Genome-Wide Identification and Expression Analysis of Sucrose Transporter Gene Family in Wheat Lines under Heat Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of SUT Gene Family
2.2. Phylogenetic Gene Structure and Conserved Motif Analysis
2.3. Chromosomal Localization, Gene Duplication and Synteny Analysis of SUT Genes
2.4. Cis-Element Analysis of SUT Genes
2.5. Plant Cultivation, Stress Treatments and Sampling
2.6. Analysis of SUT Gene Expression, Sucrose Content and Grain Weight
2.7. Statistical Analysis
3. Results
3.1. Identification and Characterization of SUT Genes in Wheat and Its Ancestral Species
3.2. Phylogenetic Analysis of Test Plant SUT Proteins in 13 Plant Species
3.3. Gene Structure and Conserved Motif Composition Analysis
3.4. Chromosomal Location and Gene Duplication Analysis of SUT Genes in Wheat and Its Progenitors
3.5. Cis-Element Analysis of SUT Promoters in Wheat and Its Progenitors
3.6. Expression Pattern of TaSUT Genes under Heat Stress in Grains of Male-Sterile Line
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, Z.; Tang, Z.; Zhang, Y.; Niu, L.; Yang, F.; Zhang, D.; Hu, Y. Rice SUT and SWEET Transporters. Int. J. Mol. Sci. 2021, 22, 11198. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.M. Phloem Loading and Unloading of Sucrose: What a Long, Strange Trip from Source to Sink. Annu. Rev. Plant Biol. 2022, 73, 553–584. [Google Scholar] [CrossRef]
- Tauzin, A.S.; Giardina, T. Sucrose and Invertases, a Part of the Plant Defense Response to the Biotic Stresses. Front. Plant Sci. 2014, 5, 293. [Google Scholar] [CrossRef] [PubMed]
- Prasad, D.; Jung, W.J.; Seo, Y.W. Identification and Molecular Characterization of Novel Sucrose Transporters in the Hexaploid Wheat (Triticum aestivum L.). Gene 2023, 860, 147245. [Google Scholar] [CrossRef] [PubMed]
- Leach, K.A.; Tran, T.M.; Slewinski, T.L.; Meeley, R.B.; Braun, D.M. Sucrose Transporter2contributes to Maize Growth, Development, and Crop Yield. J. Integr. Plant Biol. 2017, 59, 390–408. [Google Scholar] [CrossRef]
- Al-Sheikh Ahmed, S.; Zhang, J.; Ma, W.; Dell, B. Contributions of TaSUTs to Grain Weight in Wheat under Drought. Plant Mol. Biol. 2018, 98, 333–347. [Google Scholar] [CrossRef]
- Aoki, N.; Scofield, G.N.; Wang, X.-D.; Patrick, J.W.; Offler, C.E.; Furbank, R.T. Expression and Localisation Analysis of the Wheat Sucrose Transporter TaSUT1 in Vegetative Tissues. Planta 2004, 219, 176–184. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, H.; Ma, B.; Owiti, A.; Korban, S.S.; Han, Y. Divergent Evolutionary Pattern of Sugar Transporter Genes Is Associated with the Difference in Sugar Accumulation between Grasses and Eudicots. Sci. Rep. 2016, 6, 29153. [Google Scholar] [CrossRef]
- Slewinski, T.L.; Meeley, R.; Braun, D.M. Sucrose Transporter1 Functions in Phloem Loading in Maize Leaves. J. Exp. Bot. 2009, 60, 881–892. [Google Scholar] [CrossRef]
- Lalonde, S.; Wipf, D.; Frommer, W.B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu. Rev. Plant Biol. 2004, 55, 341–372. [Google Scholar] [CrossRef]
