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Abstract: Crop diseases significantly impact crop yields, and promoting specialized control of crop
diseases is crucial for ensuring agricultural production stability. Disease identification primarily relies
on human visual inspection, which is inefficient, inaccurate, and subjective. This study focused on the
plum red spot (Polystigma rubrum), proposing a two-stage detection algorithm based on deep learning
and assessing the severity of the disease through lesion coverage rate. The specific contributions are
as follows: We utilized the object detection model YOLOv8 to strip leaves to eliminate the influence
of complex backgrounds. We used an improved U-Net network to segment leaves and lesions. We
combined Dice Loss with Focal Loss to address the poor training performance due to the pixel ratio
imbalance between leaves and disease spots. For inconsistencies in the size and shape of leaves and
lesions, we utilized ODConv and MSCA so that the model could focus on features at different scales.
After verification, the accuracy rate of leaf recognition is 95.3%, and the mIoU, mPA, mPrecision, and
mRecall of the leaf disease segmentation model are 90.93%, 95.21%, 95.17%, and 95.21%, respectively.
This research provides an effective solution for the detection and severity assessment of plum leaf
red spot disease under complex backgrounds.

Keywords: deep learning; computer vision; plum disease detection; precision agriculture

1. Introduction

Leaf diseases are widespread and significantly impact crop quality and yield, often
showing early symptoms on leaves [1], making leaf diseases crucial indicators for the early
prevention and control of crop diseases. Plums, known for their rich nutritional content,
are widely cultivated in China [2]. However, during the cultivation process, plum trees
are highly susceptible to various diseases [3]. Mild infections can lead to a decline in fruit
quality, while severe infections can cause tree weakening and inedible fruits [4,5], as with
plum red spot [6]. At present, the diagnosis of most plum diseases mainly depends on a
visual assessment by plant disease experts, which is time-consuming and labour-intensive
and easily interfered with by the subjective judgment of the diagnosticians. Especially in
large-scale planting, if the infected leaves are not identified and removed promptly, the
disease can quickly spread to other parts and lead to large-scale diseases [7,8]. Therefore,
the study of plum leaf disease detection is of great significance to agriculture, as it can guide
growers in eradicating pathogens at an early stage, thus reducing the use of pesticides [9]
and ensuring the safety of products.

Plum red spot [10,11] is caused by the infection of Polystigma rubrum (Pers.)DC., occurs
more seriously in the current stage of plum cultivation, and produces greater harm. Summer
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is the peak season of plum red spot disease, and the high temperature and humidity of
the climate make the pathogen multiply and spread rapidly, which is easy to cause a
wide range of disease infections. Plum red spot often affects the leaves and fruits of plum
trees. In the early stage of the infection, the leaves turn yellow and develop slightly raised
spots. As the disease progresses, these spots expand and darken, causing leaves to fall
off, affecting photosynthesis, which may ultimately result in the weakening of the plum
tree. Fruits infected with the disease will produce orange-red circular spots on the surface,
which will deepen in colour in later stages, making the fruits inedible. Diseased fruits are
often deformed and easy to fall off before ripening, which leads to a reduction in the yield
and quality of plums.

With the rise of precision agriculture, the advantages of computer vision technology
in detecting plum leaf diseases have gradually become prominent. Compared to traditional
artificial vision detection, computer vision technology offers fast speed, high precision, and
multiple functions, and has been generally applied in agricultural domains, such as with the
detection of corn phenotypes by computer vision technology [12] and remote sensing image
segmentation of farmland [13], etc. Applying computer vision technology to the field of
crop diseases, such as corn [14,15], potato [16,17], kiwifruit [18,19], and rice [20,21], can help
to mitigate the adverse effects of crop diseases on agricultural production, promoting the
development of agricultural production development towards high quality and high yield.

