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Abstract: Chickpea is a staple crop for many nations worldwide. Modeling genotype-by-environment
interactions and assessing the genotype’s ability to contribute adaptive alleles are crucial for chickpea
breeding. In this study, we evaluated 12 agronomically important traits of 159 accessions from the N.I.
Vavilov All Russian Institute for Plant Genetic Resources collection. These included 145 landraces and
13 cultivars grown in different climatic conditions in Kuban (45◦18′ N and 40◦52′ E) in both 2016 and
2022, as well as in Astrakhan (46◦06′ N and 48◦04′ E) in 2022. Using the IIIVmrMLM model in multi-
environmental mode, we identified 161 quantitative trait nucleotides (QTNs) with stable genetic
effects across different environments. Furthermore, we have observed 254 QTN-by-environment
interactions with distinct environment-specific effects. Notably, five of these interactions manifested
large effects, with R2 values exceeding 10%, while the highest R2 value for stable QTNs was 4.7%.
Within the protein-coding genes and their 1 Kb flanking regions, we have discerned 22 QTNs and
45 QTN-by-environment interactions, most likely tagging the candidate causal genes. The landraces
obtained from the N.I Vavilov All Russian Institute for Plant Genetic Resources collection exhibit
numerous favorable alleles at quantitative trait nucleotide loci, showing stable effects in the Kuban
and Astrakhan regions. Additionally, they possessed a significantly higher number of Kuban-specific
favorable alleles of the QTN-by-environment interaction loci compared to the Astrakhan-specific
ones. The environment-specific alleles found at the QTN-by-environment interaction loci have the
potential to enhance chickpea adaptation to specific climatic conditions.

Keywords: IIIVmrMLM; agronomic traits; chickpea; GWAS; gene-by-environment interaction;
multi-locus models

1. Introduction

At present, GWAS (Genome-Wide Association Study) is considered the gold standard
for detecting associations between genomic variants and traits [1]. A classical implementa-
tion of a single-trait GWAS tests each marker at a time for association with a phenotype [2].
The widespread usage of MLM (mixed linear) models improved the prediction of true
associations by removing confounding effects introduced by population structure and
accession relatedness [3,4]. The application of these models is hindered by the Bonferroni
correction used to correct for multiple testing, proving overly restrictive in identifying
certain associations with complex traits in crops [5]. Bonferroni correction leads to a strong
overestimation of the type I error, thereby missing true effects, i.e., decreasing the power of
the experiment as the number of hypotheses grows [6].

In addressing this issue, the multi-locus MLM models have been developed to test all
markers within the frame of one linear model while simultaneously estimating all marker
effects [7–9]. An important advantage of such models over single-locus GWAS is their
ability to detect quantitative trait nucleotides (QTNs) with marginal effects, where the
significance threshold set by the Bonferroni correction is too stringent.
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Most GWAS models only consider additive marker effects. However, dominance,
gene-by-gene, and gene-by-environment interactions also play a crucial role in shaping
the genetic architecture of complex traits in plants. Current methods for detecting these
interactions are computationally complex and only estimate the effects of allele substitution
and allele interaction, considering the specific control of the polygenic background [10,11].
This leads to the inadequate control of the polygenic background and confounding in the
estimation of the marker effect.

The IIIVmrMLM model [12,13] has been developed to address methodological chal-
lenges in detecting various interactions between alleles, genes, and environments, while
also providing an unbiased estimation of their genetic effects. This multi-locus MLM model
simultaneously estimates the effects of all genes and interactions, using a computationally
less complex approach that involves calculating only three compressed estimates instead
of a large number of variance components. Additionally, the IIIVmrMLM model uses
the expectation maximization empirical Bayes algorithm to estimate all effects within one
multi-locus model, and significant QTNs are further evaluated via likelihood ratio tests.
This methodology theoretically ensures the accurate detection of loci and an unbiased
estimation of their effects, making IIIVmrMLM a suitable choice for detecting associations
between genes, traits, and environments.