- Reddy, V.S.; Shlykov, M.A.; Castillo, R.; Sun, E.I.; Saier, M.H. The Major Facilitator Superfamily (MFS) Revisited. FEBS J. 2012, 279, 2022–2035. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.M.; Wang, L.; Ruan, Y.-L. Understanding and Manipulating Sucrose Phloem Loading, Unloading, Metabolism, and Signalling to Enhance Crop Yield and Food Security. J. Exp. Bot. 2013, 65, 1713–1735. [Google Scholar] [CrossRef] [PubMed]
- Aoki, N.; Hirose, T.; Scofield, G.N.; Whitfeld, P.R.; Furbank, R.T. The Sucrose Transporter Gene Family in Rice. Plant Cell. Physiol. 2003, 44, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Radchuk, V.; Riewe, D.; Peukert, M.; Matros, A.; Strickert, M.; Radchuk, R.; Weier, D.; Steinbiß, H.-H.; Sreenivasulu, N.; Weschke, W.; et al. Down-Regulation of the Sucrose Transporters HvSUT1 and HvSUT2 Affects Sucrose Homeostasis along Its Delivery Path in Barley Grains. J. Exp. Bot. 2017, 68, 4595–4612. [Google Scholar] [CrossRef] [PubMed]
- Sivitz, A.B.; Reinders, A.; Ward, J.M. Analysis of the Transport Activity of Barley Sucrose Transporter HvSUT1. Plant Cell Physiol. 2005, 46, 1666–1673. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.M.; Slewinski, T.L. Genetic Control of Carbon Partitioning in Grasses: Roles of Sucrose Transporters and Tie-Dyed Loci in Phloem Loading. Plant Physiol. 2009, 149, 71–81. [Google Scholar] [CrossRef]
- Baker, R.F.; Leach, K.A.; Boyer, N.R.; Swyers, M.J.; Benitez-Alfonso, Y.; Skopelitis, T.; Luo, A.; Sylvester, A.; Jackson, D.; Braun, D.M. Sucrose Transporter ZmSut1 Expression and Localization Uncover New Insights into Sucrose Phloem Loading. Plant Physiol. 2016, 172, 1876–1898. [Google Scholar] [CrossRef]
- Aoki, N.; Whitfeld, P.; Hoeren, F.; Scofield, G.; Newell, K.; Patrick, J.; Offler, C.; Clarke, B.; Rahman, S.; Furbank, R. Three Sucrose Transporter Genes Are Expressed in the Developing Grain of Hexaploid Wheat. Plant Mol. Biol. 2002, 50, 453–462. [Google Scholar] [CrossRef]
- Mukherjee, S.; Liu, A.; Deol, K.K.; Kulichikhin, K.; Stasolla, C.; Brûlé-Babel, A.; Ayele, B.T. Transcriptional Coordination and Abscisic Acid Mediated Regulation of Sucrose Transport and Sucrose-to-Starch Metabolism Related Genes during Grain Filling in Wheat (Triticum aestivum L.). Plant. Sci. 2015, 240, 143–160. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y.; Yin, Y.; Qin, Z.; Zheng, M.; Chen, J.; Luo, Y.; Pang, D.; Jiang, W.; Li, Y.; et al. Involvement of Ethylene and Polyamines Biosynthesis and Abdominal Phloem Tissues Characters of Wheat Caryopsis during Grain Filling under Stress Conditions. Sci. Rep. 2017, 7, 46020. [Google Scholar] [CrossRef]
- Consortium, T.I.; Appels, R.; Eversole, K.; Stein, N.; Feuillet, C.; Keller, B.; Rogers, J.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; et al. Shifting the Limits in Wheat Research and Breeding Using a Fully Annotated Reference Genome. Science 2018, 361, eaar7191. [Google Scholar] [CrossRef]
