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Abstract: Melanaphis sacchari is a cosmopolitan pest that causes losses in sorghum crops, so new
management methods are needed. In addition, the type of fertilization used influences plant compo-
sitions and pest infestation, and allelochemicals are a promising method for the possible management
of M. sacchari. In this work, we measured the preference of M. sacchari through chemical stimuli
towards sorghum plants grown under greenhouse conditions without fertilization (F0), conventional
fertilization (CF), and organic fertilization (OF). Leaves were collected from sorghum plants fertilized
with 200 kg N ha−1 using ammonium sulfate and poultry manure. Extracts were obtained using
Soxhlet extraction, and the compounds were identified using a gas chromatograph coupled with mass
spectrometry (GC-MS). Sorghum extracts were individually tested through bioassays to determine
M. sacchari preference. The abundance and number of compounds in sorghum differed depending
on the type of fertilization used. M. sacchari showed a preference for the extract from CF sorghum
plants (76.66%) over the extract from OF plants (23.34%). Therefore, the type of fertilization can be
used as a tactic to prevent higher infestations of M. sacchari. The biological activity of the compounds
identified here with M. sacchari should be determined for future pest management strategies using
allelochemicals, given that the sugarcane aphid uses chemical signals to locate its host plant.

Keywords: allelochemicals; bioassays; chemical stimuli; fertilization; plant extracts; sorghum;
sugarcane aphid

1. Introduction

Sorghum bicolor (L.) Moench, commonly called sorghum, originated in Africa approxi-
mately 8000 years ago, later distributed to countries in the Middle East and Asia, and finally
in the 19th Century to the American continent [1]. This crop is considered the fifth most
important grain crop in the world [2]. Mexico contributes 10.6% of the world’s production
and imports 5.01 million tons of this grain and it is utilized mainly as feed for cattle, pigs,
and poultry [3]. However, currently, this crop has taken relevance as a food source in
African, Asian, and South American countries [4]. A recurrent problem in sorghum crops
is the sugarcane aphid (Melanaphis sacchari), a pest that is distributed worldwide [5]. It was
introduced to the American continent in 2013, mainly affecting sorghum crops in the United
States and Mexico, being distributed in the latter in 27 states [5,6]. This insect negatively
affects sorghum and other important crops. Sugarcane aphids are economically important
due to the fact that they feed on plant sap, leading to reduced yields and, in some cases,
total sorghum losses [5,7]. Pest management strategies proposed for M. sacchari include
biological control, determination of optimal planting dates, elimination of alternative hosts,
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and use of pesticides, with the latter being the primary control measure for this insect [8].
Pesticides can potentially enter the environment, contaminating both the environment
and food, thereby affecting biodiversity and human health [9]. Therefore, it is crucial to
implement new strategies, such as utilizing insect behavior to compounds emitted by plants
or also called allelochemicals [10]. These compounds serve as chemical signals for insects
to identify their host plants and can be used for crop protection and productivity as part of
pest management [11,12]. Still, their potential benefits in M. sacchari management remain
poorly explored. On the other hand, nitrogen (N) fertilization practices, particularly of a
synthetic or conventional origin, are essential for crop yields [13]. However, this practice
causes contamination, similar to the use of pesticides; it generates several environmental
problems such as greenhouse gas emissions, soil acidification and degradation, ground-
water contamination, and loss of biological diversity, among others [14]. In addition, it
is also a practice that is related to a higher incidence of pests and aphid species, such
as Brachycaudus cardui, Myzus persicae, and Toxoptera aurantii, which showed increased
attraction to fertilized host plants [15–18]. On the contrary, there is evidence that aphids
such as M. persicae and Rhopalosiphum maidis have a lower preference for organically fertil-
ized plants [19,20]. Organic fertilization (OF) has recently gained importance because it is
considered an alternative fertilization that can help improve environmental sustainability,
due to its advantages such as improving soil organic matter, soil structure, and moisture;
improving soil microbial activity; and showing less nutrient loss than conventional fertil-
ization (CF) [21,22]. In line with the above, it has been reported that the type of fertilization
used affects plant chemical compounds [23,24].