Current leaf disease detection models struggle with multiple leaves and complex
backgrounds. Many types of research focus on detecting single-leaf diseases under simple
backgrounds, mainly focusing on the colour characteristics of the disease. In contrast,
research on the textural characteristics of the disease is insufficient and lacks a severity
assessment of the disease. Xu [22] et al. used an improved YOLOv5 model to detect
melon leaf diseases under complex backgrounds, only performing simple detection and
location of diseases without further severity assessment. Shu [23] et al. proposed an
improved DeepLabv3+ grape disease segmentation model using texture features of leaves
and lesions. However, this research was limited to an experimental environment, reducing
its effectiveness in complex backgrounds. Divyanth [24] et al. proposed a two-stage
corn leaf disease segmentation model under a complex background, firstly using U-Net
to segment the corn leaves from the complex background and then using DeepLabV3+
to segment the disease, which eliminated the effect of the complex background on the
disease segmentation; but this study focused on the disease detection of single leaves under
complex backgrounds.

Based on these issues, we collected a high-quality dataset of plum red spot leaves
under natural conditions and proposed a two-stage plum leaf disease detection algorithm,
and we also proposed a disease segmentation model MOC_UNet based on improved
U-Net. We firstly used the advanced object detection model YOLOv8 [25] to strip out
leaves from complex backgrounds in order to eliminate the complex background from the
subsequent interference of disease spot segmentation. Then, we put the stripped diseased
leaves into the disease segmentation model MOC_Unet to segment the leaves and disease
spots accurately. Finally, the disease severity was preliminarily assessed by calculating the
disease spot coverage rate. The MOC_UNet combined Dice Loss [26] with Focal Loss [27]
to address poor training performance caused by the imbalance of pixel ratios between
disease spots and leaves. To address the inconsistencies in the size and shape of leaves
and lesions, we used ODConv [28]. Also, we introduced MSCA [29] so that the model
could pay more attention to features of different scales and achieve better segmentation of
target boundaries. The accuracy of leaf recognition reached 95.3%, and the mIoU, mPA,
mPrecision, and mRecall of the leaf disease segmentation model reached 90.93%, 95.21%,
95.17%, and 95.21%, respectively. This indicates that the two-stage detection algorithm
demonstrates high accuracy and strong robustness.
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2. Materials and Methods
2.1. Data Acquisition and Processing

The experimental data in this study were collected from a plum plantation in Gulin
County, Luzhou, Sichuan Province, using a Canon EOS60d camera to record in the summer
of 2022. We shot from multiple angles to simulate the images of plum leaves collected by
unmanned vehicles and drones under natural conditions in real life, as shown in Figure 1.
The dataset included images of plum leaves of different ages, varieties, and weather
environments. This study collected 447 images of plum leaves under natural conditions.
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Figure 1. Plum leaf dataset under natural conditions.

To ensure the accurate detection of plum leaves and the data sufficiency of diseased
leaves in the second stage, we used some stochastic data augmentation techniques, includ-
ing rotation, translation, random cropping, adding noise, changing brightness, and flipping
operations to expand the plum leaf dataset by ensuring that at least one operation worked,
as shown in Figure 2. As much as possible, to simulate different light, complex and diverse
environments were included to achieve the accurate detection of plum leaves in different
environments.
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After detection of leaves by YOLOv8, we stripped the identified plum leaves and
screened out 6321 images of leaves with red spot disease, as shown in Figure 3. We used
the semantic segmentation annotation tool LabelMe to annotate red spot-diseased leaves
and their lesions, and obtained the semantic segmentation dataset of plum red dot-diseased
leaves. This dataset was then divided into training and validation sets with a 7:3 ratio.
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Figure 3. Red spot-diseased leaves after detection.