- Ling, H.-Q.; Ma, B.; Shi, X.; Liu, H.; Dong, L.; Sun, H.; Cao, Y.; Gao, Q.; Zheng, S.; Li, Y.; et al. Genome Sequence of the Progenitor of Wheat A Subgenome Triticum Urartu. Nature 2018, 557, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Liu, Z.; Zhuang, C.; Zhou, H. Environment-sensitive Genic Male Sterility in Rice and Other Plants. Plant Cell Environ. 2022, 46, 1120–1142. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.; Liu, Z.; Zhang, F.; Yuan, S.; Bai, J.; Liu, Y.; Li, Y.; Zhang, H.; Zhang, H.; Zhao, C.; et al. Identification and Validation of Major-Effect Quantitative Trait Locus QMS-5B Associated with Male Sterility in Photo-Thermo-Sensitive Genic Male Sterile Wheat. Theor. Appl. Genet. 2023, 136, 257. [Google Scholar] [CrossRef] [PubMed]
- Murai, K.; Ohta, H.; Takenouchi, Y.; Kurushima, M.; Ishikawa, N.; Meglič, V.; Titan, P. Trials for Hybrid Seed Production and Estimation of Wheat F1 Hybrids Produced by Outcrossing Using Photoperiod-Sensitive Cytoplasmic Male Sterile (PCMS) System with Elite Lines. J. Agric. Crop Res. 2019, 7, 119–126. [Google Scholar] [CrossRef]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J.; et al. Pfam: The Protein Families Database. Nucleic Acids Res. 2013, 42, D222–D230. [Google Scholar] [CrossRef] [PubMed]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; de Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB Bioinformatics Resource Portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef] [PubMed]
- Galas, D.J. Making Sense of the Sequence. Science 2001, 291, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Xu, J.; Hu, P.; Tao, Y.; Song, P.; Gao, H.; Guan, Y. Genome-Wide Identification and Characterization of the Lateral Organ Boundaries Domain (LBD) Gene Family in Polyploid Wheat and Related Species. PeerJ 2021, 9, e11811. [Google Scholar] [CrossRef]
- Xie, T.; Chen, C.; Li, C.; Liu, J.; Liu, C.; He, Y. Genome-Wide Investigation of WRKY Gene Family in Pineapple: Evolution and Expression Profiles during Development and Stress. BMC Genom. 2018, 19, 490. [Google Scholar] [CrossRef]
- Lescot, M. PlantCARE, a Database of Plant Cis-Acting Regulatory Elements and a Portal to Tools for in Silico Analysis of Promoter Sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Feng, B.; Liu, P.; Li, G.; Dong, S.T.; Wang, F.H.; Kong, L.A.; Zhang, J.W. Effect of Heat Stress on the Photosynthetic Characteristics in Flag Leaves at the Grain-Filling Stage of Different Heat-Resistant Winter Wheat Varieties. J. Agron. Crop Sci. 2013, 200, 143–155. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A Decimal Code for the Growth Stages of Cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Yu, M.; Wang, M.; Gyalpo, T.; Basang, Y. Stem Lodging Resistance in Hulless Barley: Transcriptome and Metabolome Analysis of Lignin Biosynthesis Pathways in Contrasting Genotypes. Genomics 2021, 113, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.Y.; Zhang, C.X. Data Processing System (DPS) Software with Experimental Design, Statistical Analysis and Data Mining Developed for Use in Entomological Research. Insect Sci. 2013, 20, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.-C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein Identification and Analysis Tools in the ExPASy Server. In 2-D Proteome Analysis Protocols; Humana Press: Totowa, NJ, USA, 1999; pp. 531–552. [Google Scholar]