Based on the above, it is hypothesized that the type of fertilization affects the com-
pounds of sorghum plants and the preference of the aphid M. sacchari. The aim of the
present study was to identify the compounds of S. bicolor and to perform bioassays to
evaluate the behavior of M. sacchari to sorghum extracts as a chemical stimulus, which
could serve as another important factor for the management of this pest.

2. Materials and Methods
2.1. Plant Material

In October 2023, S. bicolor seeds (Dekalb 45) were sown in 4 L polyethylene bags in a
greenhouse of the Colegio de Postgraduados (COLPOS), Campus Puebla (19◦04′26.5′′ N;
98◦15′41.3′′ W). Plants were grown for 60 days at 20–25 ◦C and 60 ± 10% humidity and
16:8 photoperiod and watered every 3 days. The experiment followed a completely ran-
domized design consisting of 3 treatments, with 3 replicates (Table 1).

Table 1. Fertilization treatments in S. bicolor.

Treatments Description

F0 Soil (4.4% organic matter; nitrogen at 100 ppm; phosphorus at 0.80 ppm;
potassium at 5.50 ppm; and pH 7.4)

CF 200 kg ha−1 N (ammonium sulfate) + soil

OF 200 kg ha−1 N (poultry manure: 57% organic matter; nitrogen at 400 ppm;
phosphorus at 230 ppm; potassium at 200 ppm; and pH 7.8) + soil

F0: Plant without fertilization; CF: Conventional fertilization; OF: Organic fertilization.

2.2. Insect Breeding

In August 2023, sugarcane aphid nymphs were obtained from sorghum plots in the
municipality of Izúcar de Matamoros, Puebla (18◦36′10′′ N; 98◦27′5′′ W). The nymphs were
transported to the greenhouse and maintained on healthy sorghum plants in cages made
of wood and polyethylene mesh (50 cm × 50 cm × 80 cm) (under the above-mentioned
conditions) for reproduction during 5 generations until their use in bioassays with the
extracts [25].
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2.3. Extraction and Identification of Compounds

The third and fourth alternate leaves of sorghum plants were rinsed with sterile
distilled water and weighed (300 g). Then, they were ground using a mill, wrapped
in filter paper, and then placed in a Soxhlet extractor mounted atop a distillation flask
containing 150 mL of 90% ethanol (Sigma Aldrich, Seelze, Germany). The extraction
process was carried out for 3 h [26]. Then, 1 µL of the extract was injected into an Agilent
Technologies (Santa Clara, CA, USA) 7890A gas chromatograph coupled with an Agilent
Technologies 5975C mass spectrometer (Santa Clara, CA, USA). The system was equipped
with a 30 m × 0.25 mm HP-5MS column with a film thickness of 0.50 µm (Agilent J&W,
Santa Clara, CA, USA). The GC-MS parameters were as follows: helium as the carrier gas,
injector temperature of 250 ◦C in the splitless mode, and initial oven temperature of 36 ◦C
for 1 min and then increased by 10 ◦C per min until reaching 250 ◦C, which was maintained
for 3 min. Compounds were identified through comparison with mass spectra from the
National Institute of Standards and Technology library (NIST 8 and NIST 11) [27].

