Indirect Organogenesis of Calendula officinalis L. and Comparative Phytochemical Studies of Field-Grown and In Vitro-Regenerated Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Explant Collection and Sterilization
2.2. Callus Induction and Growth Conditions
2.3. Shoot Organogenesis via Indirect Method
2.4. Root Initiation and Acclimatization
2.5. Preparation of Extracts
2.6. Biochemical Attributes
2.6.1. Estimation of Total Phenolic Content
2.6.2. Estimation of Total Flavonoid Content (TFC)
2.6.3. Determination of Free Radical Scavenging Activity by DPPH Assay
2.7. GC–MS Analyses
2.8. Statistical Analysis
3. Results
3.1. Callus Induction and Proliferation
3.2. Shoot Organogenesis via Indirect Method
3.3. Rooting and Acclimatization
3.4. Total Phenolic Content (TPC), Total Flavonoid Content (TFC), and DPPH-Scavenging Activity
3.5. GC–MS Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shakib, A.K.; Nejad, A.R.; Mirokhi, A.K.; Jari, S.K. Vermicompost and manure compost reduce water—Deficit stress in pot marigold (Calendula officinalis L. cv. Candyman orange). Compost. Sci. Util. 2019, 27, 61–68. [Google Scholar] [CrossRef]
- Aboshama, H. In vitro direct plant regeneration of Calendula officinalis L. J. Plant Prod. 2005, 30, 7955–7966. [Google Scholar] [CrossRef]
- Ashwlayan, V.D.; Kumar, A.; Verma, M.; Garg, V.K.; Gupta, S. Therapeutic Potential of Calendula officinalis. Pharm. Pharmacol. Int. J. 2018, 6, 1. [Google Scholar] [CrossRef]
- John, R.; Jan, N. Calendula officinalis-An Important Medicinal Plant with Potential Biological Properties. Proc. Indian Natl. Sci. Acad. 2017, 93, 769–787. [Google Scholar] [CrossRef]
- Belal, A.; Elanany, M.A.; Raafat, M.; Hamza, H.T.; Mehany, A.B.M. Calendula officinalis Phytochemicals for the Treatment of Wounds Through Matrix Metalloproteinases-8 and 9 (MMP-8 and MMP-9): In Silico Approach. Nat. Prod. Commun. 2022, 17, 1934578X2210988. [Google Scholar] [CrossRef]
- Kaňuková, Š.; Lenkavská, K.; Gubišová, M.; Kraic, J. Suspension Culture of Stem Cells Established of Calendula officinalis L. Sci. Rep. 2024, 14, 441. [Google Scholar] [CrossRef] [PubMed]
- Çetin, B.; Kurtuluş, B.; Bingöl, N.A. Effects of Plant Growth Regulators on Callus Formation in Different Explant of Calendula officinalis L. J. Appl. Biol. Sci. 2015, 9, 34–39. [Google Scholar]
- Efferth, T. Biotechnology Applications of Plant Callus Cultures. Engineering 2019, 5, 50–59. [Google Scholar] [CrossRef]
- Çetin, B.; Kalyoncu, F.; Kurtuluş, B. Antibacterial Activities of Calendula officinalis Callus Extract. Int. J. Second. Metab. 2017, 4, 257–263. [Google Scholar] [CrossRef]
- Bansal, Y.; Mujib, A.; Siddiqui, Z.H.; Mamgain, J.; Syeed, R.; Ejaz, B. Ploidy Status, Nuclear DNA Content and Start Codon Targeted (SCoT) Genetic Homogeneity Assessment in Digitalis purpurea L., Regenerated In Vitro. Genes 2022, 13, 2335. [Google Scholar] [CrossRef]
- Kumar, K.R.; Singh, K.P.; Bhatia, R.; Raju, D.V.S.; Panwar, S. Optimising Protocol for Successful Development of Haploids in Marigold (Tagetes spp.) through in Vitro Androgenesis. Plant Cell Tissue Organ Cult. (PCTOC) 2019, 138, 11–28. [Google Scholar] [CrossRef]