2.2. Overall Algorithm Workflow

We propose a two-stage detection and severity assessment algorithm for plum leaf red
spot disease, mainly consisting of three modules. Firstly, YOLOv8 is used to peel off a single
diseased leaf from a complex background, and then it is sent to the disease segmentation
model MOC_UNet to segment the leaves and disease spots. Finally, the coverage rate of
disease spots is calculated by counting the number of disease spots and leaf pixels. Then
the disease severity assessment results are output, as shown in Figure 4.
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2.3. Plum Leaf Detection Model Based on YOLOv8

YOLO [30] is a one-stage object detection algorithm comprising three core components:
neck, backbone, and head. The Yolo series algorithms can detect the position and category
information of the target object simultaneously, allowing for end-to-end training and
high-speed detection, making it suitable for detecting plum leaves.

YOLOv8 [25], a newer YOLO series algorithm, uses the C2f structure instead of the C3
structure of YOLOv5 [31] in Backbone and Neck, which ensures it is lightweight and at
the same time obtains richer information about the gradient flow. Using the SPPF module
reduces the computational amount to a certain extent and increases the Receptive Field. In
terms of head components, the head part of YOLOv8 adopts a decoupled-head structure
similar to that of YOLOX [32], which separates the classification and detection heads, and
introduces an Anchor-Free Detection Head, which provides greater flexibility and can
better adapt to targets with various shapes and sizes. As for the loss function, YOLOv8
uses VFL Loss as the classification loss and DFL Loss+CIOU Loss as the regression loss,
which can somewhat improve the rate of convergence and performance of the model. Thus,
YOLOv8 is suitable to be used as a plum leaf detection model in farmland scenarios. The
structure of YOLOV8 is shown in Figure 5.
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2.4. Leaf Disease Segmentation Model Based on MOC_UNet
2.4.1. U-Net Model

Image semantic segmentation is a crucial field in computer vision. It refers to pixel-
level recognition of images, which means labelling the category of each pixel in the image.
Semantic segmentation models like FCN [33], SegNet [34], PSPNet [35], DeepLab [36], and
U-Net [37] are among the most representative.

U-Net is a semantic segmentation network for medical imaging applications inspired
by FCN by Ciresan et al. in 2015. The U-Net algorithm is characterized by a “U-shaped”
network structure composed of an Encoder and a Decoder. In U-Net, the skip connection
mechanism is introduced to fuse the decoder’s output features with the encoder’s semantic
features, which can effectively capture different levels of feature information and improve
image segmentation accuracy and preserve details. Compared with other deep learning
algorithms, U-Net can learn a highly robust network with less data. Therefore, it is
especially suitable for few-shot, unbalanced data and tasks requiring detailed information
retention.

The structure of the improved U-Net used in this paper, MOC_UNet, is shown in Figure 6.
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2.4.2. Omni-Dimensional Dynamic Convolution Module

Most of our detection of diseased plum leaves is carried out in a complex back-ground,
surrounded by many interfering factors affecting the feature extraction of the network,
resulting in the scale features of the diseased leaves themselves not being fully acquired;
in addition, the detection of diseased plum leaves is mostly carried out outdoors, which
requires higher detection accuracy and detection speed. To address the above problems, we
chose ODConv, whose deformable convolution with extra offset can successfully use the
potential of spatial information to completely obtain the information within the effective
area of the sampling point, thus obtaining a better performance [38], and compared with
other dynamic convolution algorithms, ODConv has only one convolution kernel, and the
number of parameters is much smaller, which ensures efficiency while ensuring accuracy.
And its generalisation capability is sufficient for the outdoor detection of diseased plum
leaves [39].
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ODConv [28] can be regarded as a continuation of CondConv [40] (Conditionally
Parameterized Convolution) and DyConv [41] (Dynamic Convolution). By leveraging a
multi-dimensional attention mechanism to compute four types of attentions along all four
dimensions of the kernel space in parallel, these attentions are multiplied by the convolution
kernel Wi. Thus, a linear combined convolution weighted according to multi-dimensional
attentions is generated, as shown in Figure 7. Different convolution combinations pro-
vide performance guarantees for capturing rich contextual cues, enhancing the feature
extraction ability of the network for leaves and red spots with different shapes and sizes,
to capture the edges and textures of different regions in the image more accurately and
improve the segmentation accuracy and detail performance. ODConv is calculated by the
following formula:

y = (αw1 ⊙ αf1 ⊙ αc1 ⊙ αs1 ⊙ W1+ . . .+αwn ⊙ αfn ⊙ αcn ⊙ αsn ⊙ Wn ) ∗ x (1)
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αwi, αfi, αci, and αsi denote the attention of four dimensions of the kernel, output
channel, input channel, and space along the convolutional kernel Wi, respectively. ∗ denotes
the convolution operation.

2.4.3. Multi-Scale Convolutional Attention Module

In the assessment of the severity of plum leaf disease by the ratio of the lesion area,
the accurate segmentation of leaf and lesion is very important. Accurate boundary segmen-
tation can ensure the accurate calculation of lesion coverage. Therefore, the model needs to
capture and distinguish the edge features in detail. The MSCA attention mechanism can
enhance the model’s ability to perceive important information between image channels at
multiple scales, especially in the processing of complex backgrounds and subtle spot edges,
showing excellent performance. Qian et al. significantly improved the accuracy of density
map estimation in cell-counting tasks through an innovative MSCA-UNet architecture,
thereby enhancing the accuracy of cell counting [42].

As shown in Figure 8, the attention mechanism MSCA [29] consists of three parts:
Firstly, local information is aggregated by depth-wise convolution to extract rich feature
representations and expand the Receptive Field. Furthermore, multi-branch depth-wise
strip convolution is used to capture multi-scale contextual information to comprehensively
perceive features at different scales and accurately segment the leaves and lesions with
different sizes and shapes. Lastly, the outputs of the 1 × 1 convolution are used as the atten-
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tion weights to enhance the weights of leaves and disease spot features. Two depth-wise
strip convolutions are used in each branch to simulate large kernel depth-wise convolutions
with kernel sizes of 7, 11, and 21, respectively, to simulate different Receptive Fields. This
structural design enables MSCA to process both local and global information, enhancing
the robustness and accuracy of the model. Therefore, MSCA was applied in this study to
effectively solve the shortcomings of tiny lesion capture challenges and inaccurate leaf edge
segmentation in plum leaf disease segmentation. The expression for MSCA is as follows:

Att = Conv1×1

(
3

∑
i=0

Scalei(DWConv(F))

)
(2)

Out = Att ⊗ F (3)

where F and Out denote the input and output features, respectively; Att is the attention
map; ⊗ is the multiplication operation of the element-wise matrix; and DWConv and Scalei
are depth-wise convolution and ith branch, respectively.
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2.4.4. Combined Loss

The number of pixels in the three categories of background, disease spots, and leaves
in the plum disease leaf dataset is unbalanced, leading to an imbalance in model training.
Therefore, this study combines Focal Loss and Dice Loss as a new loss function, which can
pay more attention to foreground targets and inaccurately categorised samples while paying
attention to the overall loss. It is defined in the following formula: L is the constructed loss
function, LF is Focal Loss, and LD is Dice Loss.

L = LD + LF (4)

(1) Focal Loss [27]: Focal Loss decreases the loss of accurately classified samples
without changing the loss of inaccurately classified samples. It is helpful to improve
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the accuracy of inaccurately classified samples by making the loss function tend to be
inaccurately classified samples. The formula is as follows: where Pt represents the model’s
predicted value, αt and γ are the two parameters that regulate the Focal Loss.

LF = −αt(1 − Pt)
γlog(Pt) (5)

(2) Dice Loss [26]: Dice Loss can mitigate the negative effect of foreground and
background imbalance in the sample, making the training pay more attention to the
foreground region for mining. Its mathematical expression is as follows: |X∩Y| represents
the number of intersecting elements between X and Y; |X| and |Y| represent the number
of X and Y elements, respectively.