2.4. Bioassays Using Extracts from S. bicolor

Healthy-looking, 1.2 mm long, 13-day-old females of M. sacchari were fasted for
1 h prior to individual bioassays. A glass Petri dish (10 cm in diameter) was used as
the behavioral arena (Figure 1). Bioassays were performed under laboratory conditions
(22 ± 3 ◦C and 60 ± 10% RH) between 10:00 a.m. and 1:00 p.m. Briefly, 10 µL of the extract
was placed on 1 cm × 1 cm filter paper pieces (Whatman No. 1) and allowed to evaporate
for 30 s [25]. For the control (C), an equivalent volume of solvent (ethanol) was used,
following the same procedure [28]. Each piece of filter paper was placed end to end of
the Petri dish randomly and the Petri dish was closed in each bioassay. A 5 min response
time was given, or until it moved towards the extract (past the response line). A total
of 30 individual bioassays were conducted. After 3 bioassays, the Petri dish used was
replaced by a clean one. The extracts tested were C, F0 (unfertilized plant), CF, and OF. Six
combinations of extracts were made, as described in Table 2.
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Table 2. Combinations for behavioral bioassays.

Bioassay Combinations Extracts

1 CF vs. OF
2 F0 vs. OF
3 F0 vs. CF
4 C vs. OF
5 C vs. CF
6 C vs. F0

C: Control (ethanol); F0: Plant without fertilization; CF: Conventional fertilization; OF: Organic fertilization.
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2.5. Statistical Analysis

The frequencies of behavioral responses were analyzed through an exact binomial test
using R Studio software (version 4.4.0).

3. Results
3.1. Extraction and Identification of Compounds

The numbers of compounds identified in sorghum leaf extracts were 12 in F0, 34 in
CF, and 16 in OF (Table 3). Butanedioic acid, 1-tetradecene, (Z)-7-hexadecene, and phenol
were found in leaves from all three treatments. Butanedioic acid and 1-tetradecene were
most abundant in F0, followed by CF and OF. In contrast, phenol was most abundant in CF
(23.35%), followed by F0 (22.64%) and OF (14.01%). The abundances of (E)-5-octadecene and
benzophenone were higher in CF than in OF. On the other hand, 1,2-benzenedicarboxylic acid
was more abundant in OF (1.62%) than in CF (0.77%). The most abundant compound in F0
and OF was (4-methoxy-phenyl)-(5-p-tolyl-furan-2-ylmethylene)-amine (46.89% and 68.02%,
respectively). In CF, 5-[[[3,4,5-trimethoxyphenyl]imino]methyl]-2,4-pyrimidinediamine
was the most abundant compound (37.73%). The least abundant compounds were (2,2-
dichlorocyclopropyl) methanol in F0 (0.06%), 5,6-dihydro-2-(4-nitrophenyl)-4H-1,3-oxazin-
5-one in CF (0.11%), and 3-methyl-1-(4-toluidino)pyrido[1,2 -a]benzimidazole-4-carbonitrile
in OF (0.2%). A total of 28 compounds were found exclusively in CF sorghum plants.

Table 3. Compounds detected in S. bicolor leaves.

Number Retention
Time Compound

Peak
Area

F0 (%)

Peak
Area

CF (%)

Peak
Area

OF (%)

1 3.95 butyric acid ND 0.33 ND
2 3.96 tridecyl trifluoroacetate ND 0.15 ND
3 3.98 (R)-2-octanol ND 0.21 ND
4 4.00 propanoic acid ND 0.36 ND
5 4.14 1-methyldecylamine 1.43 ND ND
6 5.38 ethylamine ND 0.28 ND
7 5.59 4-methyl-2-pentanamine ND 0.33 ND
8 5.66 4-fluorohistamine ND 0.61 ND
9 6.04 1-undecanol 7 ND 2.69
10 6.05 2H-pyran-2-one ND 5.48 ND
11 6.40 2-heptanol ND 0.35 ND
12 6.93 acetic acid ND 0.63 ND
13 7.00 (2,3-dimethyloxiranyl) methanol ND 0.39 ND
14 7.08 2,3-diethoxy-propionic acid, ethyl ester ND 0.42 ND
15 7.55 2-nonanol ND 0.24 ND
16 7.77 butanedioic acid 2.24 1.83 1.09
17 8.14 1-tetradecene 6.36 5.47 2.5
18 8.63 1-(1-propynyl)-cyclohexene ND 0.42 ND
19 10.12 (Z)-7-hexadecene 3.4 2.85 1.46
20 10.88 phenol 22.64 23.35 14.01
21 11.21 4-(2-methylamino)ethyl)pyridine ND 0.04 ND