As sessile organisms, plants demonstrate remarkable phenotypic plasticity [14]. Both
genotype and environment contribute to the phenotypic variation in a trait, and these
factors interact at times in complex and non-additive ways [15]. The combination of genes
and the environment plays a crucial role in shaping the plant’s response to changes in
the environment, particularly in terms of important agricultural traits. Identifying these
interactions can help in developing plant varieties that are better equipped to withstand
climate changes [16].

Chickpea, the second most extensively cultivated food legume, supplies important
nutritional nitrogen and high-caliber protein for roughly 15% of the global population [17,18].
In West Asia and the Indian subcontinent, chickpea stands out as the most widely consumed
legume. Its cultivation spans across 50 nations globally, as it has increasingly become a
fundamental component of the Mediterranean diet. Currently, the proportion of grain
legume crops, such as chickpeas, in EU agricultural regions is minimal, while chickpea
production in Russia is on the rise [19,20]. Russia plays a significant role as a major global
supplier of chickpeas, accounting for approximately 25% of the global chickpea trade prior
to 2022. Furthermore, there has been a notable increase in crop breeding efforts, with six
out of the 14 registered varieties in Russia being developed within the past five years.

The application of omics technologies in breeding has proven effective on several
crops. However, progress in chickpea genomics has been relatively slow compared to other
crop species such as cereals. A shift has occurred in the last decade through the large-scale
characterization of germplasm and the construction of a pan-genome [21–23]. A combined
analysis of the available phenotypic and genotypic data identified candidate markers for
many agronomic important traits, including tolerance to abiotic and biotic stresses [21–31].
Breeding strategies based on genomic prediction to enhance crop productivity have been
proposed [22,32,33].

Chickpea was often relegated to marginal lands where various abiotic stresses such as
water deficits, extreme temperatures, short growing seasons, and poor soils contribute to
limited yield potential [34]. For instance, drought decreases chickpea yield in the world
by 50%, and losses caused by extreme temperature account for up to 20% [35]. In view of
this, the cultivation of highly productive and climate change-resilient chickpea genotypes
is essential given the evolving consumer demands, agricultural practices, and the need to
adapt to a broader climatic range. The current elite high-yielding chickpea cultivars lack
genetic and adaptive variation, highlighting the necessity to broaden the genetic base for
continuous variety development. This entails exploring primitive landraces collected prior
to the Green Revolution and the application of modern breeding methods to tap into the
aforementioned significant additional source of genetic variation.
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In the early 20th century, Nikolay Vavilov meticulously gathered chickpea land-races,
which are currently preserved at the N.I. Vavilov All-Russian Institute of Plant Genetic
Resources (VIR) in St. Petersburg, Russia. Previously, we interrogated these data to reveal
marker–trait association using single-trait GWAS [31]. To gain a better understanding of
the genetic factors behind variations in agronomic traits in chickpeas, we conducted GWAS
using the IIIVmrMLM program. This program enables the detection of both quantitative
trait nucleotides (QTNs) and quantitative environment interactions (QTN-by-environment
interactions, QEIs).

2. Materials and Methods
2.1. Plant Growing and Phenotyping

A total of 159 chickpea genotypes were specifically chosen from the collection at the
N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) in St. Petersburg, Russia
(see Table S23). Within this dataset, 145 landraces and 13 elite cultivars were carefully
included. These landraces, which were gathered by N.I. Vavilov during his expeditions
in the 1920s–1930s, represent a valuable historical and genetic resource. To categorize the
samples, six geographic regions were identified based on their geographical proximity:
Mediterranean (MED), Lebanon (LEB), South of Russia (RUSS), Turkey (TUR), Uzbekistan
(UZB), and India (IND).

Phenotyping of the chickpea accessions was conducted at two OSs of the VIR, the
Kuban OS in 2016 and 2022 and the Astrakhan OS in 2022. The Kuban OS is located in the
steppe zone of the Kuban–Priazovskaya lowlands, approximately 80 km from the Caucasus
foothills. The soil at this location is predominantly black-rich, with a fertile layer depth of
140–150 cm and a slightly alkaline pH. The humus horizon is 130–170 cm thick, with humus
content ranging from 3.6% to 4.6%. The climate is characterized as temperate continental,
with hot summers, sub-optimal rainfall, and high fluctuation in climatic parameters. The
sum of active temperatures above 10 ◦C ranges from 3200 to 3400 ◦C, and the average
annual precipitation is 565 mm.