LD = 1 − Dice = 1 − 2|X ∩ Y|
|X|+|Y| (6)

2.5. Disease Severity Assessment

As there are no clear criteria for grading the severity of plum red spot disease, existing
studies on grading the severity of red dot disease on plum leaves have mainly been judged
by counting the number of spots on the leaves, which lacks accuracy. Combining existing
methods for assessing leaf disease severity, disease spot coverage can provide an effective
index for quantitative assessment and realize the precise grading of disease severity [43].
Considering the irregular shape of the spots and leaves, it is difficult to measure their areas
manually. Therefore, this study used a method based on the number of pixels to calculate
the areas of spots and leaves.

Using the trained MOC_UNet model to predict the diseased leaf images, we obtained
the matrix after pixel point classification, where the pixel points took the values of 0, 1, and
2 to indicate the background pixels, healthy leaf pixels, and disease spot pixels, respectively.
We used the sum of healthy leaf pixels and diseased spot pixels as the number of pixels of
the intact leaf. By calculating the ratio of pixels of the diseased spot to pixels of the intact
leaf, we can calculate the percentage of the area of the diseased spots in the leaf, and the
calculation formula is as follows:

Disease Ratio =
Sdisease

Sleaf + Sdisease
× 100% (7)

Sdisease denotes the number of lesion pixels; the Sleaf denotes the number of healthy leaf
pixels.

2.6. Experimental and Evaluation Indicators

The experimental platform uses an Ubuntu (64-bit) operating system equipped with a
12-core Intel (R) Xeon (R) Platinum 8255C CPU @ 2.50 GHz processor. The GPU model is
RTX3090, and the open-source deep learning framework Pytorch is used as the development
environment. The Cuda version is 11.1, and the computer memory is 43 GB.

We used mean Average Precision (mAP), precision (Precision, P), and recall (Recall, R)
as evaluation metrics for the plum leaf detection models, and mean Intersection over Union
(mIoU), pixel accuracy (PA), precision (Precision, P), and recall (Recall, R) as evaluation
metrics for plum leaf disease segmentation models. We also used the Matthews Correla-
tion Coefficient (MCC) as a metric to evaluate the performance of different segmentation
models. Table 1 shows the definitions of the parameters in the calculation formula of these
evaluation indexes.
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Table 1. Definitions of relevant calculation parameters for evaluation indicators.

Confusion Matrix
Predicted Results

Positive Negative

Expected Results Positive TP FN
Negative FP TN

TP: positive samples predicted by the model to be in the positive category; TN: negative samples predicted by
the model to be in the negative category; FP: negative samples predicted by the model to be in the positive
category; FN: positive samples predicted by the model to be in the negative category; k denotes the number of
sample categories.

mIoU is a standard metric for semantic segmentation, which is the mean ratio of the
intersection and merge set of true labels and predicted values, and is calculated as follows:

mIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(8)

PA indicates the ratio of the number of correctly categorised pixels to the total number
of pixels, calculated as follows:

PA =
TP + TN

TP + TN + FP + FN
(9)

Precision indicates the probability that the prediction is an actual positive sample in a
positive sample. The formula is as follows:

Precision =
TP

TP + FP
(10)

Recall indicates the proportion of pixels that the model correctly determines to be in
the positive category out of all the pixels that are actually in the positive category. The
formula is as follows:

Recall =
TP

TP + FN
(11)

AP denotes the integral of the P-index to the R-index. mAP refers to the average of the
AP values for all categories.

AP =
∫ 1

0
P(R)dR (12)

mAP =
1
K ∑K

i=1 APi (13)

The Matthews Correlation Coefficient is used to evaluate the quality of the model
classification and is applicable to datasets with category imbalance, where a higher MCC
indicates better performance and is calculated as follows:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(14)

In order to compare the performance of different segmentation models in predicting
disease spot coverage, we established a regression relationship between the disease spot
coverage predicted by different models and the true measurements. We used the coefficient
of determination R2 and the Mean Absolute Percentage Error (MAPE) to evaluate the
performance of the prediction effect. The larger the R2, the better the model fit, and the
smaller the value of MAPE, the better the accuracy of the model.