22 11.41 2-fluoro-2′,4,5-trihydroxy-N-methyl-
benzenethanamine ND 0.89 ND

23 11.99 (E)-5-octadecene ND 0.93 0.55
24 11.99 N,N′-dimethyl-2-butene-1,4-diamine 0.68 ND ND
25 12.27 1-dodecanamine ND 1.53 ND
26 12.73 4-hydroxy-benzeneacetonitrile ND 5.29 ND
27 12.91 N,N-dimethyl-dimethylphosphoric amide ND 0.39 ND
28 13.23 2-octyl benzoate ND 0.72 ND
29 14.20 benzophenone ND 1.06 0.69
30 14.21 N-(3-pyridinylmethylene)benzenamine 1.09 ND ND
31 14.37 4-amino-2-oxy-furazan-3-carboxylic acid ND 0.20 ND
32 14.85 piperidin-4-ol, 1,3,3-trimethyl-4phenyl ND 0.37 ND

33 16.16 benzene, 4-bromo-1,3-dimethoxy-6-(4-
acetylphenyliminomethyl) ND ND 0.93

34 16.17 phthalic acid, isobutyl 4-isopropylphenyl
ester ND 0.24 ND

35 16.58 9-hydroxy-3,4-dihydro-2H-1,4-
ethanoquinoline-9-carboxylic acid ND ND 1.14
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Table 3. Cont.

Number Retention
Time Compound

Peak
Area

F0 (%)

Peak
Area

CF (%)

Peak
Area

OF (%)

36 16.84 5,6-dihydro-2-(4-nitrophenyl)-4H-1,3-
oxazin-5-one ND 0.11 ND

37 16.86

1H-pyrrolo[1,2-a]benzimidazolium,2,3-
dihydro-4-(1,2,3,4-tetrahydro-6-hydroxy-
1,3-dimethyl-2,4-dioxo-5-pyrimidinyl)-,

hydroxide

ND ND 1.07

38 17.21
5-[[[3,4,5-

trimethoxyphenyl]imino]methyl]-2,4-
pyrimidinediamine

ND 37.73 ND

39 17.21 (4-methoxy-phenyl)-(5-p-tolyl-furan-2-
ylmethylene)-amine 46.89 ND 68.02

40 17.42 1,2-benzenedicarboxylic acid ND 0.77 1.62
41 17.42 2-methyl-benzothiazole 0.55 ND ND
42 17.61 2-bromo-N-methyl-2-propen-1-amine ND 0.35 ND
43 21.47 4-methyl-2-pentanamine 0.83 ND ND
44 21.51 (2,2-dichlorocyclopropyl)methanol 0.06 ND ND
45 22.04 1,3-benzenedicarboxylic acid ND 0.34 ND
46 22.05 4-phenoxy-2-phenyl-1-naphthalenol ND ND 1.06

47 23.60 3-methyl-1-(4-toluidino)pyrido[1,2-
a]benzimidazole-4-carbonitrile ND ND 0.2

48 26.96 5-(p-aminophenyl)-4-(p-nitrophenyl)-2-
thiazolamin ND ND 0.3

49 27.02 2-oxo-1,4,5-triphenyl-4-imidazolin ND ND 0.68

Number of compounds detected per
treatment 12 34 16

ND: Not detected; F0: Plant without fertilization; CF: Conventional fertilization; OF: Organic fertilization.