The Astrakhan OS is situated in the Caspian lowlands in the southern part of As-
trakhan Oblast. The region experiences a continental climate, which is the driest in the
European territory of the Russian Federation. It has substantial thermal resources, with a
sum of active temperatures above 10 ◦C ranging from 3000 to 3500 ◦C. Annual precipitation
varies from 180 to 200 mm, with the majority (70–75%) occurring in the warm season. The
combination of low precipitation and high temperatures contributes to the dryness of both
the air and soil. The predominant soils in the area are brown semi-desert soils with a
humus content of 1.1%, light particle size distribution, low soil absorption capacity, and a
neutral pH.

The duration of daylight likely had minimal impact on the plant development in the Kuban
and Astrakhan regions, as both locations are situated at approximately the same latitude.

Both sites followed similar agronomic practices, with the exception that crops at the
Astrakhan OS were irrigated seven times a day. A drip irrigation system was used at
the recommended rate for irrigating vegetable crops, with an irrigation norm of 50.4 m3

per season, or 400 m3 per hectare. Sowing took place in late April 2022, with harvesting
occurring in late July to early August. At both locations, the accessions were planted in a
randomized complete block design with one replicate. Crop maintenance involved manual
weeding (four times), mechanized row spacing treatment (two times), and the application
of the pesticide “Stomp” (three times at a concentration of 4.5 L/ha). Urea (45% N) was
used as fertilizer at a concentration of 800 g/L.

Throughout the vegetative period, we conducted measurements on 12 phenological
and morphological traits (Table S1), including plant height (PH), the height of the first
pod attachment (HFP), the number of primary branches (NPB), the number of secondary
branches (NSB), plant dry weight with pods (PWwP), pod weight per plant (PoW), pod
number per plant (PoNP), 100 seed weight (100SW), leaf size (LS), days from emergence to
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flowering start (DFst), flowering duration (DF), and days from emergence to full maturation
(Dmat). Our analysis encompassed six plants for each accession.

2.2. DNA Sequencing and Variant Calling

The DNeasy Plant Mini Kit (Qiagen, Germantown, MD, USA) was used to extract
DNA from collected leaves. DNA was sequenced at the BGI (Shenzhen, China) using
the Illumina technology, generating paired-end reads of 150 bp. A total of 7700 Gbp of
raw data comprising about 26 billon reads with an average of 25× coverage or about
37 Gbp per sample were generated. Reads were processed and aligned to the chickpea
reference genome assembly ASM33114v1 with bwa-mem using default parameters [36].
NGSEP [37] version 4.0. was used to call variants. A total of 96,354,236 biallelic SNPs were
further filtered with VCF tools [38] to retain SNPs with minor allele frequency (MAF) > 5%
and genotype call-rate > 85%. A total of 171,038 SNPs passed all filters and remained for
further analysis.

2.3. Genetic Data Analyses

The genetic structure in the dataset was evaluated using the ADMIXTURE software
v.1.3.0 [39]. The analyses were performed for K values ranging from 2 to 7. The linkage
disequilibrium (LD) decay was estimated using squared Pearson’s correlation coefficient
(r2). The PopLDdecay [40] version 3.4.1 was run to calculate r2 in a 500 kb window. The LD
decay was calculated based on R2 and the distance for each pair of SNPs using an R script in
accordance with Hill–Weir approximation [41]. We applied the Mann–Whitney–Wilcoxon
test [42] to make group comparisons. Two-way analysis of variance was carried out using
the R function aov() from library stats.