- Wang, Y.; Chen, Y.; Wei, Q.; Wan, H.; Sun, C. Phylogenetic Relationships of Sucrose Transporters (SUTs) in Plants and Genome-Wide Characterization of SUT Genes in Orchidaceae Reveal Roles in Floral Organ Development. PeerJ 2021, 9, e11961. [Google Scholar] [CrossRef]
- Ma, S.; Wang, M.; Wu, J.; Guo, W.; Chen, Y.; Li, G.; Wang, Y.; Shi, W.; Xia, G.; Fu, D.; et al. WheatOmics: A Platform Combining Multiple Omics Data to Accelerate Functional Genomics Studies in Wheat. Mol. Plant 2021, 14, 1965–1968. [Google Scholar] [CrossRef] [PubMed]
- Aldape, M.J.; Elmer, A.M.; Chao, W.S.; Grimes, H.D. Identification and Characterization of a Sucrose Transporter Isolated from the Developing Cotyledons of Soybean. Arch. Biochem. Biophys. 2003, 409, 243–250. [Google Scholar] [CrossRef]
- Krügel, U.; Veenhoff, L.M.; Langbein, J.; Wiederhold, E.; Liesche, J.; Friedrich, T.; Grimm, B.; Martinoia, E.; Poolman, B.; Kühn, C. Transport and Sorting of the Solanum Tuberosum Sucrose Transporter SUT1 Is Affected by Posttranslational Modification. Plant Cell 2008, 20, 2497–2513. [Google Scholar] [CrossRef]
- Chen, W.; Diao, W.; Liu, H.; Guo, Q.; Song, Q.; Guo, G.; Wan, H.; Chen, Y. Molecular Characterization of SUT Gene Family in Solanaceae with Emphasis on Expression Analysis of Pepper Genes during Development and Stresses. Bioengineered 2022, 13, 14780–14798. [Google Scholar] [CrossRef]
- Cai, Y.; Yan, J.; Tu, W.; Deng, Z.; Dong, W.; Gao, H.; Xu, J.; Zhang, N.; Yin, L.; Meng, Q.; et al. Expression of Sucrose Transporters from Vitis Vinifera Confer High Yield and Enhances Drought Resistance in Arabidopsis. Int. J. Mol. Sci. 2020, 21, 2624. [Google Scholar] [CrossRef]
- Doidy, J.; Vidal, U.; Lemoine, R. Sugar Transporters in Fabaceae, Featuring SUT MST and SWEET Families of the Model Plant Medicago Truncatula and the Agricultural Crop Pisum Sativum. PLoS ONE 2019, 14, e0223173. [Google Scholar] [CrossRef]
- Vision, T.J.; Brown, D.G.; Tanksley, S.D. The Origins of Genomic Duplications in Arabidopsis. Science 2000, 290, 2114–2117. [Google Scholar] [CrossRef]
- Aoki, N.; Scofield, G.N.; Wang, X.-D.; Offler, C.E.; Patrick, J.W.; Furbank, R.T. Pathway of Sugar Transport in Germinating Wheat Seeds. Plant Physiol. 2006, 141, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Al-Sheikh Ahmed, S.; Zhang, J.; Farhan, H.; Zhang, Y.; Yu, Z.; Islam, S.; Chen, J.; Cricelli, S.; Foreman, A.; den Ende, W.V.; et al. Diurnal Changes in Water Soluble Carbohydrate Components in Leaves and Sucrose Associated TaSUT1 Gene Expression during Grain Development in Wheat. Int. J. Mol. Sci. 2020, 21, 8276. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, S.; Yunjuan, R.; Chen, S.; Liesche, J. Regulation of Sucrose Transporters and Phloem Loading in Response to Environmental Cues. Plant Physiol. 2018, 176, 930–945. [Google Scholar] [CrossRef]