R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − yi)

2 (15)
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MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (16)

3. Results
3.1. Plum Leaf Detection Results

YOLOv8 is used to strip the leaves from the complex background, helping the subse-
quent model to accurately segment the disease. mAP, Precision, and Recall evaluate the
performance of the plum leaf detection model. Higher values mean that the model is better
at recognizing the plum leaves. The plum leaf detection results are shown in Figure 9.
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As seen in Figure 9, the mAP@0.5 of the plum leaf detection model based on YOLOv8
reaches 95.26%, with Precision and Recall at 96.9% and 90.05%, respectively. These results
suggest that YOLOv8 can recognize plum leaves accurately in complex backgrounds.

In order to better demonstrate the detection effect of plum leaves, three of the detection
results are shown in Figure 10. It can be seen that YOLOv8 can accurately recognize the
plum leaves in the foreground and detect the edge parts of the leaves accurately. Thus,
YOLOv8 can meet the detection of plum leaves in real agricultural scenarios.
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3.2. Leaf Disease Segmentation Results

In order to further verify the reliability of the disease leaf dataset obtained in the first
stage and the performance of the disease segmentation model MOC_UNet proposed in
this study, we compare it with the most representative semantic segmentation models,
including PSPNet, DeepLabV3+, Segformer, and HRNetv2. To ensure a fair comparison, the
comparison process uses the same training strategy and computing environment. As shown
in Table 2, compared with PSPNet and DeepLabV3+, the U-Net network is more suitable
for plum leaf and red spot segmentation, and our improved plum leaf disease segmentation
model MOC_UNet has higher mIoU and mPA compared with other models, indicating a
better segmentation effect is achieved by the improved U-Net model. And compared with
other models, MOC_UNet has higher MCC, indicating that better classification results are
achieved. So, in summary, MOC_UNet is more accurate at identifying and segmenting
plum leaf red spot disease.

Table 2. Comparison of evaluation metrics for different network model segmentation.

Network
Model mIoU mPA mPrecision mRecall MCC

PSPNet 67.71% 76.40% 83.46% 76.40% 0.7325
DeepLabV3+ 84.69% 91.29% 91.82% 91.29% 0.8790

Segformer 86.89% 92.61% 93.03% 92.61% 0.9001
HRNetv2 87.20% 92.41% 93.60% 92.41% 0.9033

U-Net 89.73% 94.35% 94.62% 94.35% 0.9234
MOC_UNet 90.93% 95.21% 95.17% 95.21% 0.9320

To verify the effectiveness of the improved disease segmentation model MOC_UNet,
we carried out ablation experiments. The experimental results are shown in Table 3.
The model’s performance with the Combined Loss function is significantly improved,
demonstrating that the combination of Focal Loss and Dice Loss can effectively overcome
the drawbacks caused by the imbalance of different categories of pixels. The configurations
using ODConv are effectively improved on mIoU and mPA, which shows that ODConv can
effectively enhance the model’s feature extraction capability for disease spots and leaves
with different shapes and sizes. Especially, the model using Combined Loss, ODConv and
MSCA simultaneously exhibits superior effectiveness compared to the original network,
and the mIoU, mPA, mPrecision, and mRecall of MOC_UNet increase 1.2%, 0.86%, 0.55%,
and 0.86%, respectively. Therefore, it indicates that all of our improvements can significantly
enhance the segmentation performance of the leaf disease segmentation model.

Table 3. Results of ablation experiments.