3.2. Bioassays Using Extracts from S. bicolor

M. sacchari females showed a statistically significant preference (p < 0.0001) for S. bicolor
extracts compared to the control (C), with higher response in F0 (93.34%), CF (86.66%), and
OF (76.66%). However, bioassays comparing F0 (20%) with CF (80%) and F0 (26.67%) with
OF (73.33%) exhibited a statistically significant (p < 0.05) preference for fertilized extracts
of S. bicolor (CF and OF). Finally, when comparing CF (76.66%) with OF (23.34%) extracts,
M. sacchari showed a statistically significant preference (p < 0.05) for the CF extract (Figure 2).
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4. Discussion

The type of fertilization affected the abundance and number of compounds found
in sorghum plants. This is in agreement with observations in Rubus idaeus plants, where
the type of fertilization had both qualitative and quantitative effects on the compounds
emitted [13]. In other plants such as willow, strawberry, and tomato, the compounds were
affected by CF with N [24,29,30]. In addition, OF has been shown to modify the abundance
of compounds compared to unfertilized tomato plants [30]. In line with previous reports
for other species, we found that the number of compounds in S. bicolor was higher in CF,
followed by OF and F0. These results are attributed to the availability of N, which leads to
increased protein synthesis and, therefore, increased synthesis of secondary metabolites
that affect plant defense [31]. CF has been associated with a higher abundance of com-
pounds [24,32], as evinced by the results obtained here for (E)-5-octadecene, benzophenone,
and phenol. However, said trend was not observed when comparing F0 with CF. Butane-
dioic acid, 1-tetradecene, and (Z)-7-hexadecene were more abundant in F0. In this regard,
it has been reported that compounds exhibit individual responses to fertilization, which
could be attributed to different biosynthetic pathways and environmental factors [24].
Eleven of the compounds exclusively identified in CF were aromatic compounds, which
act as chemical signals involved in the attraction of insects, such as Drosophila melanogaster,
Eupeodes corolla, and Sitona humeralis [33–35]. Also, eight of the compounds only identified
in the FO are alkaloids, which are associated with nutrient availability and also function
as an indicator for host plant acceptance by insects such as Manduca sexta and Formica
polyctena [36,37]. Likewise, these compounds are used by aphids such as Macrosiphum
euphorbiae, Macrosiphum albifrons, Aphis cytisorum, and Aphis jacobeae to detect their food [38].
Another way that aphids use alkaloids is through feeding on plants with high levels of
these compounds to accumulate them in their bodies (sequestration) and serve as a defense
against predators [38]. These compounds, which were not common to other treatments,
could be a key factor in the attraction of M. sacchari to extracts from CF sorghum plants.

Some of the compounds identified in this study have been reported to have biological
activity in certain insects, including some found exclusively in CF plants, such as acetic
acid. Acetic acid has been related to high-dose N fertilization in Brassica napus plants and
serves as a potential attractant of Meligethes aeneus and D. melanogaster [23,33]. Butyric acid
is a key attractant of pests such as Holotrichia paralela and Bubas bison [39,40]. A compound
induced by herbivory, 2-octanol, has been reported as an attractant of Spilosoma obliqua [41].
In Camellia sinensis plants, 1,3-benzenedicarboxylic acid has been related to N fertilization
doses and the infestation of the aphid T. aurantii [18]. The most abundant compound in CF
was phenol, which acts as an attractant of beetles of the species B. bison [40].

In OF, we found butanedioic acid, a component of the silkworm cocoon, which may
be involved in its protection [42]. Likewise, higher levels of butanedioic acid were found
in chickpea plants and were linked to increased resistance to the leaf miner Liriomyza
cicerina [43]. Another compound that could have repellent activity against M. sacchari is 1,2-
benzenedicarboxylic acid, which has potential as a natural insecticide [44]. In Capsicum spp.
plants infested with Aphis gossypii aphids, 1-undecanol has been identified as a compound
involved in the plant’s defense [45]. In the present study, 1-undecanol was exclusively
found in F0 and OF sorghum plants, suggesting its potential role as a repellent against M.
sacchari. Finally, 1-tetradecene exhibits repellent activity against the aphids Acyrthosiphon
pisum and M. persicae [46], while showing attractant activity towards Apolygus lucorum,
Adelphocoris suturalis, and Megalurothrips sjostedti [47,48]. Although previous reports on the
compounds identified in this study may provide an indication of their activity against or
towards M. sacchari, further research is needed to confirm their biological activity.