- Weschke, W.; Panitz, R.; Sauer, N.; Wang, Q.; Neubohn, B.; Weber, H.; Wobus, U. Sucrose Transport into Barley Seeds: Molecular Characterization of Two Transporters and Implications for Seed Development and Starch Accumulation. Plant J. 2000, 21, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Deol, K.K.; Mukherjee, S.; Gao, F.; Brûlé-Babel, A.; Stasolla, C.; Ayele, B.T. Identification and Characterization of the Three Homeologues of a New Sucrose Transporter in Hexaploid Wheat (Triticum aestivum L.). BMC Plant Biol. 2013, 13, 181. [Google Scholar] [CrossRef] [PubMed]
- Usha, B.; Bordoloi, D.; Parida, A. Diverse Expression of Sucrose Transporter Gene Family in Zea mays. J. Genet 2015, 94, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Manna, M.; Thakur, T.; Gautam, V.; Salvi, P. Imperative Role of Sugar Signaling and Transport during Drought Stress Responses in Plants. Physiol. Plant. 2021, 171, 833–848. [Google Scholar] [CrossRef] [PubMed]
- Weichert, N.; Saalbach, I.; Weichert, H.; Kohl, S.; Erban, A.; Kopka, J.; Hause, B.; Varshney, A.; Sreenivasulu, N.; Strickert, M.; et al. Increasing Sucrose Uptake Capacity of Wheat Grains Stimulates Storage Protein Synthesis. Plant Physiol. 2009, 152, 698–710. [Google Scholar] [CrossRef]
- Radchuk, V.; Belew, Z.M.; Gündel, A.; Mayer, S.; Hilo, A.; Hensel, G.; Sharma, R.; Neumann, K.; Ortleb, S.; Wagner, S.; et al. SWEET11b Transports Both Sugar and Cytokinin in Developing Barley Grains. Plant Cell 2023, 35, 2186–2207. [Google Scholar] [CrossRef]
Gene Name | Protein ID | Chr 1 | Chr Star | Chr End | Number of Amino Acids | MW 1 (Da) | pI 1 | Aliphatic Index | GRAVY 1 | Subcellular Location 2 |
---|---|---|---|---|---|---|---|---|---|---|
TaSUT3-1A | TraesCS1A02G134100.1 | 1A | 197091320 | 197138407 | 502 | 52,756.82 | 6.92 | 102.85 | 0.566 | Plasma membrane |
TaSUT3-1D | TraesCS1D02G135900.1 | 1D | 180139914 | 180174029 | 503 | 52,732.78 | 7.91 | 100.89 | 0.555 | Plasma membrane |
TaSUT5-2A | TraesCS2A02G505000.1 | 2A | 733560806 | 733563422 | 517 | 55,118.54 | 8.49 | 103.64 | 0.493 | Plasma membrane |
TaSUT5-2B | TraesCS2B02G533300.1 | 2B | 729627351 | 729630308 | 530 | 56,306.87 | 8.16 | 103.68 | 0.468 | Plasma membrane |
TaSUT5-2D | TraesCS2D02G505700.1 | 2D | 599916155 | 599919148 | 530 | 56,276.9 | 8.48 | 104.25 | 0.485 | Plasma membrane |
TaSUT1-4A | TraesCS4A02G016400.1 | 4A | 11182986 | 11188522 | 522 | 55,072.56 | 8.68 | 108.60 | 0.610 | Plasma membrane |
TaSUT6-4A | TraesCS4A02G334500.1 | 4A | 617652384 | 617654334 | 337 | 35,949.44 | 9.10 | 106.29 | 0.593 | Plasma membrane |
TaSUT1-4B | TraesCS4B02G287800.1 | 4B | 571468679 | 571474081 | 523 | 55,165.68 | 8.68 | 106.90 | 0.599 | Plasma membrane |
TaSUT1-4D | TraesCS4D02G286500.1 | 4D | 457500939 | 457506583 | 523 | 55,232.8 | 8.77 | 107.46 | 0.588 | Plasma membrane |
TaSUT2-5B | TraesCS5B02G000100.1 | 5B | 16235 | 21357 | 510 | 54,280.31 | 8.78 | 103.88 | 0.484 | Plasma membrane |
TaSUT6-5B | TraesCS5B02G550700.1 | 5B | 702268321 | 702271415 | 509 | 54,493.2 | 8.92 | 104.68 | 0.606 | Plasma membrane |
TaSUT2-5D | TraesCS5D02G001200.1 | 5D | 1609486 | 1614664 | 505 | 53,859.85 | 8.92 | 104.91 | 0.499 | Plasma membrane |