- Malik, M.Q.; Mujib, A.; Gulzar, B.; Zafar, N.; Syeed, R.; Mamgain, J.; Ejaz, B. Genome size analysis of field grown and somatic embryo regenerated plants in Allium sativum L. J. Appl. Genet. 2020, 61, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Monika, M.A.; Bhuiyan, M.S.U.; Sarker, K.K.; Dina, M.M.A.; Sultana, S. Ex-Situ Conservation of An Endangered Medicinal Plant Andrographis paniculata by Plant Tissue Culture. J. Hortic. Sci. 2022, 17, 467–478. [Google Scholar] [CrossRef]
- Bansal, Y.; Mujib, A.; Mamgain, J.; Kumar, S.; Dewir, Y.H.; Magyar-Tábori, K. Synthesis and Accumulation of Phytocompounds in Field-, Tissue-Culture Grown (Stress) Root Tissues and Simultaneous Defense Response Activity in Glycyrrhiza glabra L. Sustainability 2024, 16, 1613. [Google Scholar] [CrossRef]
- Khan, H.; Khan, T.; Ahmad, N.; Zaman, G.; Khan, T.; Ahmad, W.; Batool, S.; Hussain, Z.; Drouet, S.; Hano, C.; et al. Chemical Elicitors-Induced Variation in Cellular Biomass, Biosynthesis of Secondary Cell Products, and Antioxidant System in Callus Cultures of Fagonia indica. Molecules 2021, 26, 6340. [Google Scholar] [CrossRef] [PubMed]
- Al-Rubaye, A.F.; Hameed, I.H.; Kadhim, M.J. A Review: Uses of Gas Chromatography-Mass Spectrometry (GC-MS) Technique for Analysis of Bioactive Natural Compounds of Some Plants. Int. J. Toxicol. Pharmacol. Res. 2017, 9, 81–85. [Google Scholar] [CrossRef]
- Abadie, C.; Lalande, J.; Tcherkez, G. Exact Mass GC-MS Analysis: Protocol, Database, Advantages and Application to Plant Metabolic Profiling. Plant Cell Environ. 2022, 45, 3171–3183. [Google Scholar] [CrossRef] [PubMed]
- Olivia, N.U.; Goodness, U.C.; Obinna, O.M. Phytochemical Profiling and GC-MS Analysis of Aqueous Methanol Fraction of Hibiscus Asper Leaves. Future J. Pharm. Sci. 2021, 7, 59. [Google Scholar] [CrossRef]
- Borah, P.J.; Sarma, R. GC-MS Analysis and Qualitative Phytochemical Screening of Aristolochia assamica, a Newly Discovered Rare Medicinal Plant Species of India. Indian J. Nat. Prod. Resour. 2022, 13, 552–558. [Google Scholar] [CrossRef]
- Sahingil, D. GC/MS-Olfactometric Characterization of the Volatile Compounds, Determination Antimicrobial and Antioxidant Activity of Essential Oil from Flowers of Calendula (Calendula officinalis L.). J. Essent. Oil Bear. Plants 2019, 22, 1571–1580. [Google Scholar] [CrossRef]
- Ak, G.; Zengin, G.; Ceylan, R.; Fawzi Mahomoodally, M.; Jugreet, S.; Mollica, A.; Stefanucci, A. Chemical Composition and Biological Activities of Essential Oils from Calendula officinalis L. Flowers and Leaves. Flavour Fragr. J. 2021, 36, 554–563. [Google Scholar] [CrossRef]
- Salomé-Abarca, L.F.; Soto-Hernández, R.M.; Cruz-Huerta, N.; González-Hernández, V.A. Chemical Composition of Scented Extracts Obtained from Calendula officinalis by Three Extraction Methods. Bot. Sci. 2015, 93, 633–638. [Google Scholar] [CrossRef]
- Benabderrahmane, A.; Atmani, M.; Boutagayout, A.; Rhioui, W.; Belmalha, S. Phytochemical Screening of Two Medicinal Plants: Calendula officinalis L. and Ammi visnaga L., Collected from the Meknes Region, Morocco. Egypt. J. Chem. 2023, 66, 2201–2209. [Google Scholar] [CrossRef]
- Sathish, D.; Vasudevan, V.; Theboral, J.; Elayaraja, D.; Appunu, C.; Siva, R.; Manickavasagam, M. Efficient direct plant regeneration from immature leaf roll explants of sugarcane (Saccharum officinarum L.) using polyamines and assessment of genetic fidelity by SCoT markers. Vitr. Cell. Dev. Biol. Plant 2018, 54, 399–412. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.-M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1. [Google Scholar] [CrossRef]