2.4. GWAS

The genome-wide association analysis was performed using IIIVmrMLM program [13]
run in Multi_env mode with parameters svpal = 0.01 and SearchRadius = 20. Suggested
QTNs (SUG) were QTNs with LOD ≥ 3.0, significant QTNs (SIG) are QTNs with the
Bonferroni corrected p-values calculated from LOD score using χ2 distribution. Candidate
genes containing either QTNs or QEIs in gene bodies or within 1 kb flanking regions were
annotated using The Pulse Crop Database https://www.pulsedb.org/Analysis/1869759
(accessed on 15 April 2024).

3. Results
3.1. Evaluation of Phenotypes

In 2022, 159 chickpea accessions were grown at two VIR (N.I. Vavilov All-Russian
Institute for Plant Genetic Resources) outstations (OSs): the Astrakhan OS (46◦06′ N, 48◦04′

E, altitude 24 m) and the Kuban OS (45◦18′ N, 40◦52′ E, altitude 138.9 m). Additionally, the
same chickpea accessions were also grown at the Kuban OS in 2016.

The hottest agricultural year across environments was at the Astrakhan OS in 2022
(Table S2). The sum of active temperatures above 10 ◦C was 3419. This exceeds the values at
the Kuban OS in 2016 and 2022 by 346 ◦C and 525 ◦C, correspondingly (Tables S3 and S4).
The wettest agricultural year across environments was at the Kuban OS in 2022, with
annual precipitation equal to 744 mm, which exceeds the values at the same station in 2016
by 128 mm and at the Astrakhan OS by 547 mm.

In every year and at each location, all accessions were evaluated for 12 traits related
to yield, vegetative growth and flowering time (Table S1, Figure 1a). In both regions,
yield-related traits, i.e., plant dry weight with pods (PWwP), the weight of pods per plant
(PoW), the number of pods per plant (PoNP), and a 100 seed weight (100SW) have the
largest coefficient of variation (see Table S5). The variability of most other traits in the
dataset is also large, ranging from 20 to 30%. The values for traits related to yield and
vegetative growth, except for the height of the first pod attachment (HFP) and 100SW, are
significantly different between environments (p value < 0.05). Specifically, a similar number

https://www.pulsedb.org/Analysis/1869759
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of days was required for plants to start flowering in 2022, but not in 2016 (see Table S5).
However, at the Astrakhan OS, the flowering phenophase lasted longer than at the Kuban
OS. The period from emergence to full maturation was also much longer at the Kuban OS
than at the Astrakhan OS (refer to Figure 1a).
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Figure 1. Evaluation of the phenotypes. (a) Violin plots showing trait data collected at the Kuban
and the Astrakhan outstations. p-values > 5% (Mann–Whitney test) define statistically insignificant
differences between trait values. p22, as shown at the top, stands for p-values obtained when
comparing traits from Kuban and Astrakhan regions in 2022, while pK stands for p-values in the 2016
and 2022 trait comparisons in the Kuban region. The labels are: A for the Astrakhan OS, K(16)—the
Kuban OS in 2016, K(22)—the Kuban OS data in 2022. The abbreviations for the trait names are listed
in Table S1 and Table A1. (b) Pearson correlation coefficient for traits (Table S6); green labels are for
Kuban in 2016, blue labels are for Kuban in 2022, and red labels are for Astrakhan.
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In both Astrakhan and Kuban regions, the traits PoNP, PoW, and PWwP are correlated,
as shown in Figure 1b and Table S6. However, these traits are not correlated across
different environments, indicating a significant influence of the growing conditions on
the phenotype. On the other hand, 100SW and HFP show correlation across different
environments, suggesting that the growing conditions have minimal impact on these traits.
In each environment, PoNP, PoW, and PWwP demonstrate a correlation with NSB, which
is a major contributor to plant yield. Notably, in the data collected from Astrakhan and
Kuban in 2016, both the time from emergence to flowering (DFst) and the flowering phase
(DF) are significantly correlated with the time from germination to full maturity (Dmat).
However, this correlation is not observed in accessions grown in Kuban in 2022, indicating
a strong environmental effect on these traits (Table S6).