Combined
Loss ODConv MSCA MIOU mPA mPrecision mRecall

89.73% 94.35% 94.62% 94.35%√
90.44% 95.01% 94.83% 95.01%√
90.33% 94.61% 95.05% 94.61%√
89.99% 94.47% 94.81% 94.47%√ √
90.76% 95.10% 95.08% 95.10%√ √
90.54% 95.05% 94.90% 95.05%√ √
90.47% 94.68% 95.14% 94.68%√ √ √
90.93% 95.21% 95.17% 95.21%

Figure 11 demonstrates the comparison of the effect of MOC_UNet with different
segmentation models for plum disease leaf segmentation, and it can be found that the
PSPNet, DeepLabV3+, Segformer, HRNetv2, and UNet models all have the problem of
lesion misdetection (Figure 11c–g). Meanwhile, due to the complexity of the background,
the other segmentation models are less effective for the boundary segmentation of leaves
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and disease spots, while the leaf disease segmentation model MOC_UNet proposed in this
study can well overcome the impact of the complex background on the image segmentation,
it can segment leaves and disease spots accurately (Figure 11h), and the prediction results
are similar to the labelled images.
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In order to test the effect of the leaf boundary prediction effect on the predicted lesion
coverage, we predicted the lesion coverage of plum leaves in Figure 11 using the different
models in Table 2, as shown in Table 4, and it can be observed that, due to the fact that
there are misdetections in the boundary segmentation of leaves by PSPNet, DeepLabV3+,
U-Net, Segformer, and HRNetv2, this results in a large degree of deviation between the
predicted and true measurements of lesion coverage. In contrast, MOC_UNet was more
effective in boundary segmentation, so the predicted value of lesion coverage was closer to
the true value.

Table 4. Comparison of lesion coverage predictions from different models.

Measurement
Methods Leaf1 Leaf2 Leaf3

measured value 0.66% 2.19% 12.46%
PSPNet 0.63% 2.38% 8.71%

DeepLabV3+ 0.97% 2.39% 12.51%
Segformer 0.73% 2.48% 12.51%
HRNetv2 0.71% 2.21% 12.03%

U-Net 0.93% 2.22% 10.18%
MOC_UNet 0.69% 2.21% 12.43%

To further validate the reliability of the disease segmentation model MOC_UNet in
predicting the plum leaf red spot coverage, we employed linear regression analysis to assess
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the relationship between the spot coverage predicted by the different models in Table 2
and the true measurements, which we tested using the test set. We used the coefficient of
determination R2 and Mean Absolute Percentage Error (MAPE) to evaluate the performance
of the different models, as shown in Figure 12; the R2 for PSPNet, DeepLabV3+, HRNetv2,
Segformer, U-Net, and MOC_UNet, respectively, were 0.70, 0.87, 0.92, 0.93, 0.93, and 0.96;
and the MAPE were 30.97%, 17.27%, 14.31%, 13.38%, 12.05%, and 8.76%, respectively. The
disease segmentation model MOC_UNet has the largest R2 and the smallest MAPE, so
we believe that the plum leaf spot coverage predicted by MOC_UNet is closer to the true
value, which can effectively help farmers to accurately detect plum leaf disease and initially
determine the severity of the disease.
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3.3. The Results of the Disease Severity Assessment

To better demonstrate the process of disease severity assessment, we present three
plum leaves with varying severity of red spot disease as Table 5.

Table 5. Example of disease severity assessment.

Original
Image

Segmentation
Image Labels Value Ratio Disease

Ratio
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background 322,539 36.93%

21.40%Plum Leaf 432,966 49.57%

Plum red spot 117,874 13.50%

As Table 5 shows, disease coverage can clearly reflect the degree of disease proliferation
and provide an intuitive indicator for assessing the severity of the disease, which can help
growers realize precise disease control.