- Beyl, C.A. PGRs and their use in micropropagation. In Plant Tissue Culture, Development, and Biotechnology; Trigiano, R.N., Gray, D.J., Eds.; CRC Press, Taylor & Francis Group: Abingdon, UK, 2011; pp. 33–56. [Google Scholar]
- Kumar, S.P.; Kumari, B.D.R. Effect of Amino Acids and Growth Regulators on Indirect Organogenesis in Artemisia vulgaris L. Asian J. Biotechnol. 2009, 2, 37–45. [Google Scholar] [CrossRef]
- Skała, E.; Grąbkowska, R.; Sitarek, P.; Kuźma, Ł.; Błauż, A.; Wysokińska, H. Rhaponticum carthamoides Regeneration through Direct and Indirect Organogenesis, Molecular Profiles and Secondary Metabolite Production. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 123, 83–98. [Google Scholar] [CrossRef]
- Nowakowska, M.; Pavlović, Ž.; Nowicki, M.; Boggess, S.L.; Trigiano, R.N. In Vitro Propagation of an Endangered Helianthus verticillatus by Axillary Bud Proliferation. Plants 2020, 9, 712. [Google Scholar] [CrossRef]
- Novikova, T.I.; Asbaganov, S.V.; Ambros, E.V.; Zaytseva, Y.G. TDZ-Induced Axillary Shoot Proliferation of Rhododendron mucronulatum Turcz and Assessment of Clonal Fidelity Using DNA-Based Markers and Flow Cytometry. Vitr. Cell. Dev. Biol. Plant 2020, 56, 307–317. [Google Scholar] [CrossRef]
- Makunga, N.P.; Jäger, A.K.; van Staden, J. An Improved System for the in Vitro Regeneration of Thapsia garganica via Direct Organogenesis—Influence of Auxins and Cytokinins. Plant Cell Tissue Organ Cult. 2005, 82, 271–280. [Google Scholar] [CrossRef]
- Hesami, M.; Daneshvar, M.H. In Vitro Adventitious Shoot Regeneration through Direct and Indirect Organogenesis from Seedling-Derived Hypocotyl Segments of Ficus religiosa L.: An Important Medicinal Plant. HortScience 2018, 53, 55–61. [Google Scholar] [CrossRef]
- Ayangla, N.W.; Dwivedi, P.; Dey, A.; Pandey, D.K. In vitro propagation, genetic and phytochemical fidelity in Glycyrrhiza glabra L., a potent glycyrrhizin yielding endangered plant. Nucleus 2022, 65, 369–377. [Google Scholar] [CrossRef]
- Guo, Y.X.; Zhao, Y.Y.; Zhang, M.; Zhang, L.Y. Development of a novel in vitro rooting culture system for the micropropagation of highbush blueberry (Vaccinium corymbosum) seedlings. Plant Cell Tissue Organ Cult. 2019, 139, 615–620. [Google Scholar] [CrossRef]
- Mujib, A.; Aslam, J.; Bansal, Y. Low colchicine doses improved callus induction, biomass growth, and shoot regeneration in in vitro culture of Dracaena sanderiana Sander ex mast. Prop. Ornam. Plants 2023, 23, 81–87. [Google Scholar]
- Chirumamilla, P.; Gopu, C.; Jogam, P.; Taduri, S. Highly Efficient Rapid Micropropagation and Assessment of Genetic Fidelity of Regenerants by ISSR and SCoT Markers of Solanum khasianum Clarke. Plant Cell Tissue Organ Cult. 2021, 144, 397–407. [Google Scholar] [CrossRef]
- Malik, M.; Wachol, M.; Pawlowska, B. Liquid Culture Systems Affect Morphological and Biochemical Parameters during Rosa canina Plantlets In Vitro Production. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 58–64. [Google Scholar] [CrossRef]
- Ghosh, A.; Igamberdiev, A.U.; Debnath, S.C. Thidiazuron-Induced Somatic Embryogenesis and Changes of Antioxidant Properties in Tissue Cultures of Half-High Blueberry Plants. Sci. Rep. 2018, 8, 16978. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Kumaria, S.; Tandon, P. High Frequency Regeneration Protocol for Dendrobium nobile: A Model Tissue Culture Approach for Propagation of Medicinally Important Orchid Species. S. Afr. J. Bot. 2016, 104, 232–243. [Google Scholar] [CrossRef]
