | α-Camphonelal | 0.82 | 0.24 | 2.11 |
18 | tr Pinocarveol | 0.84 | 0.30 | 2.74 |
19 | cis Verbenol | 0.39 | nd | 1.13 |
20 | tr Verbenol | 0.91 | nd | 4.25 |
21 | Pinocarvone | 0.78 | 0.31 | 2.59 |
22 | p Mentha-1.5dien8ol | 0.38 | nd | 0.77 |
23 | 4 Terpineol | 0.19 | 0.4 | 0.42 |
24 | Myrtenol | 1.37 ± 0.09 b | 0.83 ± 0.10 b | 4.36 ± 0.20 a |
25 | Thymol | 0.21 | 0.53 | 0.42 |
26 | Carvacrol | 2.2 ± 0.2 a | 3.61 ± 0.12 a | 4.43 ± 1.0 a |
Sesquiterpenes | ||||
27 | δ-Elemene | 0.34 | 0.39 | 0.31 |
28 | α-Copaene | 0.08 | 0.32 | 0.13 |
29 | β-Bourbonene | 0.44 | 0.72 | 1.34 |
30 | β-Cubebene + β-Elemene | 0.28 | 0.51 | 0.77 |
31 | β-Caryophyllene | 9.59 ± 0.90 a | 5.73 ± 0.45 b | 7.35 ± 0.36 ab |
32 | α-Humulene | 0.73 | 0.73 | 0.32 |
33 | D Germacrene | 3.65 | 1.58 | 2.53 |
34 | β-Germacrene | 2.35 ± 0.32 b | 6.03 ± 0.46 a | 3.31 ± 0.13 ab |
35 | β-bisabolene | 0.52 | 0.42 | 0.28 |
36 | δ-Cadinene | 0.12 ± 0.05 b | 6.24 ± 0.48 a | 0.24 ± 0.01 b |
37 | Spathulenol | 1.15 ± 0.08 c | 3.07 ± 0.31 b | 4.83 ± 0.36 a |
38 | Caryophyllene oxide | 2.86 ± 0.07 b | 1.56 ± 0.23 b | 5.85 ± 0.53 a |
39 | Viridiflorol | 0.08 | 0.26 | 0.23 |
40 | α-Bisabolene | 0.20 | 0.19 | nd |
Others | ||||
41 | Geranyl p cymene | 0.58 | 1.25 | nd |
42 | Geranyl acetone | 0.11 | 0.94 | 0.49 |
43 | Tetradecanol | 0.18 | 1.74 | 0.73 |
44 | Benzyl benzoate | nd | nd | 1.06 |
Total identified essential oil % | 92.78 | 87.54 | 89.99 |
Clone | |||
---|---|---|---|
Compounds | SID1 | SID2 | SID3 |
Hydroxybenzoic acids | Concentration (mg 100 g−1) | ||
p-Hydroxybenzoic acid | 7.41 ± 0.07 a | 7.09 ± 0.10 a | 7.24 ± 0.13 a |
Protocatechuic acid | 9.27 ± 0.28 b | 11.41 ± 0.26 a | 9.33 ± 0.17 b |
Syringic acid | 5.18 ± 0.13 a | 5.42 ± 0.33 a | 4.70 ± 0.22 a |
Vanillic acid | 11.13 ± 0.29 a | 10.61 ± 0.30 a | 8.36 ± 0.41 b |
Hydroxycinnamic acids | |||
Chlorogenic acid | 134.88 ± 4.69 b | 229.03 ± 4.67 a | 230.00 ± 12.97 a |
Cryptochlorogenic acid | 0.35 ± 0.08 b | 0.56 ± 0.13 a | 0.46 ± 0.11 a |
Caffeic acid | 7.91 ± 0.15 b | 8.82 ± 0.23 a | 7.96 ± 0.13 b |
Flavonols | |||
Kaempferol | 19.27 ± 0.58 a | 9.61 ± 0.44 c | 11.55 ± 0.64 b |
Flavones | |||
Apigenin | 6.55 ± 1.33 a | 4.82 ± 1.87 a | 11.29 ± 3.55 a |
Phenylethanoid glycosides | |||
Verbascoside | 1989.87 ± 89.93 a | 2234.32 ± 71.91 a | 1511.51 ± 130.64 b |
Clone | |||
---|---|---|---|
Flavones | SID1 | SID2 | SID3 |
Isoscutellarein derivatives | Concentration (mg 100 g−1) | ||
Peak 1 | 634.5 ± 51.3 a | 485.9 ± 26.7 b | 371.9 ± 20.1 b |
Peak 3 | 60.5 ± 6.9 | 98.0 ± 13.2 | 32.7 ± 6.6 |
Peak 4 (IAAG) | 1239.6 ± 78.2 a | 1456.5 ± 61.4 a | 913.31 ± 49.4 b |
Peak 6 | 77.2 ± 7.5 a | 31.2 ± 8.2 b | 32.3 ± 9.7 b |
Peak 7 | 45.8 ± 5.2 a | 26.9 ± 10.5 a | 38.1 ± 13.7 a |
Hypolaetin derivatives | |||
Peak 2 | 364.4 ± 21.8 a | 385.8 ± 23.6 a | 339.8 ± 24.7 a |
Peak 5 (mHAAG) | 720.5 ± 33.8 b | 861.8 ± 36.2 a | 614.1 ± 36.0 b |
Total isoscutellarein derivatives | 2057.7 ± 58.7 a | 2094.8 ± 77.3 a | 1372.6 ± 78.2 b |
Total hypolaetin derivatives | 1084.9 ± 30.2 b | 1247.6 ± 49.2 a | 954.0 ± 51.8 b |
Total identified flavones | 3142.3 ± 85.5 a | 3342.4 ± 124.8 a | 2937.2 ± 126.3 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarrou, E.; Tsivelika, N.; Martens, S.; Irakli, M.; Bletsaki, F.; Broufa, S.; Panajiotidis, S.; Chatzopoulou, P.S.; Abraham, E.M. First Steps towards Pre-Breeding of Sideritis scardica: A Phenotypic, Agronomic, and Phytochemical Profiling Approach. Agronomy 2024, 14, 1448. https://doi.org/10.3390/agronomy14071448
Sarrou E, Tsivelika N, Martens S, Irakli M, Bletsaki F, Broufa S, Panajiotidis S, Chatzopoulou PS, Abraham EM. First Steps towards Pre-Breeding of Sideritis scardica: A Phenotypic, Agronomic, and Phytochemical Profiling Approach. Agronomy. 2024; 14(7):1448. https://doi.org/10.3390/agronomy14071448
Chicago/Turabian StyleSarrou, Eirini, Nektaria Tsivelika, Stefan Martens, Maria Irakli, Fotini Bletsaki, Sarra Broufa, Sampson Panajiotidis, Paschalina S. Chatzopoulou, and Eleni M. Abraham. 2024. "First Steps towards Pre-Breeding of Sideritis scardica: A Phenotypic, Agronomic, and Phytochemical Profiling Approach" Agronomy 14, no. 7: 1448. https://doi.org/10.3390/agronomy14071448
APA StyleSarrou, E., Tsivelika, N., Martens, S., Irakli, M., Bletsaki, F., Broufa, S., Panajiotidis, S., Chatzopoulou, P. S., & Abraham, E. M. (2024). First Steps towards Pre-Breeding of Sideritis scardica: A Phenotypic, Agronomic, and Phytochemical Profiling Approach. Agronomy, 14(7), 1448. https://doi.org/10.3390/agronomy14071448