4. Discussion

Leaf disease detection, as one of the common methods for crop disease detection, can
provide an important basis for early disease control. Traditional leaf disease detection
mainly relies on the visual detection of relevant experts, with low accuracy and efficiency,
and there is strong subjectivity, and it is difficult to rely on manual visual judgement to
accurately and quantitatively assess the severity of the disease. Deep learning methods
have been widely used for leaf disease detection, but the following shortcomings exist:
(1) Most leaf disease detection algorithms only detect and localise the disease on the
leaf [20] and cannot further assess the disease severity. (2) Most algorithms based on leaf
disease segmentation are limited to simple backgrounds [21] or the case of a single leaf [22],
ignoring the interference of complex backgrounds and multiple leaves in realistic scenes.
The above limitations lead to the fact that most of the leaf disease detection algorithms
have difficulty meeting the application of leaf disease detection in realistic scenes.

In this study, we explored a two-stage detection algorithm for red spot disease on plum
leaves, addressing the shortcomings of research on leaf disease detection. We used the object
detection model YOLOv8 to strip leaves, which can eliminate the interference of complex
backgrounds. And we used the improved disease segmentation model MOC_UNet to
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segment the leaf and the disease spots accurately. Finally, by calculating the spot coverage,
we made a preliminary determination of the disease severity. Compared with the existing
deep learning methods, the two-stage detection algorithm proposed in this study well
overcomes the influence of a complex background and multiple leaves and is more suitable
for real-life scenarios, and the algorithm for leaf spot segmentation is able to make a
preliminary determination of disease severity, which can effectively help farmers to better
and accurately grasp the severity of the disease and realise precise prevention and control
of the disease.

The two-stage algorithm proposed in this study can be similarly extended to the
detection and severity assessment of other leaf diseases. It also provides an effective
method for related researchers to calculate the area of disease spots and diseased leaves.
However, this study currently focuses only on the red spot disease of plum leaves, which
still has limitations, such as less disease coverage and slower identification. We will
continue to extend it to other plum diseases, such as plum black mold disease and bacterial
leaf spot of plum, at a later stage. In addition, although the algorithm proposed in this
study has high accuracy, it is difficult to meet the requirements for the real-time detection
of plum leaf diseases due to its slow detection speed. We will also improve the detection
speed and reduce the complexity of the network through network pruning in the later
stage, so as to make it more suitable for practical agricultural production.

5. Conclusions

In order to detect red spot disease and assess the disease severity of plum leaves
under a complex background, we proposed a two-stage recognization method. We used
the YOLOv8 to strip plum leaves from complex backgrounds and then used the improved
disease segmentation model MOC_UNet to segment leaves and red spots accurately. Fi-
nally, spot coverage was calculated to assess the severity of red spot disease. We combined
Focal Loss with Dice Loss to eliminate the influence of the imbalance samples. ODConv
was used to enhance the model’s capability to extract leaf and spot features of various sizes
and shapes, and MSCA was introduced to make the model better utilize the multi-scale
feature information and enhance the model’s ability to segment the boundary of the target
area. The accuracy rate of leaf recognition is 95.3%, and the mIoU, mPA, mPrecision, and
mRecall of the improved model MOC_UNet reached 90.93%, 95.21%, 95.17%, and 95.21%,
respectively, which were improved by 1.2%, 0.86%, 0.55%, and 0.86%, respectively, com-
pared to the original model. We also used regression analysis to compare the relationship
between the lesion coverage predicted by different segmentation models and the true
measurements. The coefficient of determination R2 and the mean absolute percentage
error MAPE of our proposed MOC_UNet were 0.96 and 8.76%, respectively, which had
a larger R2 and smaller MAPE compared to the other segmentation models, indicating
that the predicted values of MOC_UNet for the disease spot coverage were more close to
the real values, and that it could assess the severity of red spot disease on plum leaves
more accurately. In summary, this paper proposed a two-stage method for high-precision
detection and severity assessment of red spot disease on plum leaves. It can help growers to
detect diseases early and help achieve precise prevention and control of diseases in actual
agricultural production.
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