- Jeong, B.R.; Sivanesan, I. Direct Adventitious Shoot Regeneration, In Vitro Flowering, Fruiting, Secondary Metabolite Content and Antioxidant Activity of Scrophularia takesimensis Nakai. Plant Cell Tissue Organ Cult. 2015, 123, 607–618. [Google Scholar] [CrossRef]
- Meena, M.; Divyanshu, K.; Kumar, S.; Swapnil, P.; Zehra, A.; Shukla, V.; Yadav, M.; Upadhyay, R.S. Regulation of L-Proline Biosynthesis, Signal Transduction, Transport, Accumulation and Its Vital Role in Plants during Variable Environmental Conditions. Heliyon 2019, 5, e02952. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Hu, C.; Wan, L.; Hu, Q.; Xiong, J.; Zhang, C. Strigolactones Improve Plant Growth, Photosynthesis, and Alleviate Oxidative Stress under Salinity in Rapeseed (Brassica napus L.) by Regulating Gene Expression. Front. Plant Sci. 2017, 8, 1671. [Google Scholar] [CrossRef] [PubMed]
- Khorasani Esmaeili, A.; Mat Taha, R.; Mohajer, S.; Banisalam, B. Antioxidant Activity and Total Phenolic and Flavonoid Content of Various Solvent Extracts from in vivoand In Vitro Grown Trifolium pratense L. (Red Clover). BioMed Res. Int. 2015, 2015, 643285. [Google Scholar] [CrossRef]
- Bansal, M.; Mujib, A.; Bansal, Y.; Dewir, Y.H.; Mendler-Drienyovszki, N. An Efficient In Vitro Shoot Organogenesis and Comparative GC-MS Metabolite Profiling of Gaillardia pulchella Foug. Horticulturae 2024, 10, 728. [Google Scholar] [CrossRef]
- Mishra, M.K.; Pandey, S.; Niranjan, A.; Misra, P. Comparative analysis of phenolic compounds from wild and in vitro propagated plant Thalictrum foliolosum and antioxidant activity of various crude extracts. Chem. Pap. 2021, 75, 4873–4885. [Google Scholar] [CrossRef]
- Ali, A.M.A.; El-Nour, M.E.M.; Yagi, S.M. Total Phenolic and Flavonoid Contents and Antioxidant Activity of Ginger (Zingiber officinale Rosc.) Rhizome, Callus and Callus Treated with Some Elicitors. J. Genet. Eng. Biotechnol. 2018, 16, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Zayova, E.; Nikolova, M.; Dimitrova, L.; Petrova, M. Comparative Study of In Vitro, Ex Vitro and in vivo Propagated Salvia hispanica (Chia) Plants: Morphometric Analysis and Antioxidant Activity. AgroLife Sci. J. 2016, 5, 166–173. [Google Scholar]
- Mamgain, J.; Mujib, A.; Bansal, Y.; Gulzar, B.; Zafar, N.; Syeed, R.; Alsughayyir, A.; Dewir, Y.H. Elicitation Induced α-Amyrin Synthesis in Tylophora indica In Vitro Cultures and Comparative Phytochemical Analyses of in vivo and Micropropagated Plants. Plants 2024, 13, 122. [Google Scholar] [CrossRef]
- Hussain, S.A.; Ahmad, N.; Anis, M.; Alatar, A.A. Influence of Meta-Topolin on In Vitro Organogenesis in Tecoma stans L., Assessment of Genetic Fidelity and Phytochemical Profiling of Wild and Regenerated Plants. Plant Cell Tissue Organ Cult. 2019, 138, 339–351. [Google Scholar] [CrossRef]
- Faisal, M.; Qahtan, A.A.; Alatar, A.A. Thidiazuron Induced In Vitro Plant Regeneration, Phenolic Contents, Antioxidant Potential, GC-MS Profiles and Nuclear Genome Stability of Plectranthus amboinicus (Lour.) Spreng. Horticulturae 2023, 9, 277. [Google Scholar] [CrossRef]
- Qahtan, A.A.; Faisal, M.; Alatar, A.A.; Abdel-Salam, E.M. Callus-Mediated High-Frequency Plant Regeneration, Phytochemical Profiling, Antioxidant Activity and Genetic Stability in Ruta chalepensis L. Plants 2022, 11, 1614. [Google Scholar] [CrossRef] [PubMed]