The effects of genotype, environment and genotype-by-environment interaction were
statistically significant for traits related to yield and vegetative growth (Table S7). The
estimates for gene-by-environment interaction were highly significant, suggesting that
genotype performance should be assessed in each specific environment. In the case of
flowering traits and LS, all plants belonging to the same accession exhibit the same trait
value precluding the estimation of the genotype-by-environment interaction effects. How-
ever, the effects of genotype and environment are statistically significant for all these traits
(Table S7).

3.2. Population Analysis

The genetic makeup of the dataset was determined using a group of 171,038 SNPs. In
tune with previous findings, the principal component analysis did not show any distinct
separation among the samples based on their geographical origin [31,43]. The lowest cross-
validation error in the ADMIXTURE analysis occurred when the number of populations
was set to three (K = 3). However, the errors at K = 4 and K = 5 were only slightly larger,
suggesting that these three population splits are the most preferable (see Figure 2a,c,d). The
ADMIXTURE analysis shows that accessions can be divided into six almost geographically
isolated groups: Indian (IND), Turkish (TUR), Mediterranean (MED), Lebanese (LEB),
Uzbek (UZB), and South Russian (RUS). Further examination reveals that the ADMIXTURE
patterns of geographically adjacent populations (Indian and Uzbek, as well as Turkish and
Mediterranean) are more similar than the patterns of populations located farther away.
This likely reflects the history of chickpea migration after domestication [36].

LD decays fast in the dataset, reaching half of a maximum r2 value at a distance of
50 kb (Figure 2b). Of note, the LD decay observed in this study was much faster than
those detected for Desi and Kabuli chickpea cultivars in other datasets (340 kb and 330 kb
correspondingly), as well as for the cultivated soybean (150 kb) [22,44].

3.3. Identification of QTNs and QEIs Associated with Phenotypic Traits

The IIIVmrMLM method allows us to calculate the QTNs and QEIs separately, thus di-
viding markers into groups, namely (a) markers with stable effects across different environ-
ments, and (b) markers associated with phenotypic effects in selected environments only.

We have identified 161 QTNs and 254 QEIs as the significant markers for 12 different
phenotypic traits (refer to Tables S8 and S9). On average, QTNs accounted for approximately
19.6% of the variation across the different traits, while QEIs explained an average of 48.6%
of the variation, ranging from 27.6% to 63% for different traits (see Table 1). This indicates
that the independent quantitative effects of markers were generally lower than the effects
of their interaction with the environment.
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Figure 2. Sample origins and population analysis. (a) Sample collection sites. (b) LD decay in the
dataset. (c,d) Population structure inferred with ADMIXTURE. ADMIXTURE results generated with
different numbers of populations (K = 2–7). Each sample is represented by a vertical stacked bar;
colors correspond to different ancestral populations.

Table 1. Percentage of trait variation explained by QTNs and QEIs. * Abbreviations of trait names are
as shown in Tables S1 and A1.

Trait Name * Type Total Variation
Explained (%)

Marker Explaining the Largest
Variation in a Trait R2 (%)

DF
QTN 15.9 Ca5_21845257 1.9
QEI 43.5 Ca2_495917 2.2

DFst
QTN 26.4 Ca7_22036380 4.2
QEI 38.1 Ca7_18941640 6.0

Dmat
QTN 13.6 Ca3_17850594 2.5
QEI 50.8 Ca4_22649405 5.0

LS
QTN 25.7 Ca8_12966424 3.3
QEI 40.3 Ca2_27433383 17.2

NPB
QTN 19.0 Ca6_47226273 2.8
QEI 48.8 Ca7_20175638 2.8

NSB
QTN 14.3 Ca6_31708450 1.5
QEI 63.0 Ca4_29141628 14.8

PH
QTN 26.7 Ca4_22648344 4.6
QEI 27.6 Ca4_6063638 8.0

HFP
QTN 24.4 Ca4_27164303 3.8
QEI 48.3 Ca7_14064521 27.3

PWwP
QTN 15.2 Ca5_44207860 2.1
QEI 55.2 Ca3_19996983 21.6
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Table 1. Cont.