Based on our results, M. sacchari has a preference for CF and OF treatments. In this
regard, it has already been reported that there is a preferential relationship of M. sacchari
for plants fertilized with higher levels of N [8]. Here, we compared the preference for CF or
OF plants. The release of nutrients in organic fertilization is slower compared to chemical
fertilizers. This differential rate impacts sap-sucking insects, as leaf sap composition is
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affected by fertilizer sources and dosages [49,50]. To date, only M. persicae has been tested
using chemical stimuli. Olfactometer tests revealed that this species was more attracted
to volatile compounds from cabbage plants with higher N doses [15]. A higher incidence
and preference for fertilized plants has also been observed in other aphids, such as M.
persicae, which preferred capsicum plants with higher N doses [16]. Similarly, the aphids T.
aurantii, Lipaphis erysimi, Bemisia tabaci, Rhopalosiphum padi, and Sitobion avenae were more
attracted to host plants fertilized with high N doses compared to unfertilized plants and
this preference affected their fecundity and longevity [17,18,51–53].

Insect preference for fertilized plants is attributed to physiological changes in the
plants, which cause changes in their metabolites and consequently in the chemical signals
they emit [53]. Likewise, the growth and reproduction of aphids is influenced by the quality
of the sap obtained from the host plants, which translates into a higher concentration of
amino acids and, as a consequence, aphids attack these plants to a greater extent [54]. In
addition, M. persicae showed a preference for white clover CF plants over plants fertilized
with poultry manure [19]. It has also been reported that maize plants fertilized with
synthetic fertilizers had a higher percentage of infestation by a R. maidis aphid than plants
fertilized with animal manure [20]. In this regard, chemical nitrogen fertilizers enhance
the vigorous qualities of plants, making them attractive to insects [55,56]. On the other
hand, organic fertilization, characterized by the slow release of nutrients and consequently
a lower N dose, may affect the production of toxic compounds, helping to maintain pest
populations at low levels and to enhance plant resistance [57–59].

There are no reports indicating the existence of a chemical signal involved in the
interaction between M. sacchari and S. bicolor. Moreover, it has been claimed that this insect
relies primarily on visual signals to orient themselves to their host plant, because plant
color indicates the food value of the plant [60–62]. However, aphid antennae are as large as
their bodies and are provided with sensilla that have olfactory neurons, suggesting that
olfactory signals must be important factors in locating host plants [61,63]. Our findings
confirm the above, as chemical signals were used to evaluate the preference of M. sacchari
for S. bicolor extracts.

5. Conclusions

The type of fertilization used affected the compounds extracted from S. bicolor plants,
which is related to the attractant activity shown by the extracts from fertilized sorghum
plants. The sugarcane aphid showed a preference for extracts from CF plants, confirming
that M. sacchari uses chemical stimuli to locate its host plant, and that CF makes sorghum
plants susceptible to an attack by this aphid. Therefore, OF is a sustainable alternative
that should be considered as part of a method for pest prevention or to alternatively start
combining both types of fertilization.

The type of fertilization and its relationship with the chemical compounds of sorghum
plants should be taken into account when devising management strategies for M. sacchari.
It is evident that sugarcane aphids rely on allelochemicals to locate the sorghum plant.
However, having demonstrated the above, and in order to have a broader picture, we
recommend further studies to determine the biological activity of the compounds identified
here against M. sacchari. It is necessary to conduct tests at the physiological level with
aphids of M. sacchari and also take into account other environmental factors that may
influence the M. sacchari–S. bicolor interaction.
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