- Konappa, N.; Udayashankar, A.C.; Krishnamurthy, S.; Pradeep, C.K.; Chowdappa, S.; Jogaiah, S. GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci. Rep. 2020, 10, 16438. [Google Scholar] [CrossRef] [PubMed]
- Adel, R.; Abdel-Ghani, A.E.; Abouelenein, D.D.; El-Dahmy, S.I. Variation in the Volatile Constituents of Wild and In Vitro Propagated Tanacetum sinaicum Del. Ex DC through GC-MS Chemical Fingerprint. Ind. J. Nat. Prod. Res. 2021, 12, 238–246. [Google Scholar]
- Bansal, Y.; Mujib, A.; Mamgain, J.; Dewir, Y.H.; Rihan, H.Z. Phytochemical Composition and Detection of Novel Bioactives in Anther Callus of Catharanthus roseus L. Plants 2023, 12, 2186. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.P.; Rudrappa, M.; Hugar, A.; Gunagambhire, P.V.; Suresh Kumar, R.; Nayaka, S.; Almansour, A.I.; Perumal, K. In-Vitro Investigation on the Biological Activities of Squalene Derived from the Soil Fungus Talaromyces pinophilus. Heliyon 2023, 9, e21461. [Google Scholar] [CrossRef]
- Bakrim, S.; Benkhaira, N.; Bourais, I.; Benali, T.; Lee, L.-H.; El Omari, N.; Sheikh, R.A.; Goh, K.W.; Ming, L.C.; Bouyahya, A. Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants 2022, 11, 1912. [Google Scholar] [CrossRef]
- Khallouki, F.; de Medina, P.; Caze-Subra, S.; Bystricky, K.; Balaguer, P.; Poirot, M.; Silvente-Poirot, S. Molecular and Biochemical Analysis of the Estrogenic and Proliferative Properties of Vitamin E Compounds. Front. Oncol. 2016, 5, 287. [Google Scholar] [CrossRef]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef]
- Ganesan, T.; Subban, M.; Christopher Leslee, D.B.; Kuppannan, S.B.; Seedevi, P. Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Convers. Biorefinery 2022, 14, 14547–14558. [Google Scholar] [CrossRef]
- Al-Mussawi, Z.K.; Al-Hussani, I.M. Phytochemical study of Calendula officinalis plant by used GC-MS and FTIR techniques. Plant Arch. 2019, 19, 845–851. [Google Scholar]
PGRs | Concentrations (mg/L) | Callusing Frequency (%) | Fresh Biomass (g) |
---|---|---|---|
Control | 0 | 0 f | 0 e |
NAA + BAP | 0.5 + 0.5 | 88.89 ± 5.56 ab | 3.67 ± 0.8 ab |
0.5 + 0.1 | 61.11 ± 5.55 bcd | 2.70 ± 0.6 bcd | |
0.5 + 2.0 | 55.55 ± 14.69 | 2.50 ± 0.3 bcde | |
1.0 + 0.5 | 72.22 ± 14.69 abc | 3.30 ± 0.6 abc | |
1.0 + 1.0 | 94.44 ± 5.56 a | 4.40 ± 0.4 a | |
2,4-D + BAP | 0.5 + 0.5 | 38.89 ± 11.11 def | 1.60 ± 0.7 cde |
0.5 + 1.0 | 27.78 ± 5.56 ef | 1.30 ± 0.6 de | |
0.5 + 2.0 | 11.12 ± 5.55 f | 0.90 ± 0.2 e | |
1.0 + 0.5 | 27.78 ± 14.69 ef | 1.10 ± 0.5 de | |
1.0 + 1.0 | 44.44 ± 5.56 cde | 1.93 ± 0.1 cde |
PGRs | Concentration (mg/L) | Frequency of Organogenesis (%) | Mean No of Shoot /Callus Mass |
---|---|---|---|
Control | 0 | 0 | 0 |
NAA + BAP | 0.5 + 0.5 | 0 d | 0 d |
0.5 + 1.0 | 55.55 ± 05.5 bc | 1.67 ± 0.3 c | |
0.5 + 2.0 | 27.77 ± 11.1 cd | 0.67 ± 0.3 d | |
1.0 + 0.5 | 72.22 ± 20.1 ab | 2.67 ± 0.3 b | |
1.0 + 1.0 | 88.89 ± 05.6 a | 3.33 ± 0.3 a |
PGRs | Concentration | Rooting (%) | Mean Root Numbers/Shoot |
---|---|---|---|
control | 0 | 0 e | 0 e |
IBA | 0.5 | 77.77 ± 5.56 ab | 9.4 ± 1.4 ab |
1 | 94.44 ± 5.56 a | 12.3 ± 0.5 a | |
2 | 55.55 ± 14.70 bc | 8.2 ± 1.1 b | |
IAA | 0.5 | 49.01 ± 9.62 c | 6.7 ± 1.8 bc |
1 | 38.89 ± 5.56 cd | 4.4 ± 0.9 cd | |
2 | 22.21 ± 5.55 de | 2.1 ± 0.1 d |