TaSUT6-5D | TraesCS5D02G537500.1 | 5D | 550151653 | 550154538 | 533 | 57,281.26 | 8.47 | 101.26 | 0.522 | Plasma membrane |
TaSUT4-6A | TraesCS6A02G410700.1 | 6A | 613766656 | 613771501 | 566 | 60,581.42 | 5.75 | 89.86 | 0.217 | Plasma membrane |
TaSUT4-6B | TraesCS6B02G456500.1 | 6B | 712665811 | 712674449 | 537 | 57,907.61 | 6.26 | 92.18 | 0.237 | Plasma membrane |
TaSUT4-6D | TraesCS6D02G393600.1 | 6D | 467313021 | 467318437 | 600 | 63,999.65 | 5.90 | 94.35 | 0.287 | Plasma membrane |
TaSUT7-7A | TraesCS7A02G090700.1 | 7A | 55342312 | 55346180 | 519 | 54,638.85 | 7.87 | 106.63 | 0.578 | Plasma membrane |
TaSUT7-7D | TraesCS7D02G086200.1 | 7D | 52849691 | 52853113 | 518 | 54,547.75 | 8.17 | 107.39 | 0.577 | Plasma membrane |
TaSUT2-U | TraesCSU02G136300.1 | Un | 122392911 | 122397487 | 483 | 51,441.84 | 8.99 | 101.61 | 0.414 | Plasma membrane |
TuSUT-5A | TuG1812G0500000064.01.T01 | 5A | 5433346 | 5438297 | 506 | 53,942.30 | 8.80 | 104.51 | 0.491 | Plasma membrane |
TuSUT-4A | TuG1812G0400003255.01.T01 | 4A | 572282637 | 572288069 | 522 | 55,072.00 | 8.38 | 108.60 | 0.610 | Plasma membrane |
TuSUT-7A | TuG1812G0700000896.01.T01 | 7A | 47598595 | 47602216 | 463 | 48,650.30 | 6.63 | 107.30 | 0.661 | Plasma membrane |
TuSUT-6A | TuG1812G0600004346.01.T01 | 6A | 571021181 | 571026514 | 599 | 63,834.90 | 6.63 | 94.67 | 0.303 | Plasma membrane |
TdSUT-4B | TRIDC4BG049440.3 | 4B | 577392011 | 577397442 | 523 | 55,165.20 | 8.38 | 106.90 | 0.599 | Plasma membrane |
TdSUT-4A1 | TRIDC4AG002240.3 | 4A | 11637163 | 11642861 | 496 | 52,945.70 | 8.48 | 110.95 | 0.632 | Plasma membrane |
TdSUT-1B | TRIDC1BG024620.4 | 1B | 242960187 | 243006424 | 479 | 50,322.5 | 7.78 | 101.67 | 0.581 | Plasma membrane |
TdSUT-1A | TRIDC1AG018920.3 | 1A | 175397173 | 175444394 | 441 | 46,599 | 6.02 | 103.58 | 0.521 | Plasma membrane |
TdSUT-6B | TRIDC6BG073520.10 | 6B | 702933342 | 703067406 | 533 | 56,863.20 | 6.33 | 100.15 | 0.465 | Plasma membrane |
TdSUT-2B | TRIDC2BG076930.1 | 2B | 725483839 | 725486986 | 530 | 56,258.30 | 7.97 | 104.23 | 0.471 | Plasma membrane |
TdSUT-2A | TRIDC2AG071090.1 | 2A | 726725011 | 726727956 | 557 | 59,154.50 | 8.67 | 100.77 | 0.439 | Plasma membrane |
TdSUT-5B2 | TRIDC5BG080290.2 | 5B | 695849975 | 695853360 | 508 | 54,242.40 | 8.47 | 104.51 | 0.601 | Plasma membrane |
TdSUT-6A | TRIDC6AG060070.1 | 6A | 615005753 | 615010688 | 444 | 47,429.00 | 5.32 | 96.31 | 0.341 | Plasma membrane |
TdSUT-7A | TRIDC7AG010430.1 | 7A | 48019919 | 48023840 | 508 | 53,626.1 | 7.92 | 108.54 | 0.607 | Plasma membrane |
TdSUT-4A2 | TRIDC4AG050570.2 | 4A | 609891855 | 609897651 | 413 | 44,613.9 | 8.47 | 99.25 | 0.529 | Plasma membrane |
TdSUT-5B1 | TRIDC5BG000610.1 | 5B | 3299815 | 3304390 | 419 | 44,994.9 | 7.24 | 104.56 | 0.522 | Plasma membrane |
TdSUT-5A | TRIDC5AG000570.1 | 5A | 2385745 | 2428984 | 461 | 49,473.2 | 7.37 | 108.98 | 0.563 | Plasma membrane |
AetSUT-4D | AET4Gv20698700.2 | 4D | 463659574 | 463664928 | 523 | 55,232.3 | 8.48 | 107.46 | 0.588 | Plasma membrane |
AetSUT-1D | AET1Gv20346300.2 | 1D | 185507809 | 185542902 | 508 | 53,415 | 7.79 | 100.67 | 0.543 | Plasma membrane |