Sample Type | Total Phenolic Content (mg GAE/g DW) | Total Flavonoid Content (mg QE/g DW) | DPPH Scavenging Activity (%) |
---|---|---|---|
Callus | 1.43 ± 0.04 c | 8.25 ± 0.2 b | 22.72 ± 4.11 b |
Field-grown leaf | 8.51 ± 0.2 b | 15.55 ± 0.3 a | 28.07 ± 3.11 ab |
In vitro leaf | 10.28 ± 0.1 a | 16.04 ± 0.2 a | 39.93 ± 4.81 a |
S. No. | R. Time | Area% | Name | Molecular Formula | Molecular Weight |
---|---|---|---|---|---|
1 | 4.763 | 0.52 | 1,2-butanolide | C4H6O2 | 86 |
2 | 5.02 | 0.19 | 2-propylheptanol | C10H22O | 158 |
3 | 5.551 | 0.92 | 5-methyifurfural | C6H6O2 | 110 |
4 | 5.83 | 0.56 | pyranone | C6H8O4 | 144 |
5 | 6.186 | 0.43 | 1,4-diazabicyclo[2.2.2]octane | C6H12N2 | 112 |
6 | 6.933 | 0.68 | ethyl methylacetoacetate | C7H12O3 | 144 |
7 | 7.604 | 3.66 | melamine | C3H6N6 | 126 |
8 | 8.006 | 0.25 | levoglucosenone | C6H6O3 | 126 |
9 | 8.568 | 6.35 | pyranone | C6H8O4 | 144 |
10 | 9.153 | 0.26 | 5-methoxypyrrolidin-2-one | C5H9NO2 | 115 |
11 | 9.397 | 0.22 | isoamyl trimethylacetate | C10H20O2 | 172 |
12 | 9.927 | 30.23 | 5-hydroxymethylfurfural | C6H6O3 | 126 |
13 | 10.193 | 0.4 | 3-hexene-2,5-dione | C6H8O2 | 112 |
14 | 11.132 | 1.21 | ethyl 3-hydroxy-4-pentenoate | C7H12O3 | 144 |
15 | 13.119 | 1.69 | xanthosine | C10H12N4O6 | 284 |
16 | 13.717 | 3.3 | levoglucosan | C6H10O5 | 162 |
17 | 15.043 | 1.48 | 1,6-anhydro-beta-d-glucofuranose | C6H10O5 | 162 |
18 | 16.506 | 0.29 | tetradecanoic acid | C14H28O2 | 228 |
19 | 17.26 | 0.23 | neophytadiene | C20H38 | 278 |
20 | 18.17 | 0.22 | methylpalmitate | C17H34O2 | 270 |
21 | 18.396 | 0.82 | palmitoleic acid | C16H30O2 | 254 |
22 | 18.609 | 7.66 | n-hexadecanoic acid | C16H32O2 | 256 |
23 | 19.108 | 0.47 | 1,4-naphthalenedione, 2-hydroxy-3-(1-propenyl) | C13H10O3 | 214 |
24 | 19.813 | 0.41 | linoleic acid, methyl ester | C19H34O2 | 294 |
25 | 19.871 | 0.38 | methyl petroselinate | C19H36O2 | 296 |
26 | 19.98 | 0.21 | phytol | C20H40O | 296 |
27 | 20.245 | 0.61 | 9,12-octadecadienoic acid (z,z)- | C18H32O2 | 280 |
28 | 20.296 | 0.81 | 13-tetradecenal | C14H26O | 210 |
29 | 20.48 | 1.17 | podocarpan-12-ol | C17H30O | 250 |
30 | 20.667 | 0.13 | 2-piperidinemethanol | C6H13NO | 115 |
31 | 21.292 | 1.48 | sclareolide | C16H26O2 | 250 |
32 | 21.796 | 0.28 | palmidrol | C18H37NO2 | 299 |
33 | 21.858 | 0.26 | 11-hexadecenal, (z)- | C16H30O | 238 |
34 | 22.642 | 0.48 | sclareolide lactol | C16H28O2 | 252 |
35 | 22.943 | 0.29 | 3-aminoheptane | C7H17N | 115 |
36 | 23.084 | 0.62 | 4-cyanobenzoic acid, undec-10-enyl ester | C19H25NO2 | 299 |
37 | 23.255 | 1.05 | 1-heptacosanol | C27H56O | 396 |
38 | 23.45 | 9.95 | 2-palmitoylglycerol | C19H38O4 | 330 |
39 | 23.826 | 3.28 | copalic acid | C20H32O2 | 304 |
40 | 24.683 | 1.24 | oleoyl chloride | C18H33ClO | 330 |
41 | 24.885 | 2.29 | 17-pentatriacontene | C35H70 | 490 |
42 | 25.131 | 3.19 | glycerin 1-monostearate | C21H42O4 | 358 |
43 | 25.697 | 0.32 | 9-octadecenamide | C18H35NO | 281 |
44 | 25.975 | 0.42 | squalene | C30H50 | 410 |
45 | 26.413 | 0.29 | 1-cyclohexene-1-butyraldehyde, 2,6,6-trimethyl- | C13H22O | 194 |
46 | 27.313 | 0.19 | hexacosanoic acid, methyl ester | C27H54O2 | 410 |
47 | 28.631 | 0.15 | stigmasta-4,7,22-trien-3.alpha.-ol | C29H46O | 410 |
48 | 29.568 | 0.15 | stigmasterol acetate | C31H50O2 | 454 |
49 | 30.478 | 0.41 | vitamin e | C29H50O2 | 430 |
50 | 32.617 | 0.25 | ergost-5-en-3-ol | C28H48O | 400 |
51 | 33.221 | 4.47 | stigmasterol | C29H48O | 412 |
52 | 34.745 | 2.82 | gamma-sitosterol | C29H50O | 414 |
53 | 35.153 | 0.38 | fucosterol | C29H48O | 412 |
S. No. | R. Time | Area% | Name | Molecular Formula | Molecular Weight |
---|---|---|---|---|---|
1 | 8.570 | 1.72 | pyranone | C6H8O4 | 144 |
2 | 13.083 | 6.40 | guanosine | C10H13N5O5 | 283 |
3 | 13.360 | 0.98 | 2-tridecynyl 2,6-difluorobenzoate | C20H26F2O2 | 336 |
4 | 15.060 | 0.25 | megastigmatrienone 4 | C13H18O | 190 |
5 | 15.554 | 0.16 | 4,6,6-trimethyl-bicyclo[3.1.1]heptan-2-ol | C10H18O | 154 |
6 | 15.982 | 0.17 | tetradecanal | C14H28O | 212 |
7 | 16.508 | 0.14 | undecanoic acid | C11H22O2 | 186 |
8 | 17.193 | 0.37 | tetrahydrogeranyl acetate | C12H24O2 | 200 |
9 | 17.265 | 13.94 | neophytadiene | C20H38 | 278 |
10 | 17.321 | 0.41 | hexa-hydro-farneso | C15H32O | 228 |
11 | 17.715 | 3.24 | neophytadiene | C20H38 | 278 |
12 | 18.173 | 0.19 | pentadecanoic acid, 14-methyl-, methyl ester | C17H34O2 | 270 |
13 | 18.370 | 0.30 | 11,14,17-eicosatrienoic acid, methyl ester | C21H36O2 | 320 |
14 | 18.595 | 3.44 | pentadecanoic acid, 14-methyl-, methyl ester | C16H32O2 | 256 |
15 | 19.749 | 0.36 | phytol isomer | C20H40O | 296 |
16 | 19.817 | 0.32 | linolic acid | C18H32O2 | 280 |
17 | 19.876 | 0.35 | 6-octadecenoic acid, methyl ester, (z)- | C19H36O2 | 296 |
18 | 19.983 | 12.41 | phytol isomer | C20H40O | 296 |
19 | 20.230 | 0.33 | 9,12-linoleic acid | C18H32O2 | 280 |
20 | 20.302 | 1.15 | 9,12-octadecadienoic acid | C18H32O2 | 280 |
21 | 21.291 | 1.24 | 2-formylhexadecane | C17H34O | 254 |
22 | 21.513 | 1.46 | 3-cyclopentylpropionic acid, 2-dimethylaminoethyl ester | C12H23NO2 | 213 |
23 | 21.793 | 0.23 | hexadecanoyl-chloride- | C16H31ClO | 274 |
24 | 22.938 | 0.73 | 3-cyclopentylpropionic acid, 2-dimethylaminoethyl ester | C12H23NO2 | 213 |
25 | 23.001 | 2.92 | 3-cyclopentylpropionic acid, 2-dimethylaminoethyl ester | C12H23NO2 | 213 |
26 | 23.088 | 0.90 | 4-cyanobenzoic acid, undec-10-enyl ester | C19H25NO2 | 299 |
27 | 23.260 | 3.08 | n-tetracosanol-1 | C24H50O | 354 |
28 | 23.455 | 16.06 | 2-palmitoylglycerol | C19H38O4 | 330 |
29 | 23.859 | 0.60 | globulol | C15H26O | 222 |
30 | 24.689 | 1.69 | oxalic acid, monoamide, n-allyl-, hexadecyl ester | C21H39NO3 | 353 |
31 | 24.890 | 4.62 | 1-heptacosanol | C27H56O | 396 |
32 | 24.965 | 0.65 | ethyl linolate | C20H36O2 | 308 |
33 | 25.137 | 4.31 | octadecanoic acid, 2,3-dihydroxypropyl ester | C21H42O4 | 358 |
34 | 25.709 | 0.44 | 9-octadecenamide | C18H35NO | 281 |
35 | 25.978 | 2.38 | squalene | C30H50 | 410 |
36 | 26.971 | 2.32 | 1-heptacosanol | C27H56O | 396 |
37 | 28.267 | 1.31 | 8,14-cedrane oxide | C15H24O | 220 |
38 | 29.143 | 1.01 | gamma-tocopherol | C28H48O2 | 416 |
39 | 30.495 | 2.09 | vitamin e | C29H50O2 | 430 |
40 | 33.227 | 3.75 | stigmasterol | C29H48O | 412 |
41 | 34.758 | 1.58 | gamma-sitosterol | C29H50O | 414 |
S. No. | R. Time | Area% | Name | Molecular Formula | Molecular Weight |
---|---|---|---|---|---|
1 | 12.999 | 12.18 | guanosine | C10H13N5O5 | 283 |
2 | 13.365 | 0.82 | 2,6-difluorobenzoic acid | C20H26F2O2 | 336 |
3 | 13.717 | 0.10 | 1-[2-bromoethenyl] adamantane | C12H17Br | 240 |
4 | 13.749 | 0.10 | gamma-cadinene | C15H24 | 204 |
5 | 15.984 | 0.09 | tridecanal | C13H26O | 198 |
6 | 17.192 | 0.28 | 3,7-dimethyloctyl acetate | C12H24O2 | 200 |
7 | 17.265 | 10.47 | neophytadiene | C20H38 | 278 |
8 | 17.320 | 0.26 | hexa-hydro-farnesol | C15H32O | 228 |