AetSUT-6D | AET6Gv20990400.10 | 6D | 490071438 | 490161244 | 600 | 63,983.59 | 5.90 | 94.35 | 0.281 | Plasma membrane |
AetSUT-2D | AET2Gv21109000.1 | 2D | 598207189 | 598210391 | 530 | 56,276.3 | 8.24 | 104.25 | 0.485 | Plasma membrane |
AetSUT-5D2 | AET5Gv21192100.1 | 5D | 562156285 | 562159505 | 509 | 54,596.6 | 8.70 | 102.77 | 0.558 | Plasma membrane |
AetSUT-7D | AET7Gv20242500.2 | 7D | 51381523 | 51384950 | 511 | 53,905.4 | 8.10 | 109.04 | 0.598 | Plasma membrane |
AetSUT-5D1 | AET5Gv20003000.3 | 5D | 1817524 | 1822835 | 536 | 57,316.1 | 9.42 | 100.32 | 0.384 | Plasma membrane |
Genome | Total Number | Group | ||||
---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | ||
T. urartu (AA) | 4 | 1 | 1 | 0 | 1 | 1 |
Ae. tauschii (DD) | 7 | 1 | 1 | 1 | 1 | 3 |
T. dicoccoides (AABB) | 13 | 2 | 2 | 2 | 2 | 5 |
T. aestivum (AABBDD) | 19 | 3 | 3 | 2 | 3 | 8 |
Total | 43 | 7 | 7 | 5 | 7 | 17 |
Genome | Gene Pair | Ka | Ks | Ka/Ks |
---|---|---|---|---|
AABBDD | TaSUT3-1A/TaSUT3-1D | 0.0098 | 0.0718 | 0.1370 |
TaSUT5-2A/TaSUT5-2B | 0.0230 | 0.1169 | 0.1967 | |
TaSUT5-2A/TaSUT5-2D | 0.0104 | 0.0970 | 0.1074 | |
TaSUT5-2B/TaSUT5-2D | 0.0150 | 0.1058 | 0.1422 | |
TaSUT1-4A/TaSUT1-4B | 0.0035 | 0.0591 | 0.0584 | |
TaSUT1-4A/TaSUT1-4D | 0.0065 | 0.0767 | 0.0845 | |
TaSUT6-4A/TaSUT6-5B | 0.0331 | 0.0681 | 0.4856 | |
TaSUT6-4A/TaSUT6-5D | 0.0444 | 0.0985 | 0.4502 | |
TaSUT1-4B/TaSUT1-4D | 0.0065 | 0.0552 | 0.1172 | |
TaSUT6-5B/TaSUT6-5D | 0.0334 | 0.0728 | 0.4591 | |
TaSUT4-6A/TaSUT4-6B | 0.0335 | 0.1486 | 0.2253 | |
TaSUT4-6A/TaSUT4-6D | 0.0248 | 0.0997 | 0.2487 | |
TaSUT4-6B/TaSUT4-6D | 0.0502 | 0.1539 | 0.3259 | |
TaSUT7-7A/TaSUT7-7D | 0.0184 | 0.0549 | 0.3349 | |
AABB | TdSUT-1A/TdSUT-1B | 0.0158 | 0.1185 | 0.1334 |
TdSUT-2A/TdSUT-2B | 0.0229 | 0.1146 | 0.1998 | |
TdSUT-4A1/TdSUT-4B | 0.0027 | 0.0543 | 0.0500 | |
TdSUT-4A2/TdSUT-5B1 | 0.0125 | 0.0554 | 0.2251 | |
TdSUT-6A/TdSUT-6B | 0.0040 | 0.1343 | 0.0300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Q.; Gao, J.; Qin, Z.; Sun, H.; Wang, H.; Yuan, S.; Zhang, F.; Yang, W. Genome-Wide Identification and Expression Analysis of Sucrose Transporter Gene Family in Wheat Lines under Heat Stress. Agronomy 2024, 14, 1549. https://doi.org/10.3390/agronomy14071549
Hou Q, Gao J, Qin Z, Sun H, Wang H, Yuan S, Zhang F, Yang W. Genome-Wide Identification and Expression Analysis of Sucrose Transporter Gene Family in Wheat Lines under Heat Stress. Agronomy. 2024; 14(7):1549. https://doi.org/10.3390/agronomy14071549
Chicago/Turabian StyleHou, Qiling, Jiangang Gao, Zhilie Qin, Hui Sun, Hanxia Wang, Shaohua Yuan, Fengting Zhang, and Weibing Yang. 2024. "Genome-Wide Identification and Expression Analysis of Sucrose Transporter Gene Family in Wheat Lines under Heat Stress" Agronomy 14, no. 7: 1549. https://doi.org/10.3390/agronomy14071549
APA StyleHou, Q., Gao, J., Qin, Z., Sun, H., Wang, H., Yuan, S., Zhang, F., & Yang, W. (2024). Genome-Wide Identification and Expression Analysis of Sucrose Transporter Gene Family in Wheat Lines under Heat Stress. Agronomy, 14(7), 1549. https://doi.org/10.3390/agronomy14071549