9 | 17.520 | 1.81 | neophytadiene | C20H38 | 278 |
10 | 17.715 | 2.60 | 3,7,11,15-tetramethyl-2-hexadecen-1-ol | C20H40O | 296 |
11 | 18.175 | 0.33 | pentadecanoic acid, 14-methyl-, methyl ester | C17H34O2 | 270 |
12 | 18.590 | 0.83 | n-hexadecanoic acid | C16H32O2 | 256 |
13 | 19.816 | 0.60 | 9,12-octadecadienoic acid, methyl ester | C19H34O2 | 294 |
14 | 19.875 | 0.54 | 6-octadecenoic acid, methyl ester, (z)- | C19H36O2 | 296 |
15 | 19.985 | 7.18 | phytol | C20H40O | 296 |
16 | 20.294 | 0.60 | 9,12-octadecadienoic acid (z,z)- | C18H32O2 | 280 |
17 | 20.677 | 0.12 | 9,12-octadecadienoic acid, methyl ester | C19H34O2 | 294 |
18 | 21.291 | 0.66 | 11-dodecen-2-one | C12H22O | 182 |
19 | 21.512 | 0.99 | octanoic acid, 2-dimethylaminoethyl ester | C12H25NO2 | 215 |
20 | 21.630 | 0.44 | glycidyl palmitate | C19H36O3 | 312 |
21 | 22.938 | 0.55 | fumaric acid, 2-dimethylaminoethyl nonyl ester | C17H31NO4 | 313 |
22 | 22.999 | 1.58 | 3-cyclopentylpropionic acid, 2-dimethylaminoethyl ester | C12H23NO2 | 213 |
23 | 23.086 | 3.35 | 4-cyanobenzoic acid, undec-10-enyl ester | C19H25NO2 | 299 |
24 | 23.259 | 5.94 | 2-ethylbutyric acid, eicosyl ester | C23H46O2 | 354 |
25 | 23.455 | 23.59 | 2-monopalmitin | C19H38O4 | 330 |
26 | 23.857 | 0.21 | alpha-selinene | C15H24 | 204 |
27 | 24.180 | 0.56 | glycerol.beta.-palmitate | C19H38O4 | 330 |
28 | 24.685 | 4.12 | 4-cyanobenzoic acid, tridecyl ester | C21H31NO2 | 329 |
29 | 24.889 | 3.36 | eicosyl heptafluorobutyrate | C24H41F7O2 | 494 |
30 | 25.030 | 2.04 | 1-monolinolein | C21H38O4 | 354 |
31 | 25.139 | 5.13 | octadecanoic acid, 2,3-dihydroxypropyl ester | C21H42O4 | 358 |
32 | 25.705 | 0.77 | 9-octadecenamide, (z)- | C18H35NO | 281 |
33 | 25.976 | 2.52 | squalene | C30H50 | 410 |
34 | 26.969 | 1.02 | 1-heptacosanol | C27H56O | 396 |
35 | 27.326 | 0.36 | eicosanoic acid, methyl ester | C21H42O2 | 326 |
36 | 28.257 | 0.42 | cysteamine sulfonic acid | C2H7NO3S2 | 157 |
37 | 29.138 | 0.42 | gamma-tocopherol | C28H48O2 | 416 |
38 | 30.491 | 0.90 | vitamin e | C29H50O2 | 430 |
39 | 33.218 | 1.36 | stigmasterol | C29H48O | 412 |
40 | 34.759 | 0.78 | beta-sitosterol | C29H50O | 414 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, T.; Mujib, A.; Bansal, Y.; Dewir, Y.H.; Mendler-Drienyovszki, N. Indirect Organogenesis of Calendula officinalis L. and Comparative Phytochemical Studies of Field-Grown and In Vitro-Regenerated Tissues. Agronomy 2024, 14, 1743. https://doi.org/10.3390/agronomy14081743
Fatima T, Mujib A, Bansal Y, Dewir YH, Mendler-Drienyovszki N. Indirect Organogenesis of Calendula officinalis L. and Comparative Phytochemical Studies of Field-Grown and In Vitro-Regenerated Tissues. Agronomy. 2024; 14(8):1743. https://doi.org/10.3390/agronomy14081743
Chicago/Turabian StyleFatima, Tooba, A. Mujib, Yashika Bansal, Yaser Hassan Dewir, and Nóra Mendler-Drienyovszki. 2024. "Indirect Organogenesis of Calendula officinalis L. and Comparative Phytochemical Studies of Field-Grown and In Vitro-Regenerated Tissues" Agronomy 14, no. 8: 1743. https://doi.org/10.3390/agronomy14081743
APA StyleFatima, T., Mujib, A., Bansal, Y., Dewir, Y. H., & Mendler-Drienyovszki, N. (2024). Indirect Organogenesis of Calendula officinalis L. and Comparative Phytochemical Studies of Field-Grown and In Vitro-Regenerated Tissues. Agronomy, 14(8), 1743. https://doi.org/10.3390/agronomy14081743