Trait Name * Type Total Variation
Explained (%)

Marker Explaining the Largest
Variation in a Trait R2 (%)

PoW
QTN 19.0 Ca4_25847872 3.1
QEI 61.0 Ca5_21206336 11.4

PoNP
QTN 16.3 Ca4_43416762 2.2
QEI 52.7 Ca3_27518251 5.4

100SW
QTN 18.2 Ca7_32823511 2.3
QEI 54.2 Ca4_33626689 4.6

The QTN Ca4_22648344 linked to plant height explained 4.6% of the variation, while
Ca7_14064521 associated with the HFP trait explained the largest percentage of variation at
27.3%. Likewise, four other QEIs, namely Ca2_27433383, Ca4_29141628, Ca5_21206336 and
Ca3_19996983 associated with leaf size (LS), number of secondary branches (NSB), pod
weight per plant (PoW) and plant weight with pods (PWwP), respectively, also explained
more than 10% of the trait variation (Table 1).

Quantitative trait loci are primarily located on chromosomes 1, 4, 5, and 6 (Figure 3a).
QTNs associated with traits PoW, NPB, DF, and Dmat, which showed the most variation
between environments, were identified on chromosomes 4, 5, and 6 (Figure 3b,c). Addi-
tionally, QTNs linked to these traits were also found on chromosomes 1, 2, and 7. The
most QEIs are found on chromosomes 1, 4, and 7. QEIs for DF and Dmat traits are mainly
located on chromosomes 1 and 4, also on chromosome 7. Few QTNs for the Dmat trait are
on chromosome 6 compared to other traits. QEIs for PoW are on all chromosomes except 8.
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Figure 3. QTNs and QEIs associated with traits. (a) Number of markers found on each chromosome.
(b) Manhattan plot displaying QTNs for PoW (i), DF (ii), Dmat (iii) and NPB (iv) across chromosomes.
(c) Manhattan plot displaying QEIs for the aforementioned traits. The abbreviations of trait names
are as shown in Table S1 and Table A1.
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3.4. Known Genes around Predicted QTNs and QEIs

Within the protein-coding genes and their 1 Kb flanking regions, we found 22 QTNs
and 45 QEIs, most likely tagging the candidate causal genes. Functional annotation was
available for 13 QTN-harboring genes and 28 QEI-harboring genes (see Tables 2 and 3).

Table 2. QTNs located within protein-coding genes and their 1 Kb flanking regions. * Abbreviations
of trait names are in Tables S1 and A1; ** gene body, *** 5′—upstream, **** 3′—downstream.

Trait Name * QTN Effect (Add) R2 Gene QTN Position
(bp) Annotation Function

100SW Ca4_47959199 −0.1758 0.89 Ca_10794 GB ** BAG family molecular
chaperone regulator 1 Chaperon

100SW Ca5_8331723 −0.19 1.34 Ca_18706 GB E3 ubiquitin-protein
ligase MBR2

Flowering control,
promotes degradation of

the FT regulator [45]

DF Ca1_27596774 −0.132 1.73 Ca_25069 864 bp, 5′ ***
carbon catabolite

repressor protein 4
homolog 4-like

Regulator of circadian
rhythms [46]

DF Ca3_9196031 0.154 0.59 Ca_20953 824 bp, 3′ **** probable xyloglucan
glycosyltransferase 5 xyloglucan modification

DFst Ca1_8374473 0.166 1.29 Ca_08073 303 bp, 3′ ****
ethylene-responsive
transcription factor

1-like

Response to pathogens
and salinity in plant [47]

DFst Ca2_15613312 0.135 1.94 Ca_18543 440 bp, 3′
pentatricopeptide
repeat-containing
protein At2g33760

HFP Ca4_8807893 0.055 2.19 Ca_08378 GB transcription factor
bHLH106

Salt and low
temperature
response [48]

HFP Ca6_53308665 0.141 1.73 Ca_22925 790 bp, 3′ UDP-
glycosyltransferase 89B2

Transfer of a sugar onto
a lipophilic acceptor [49]

HFP Ca7_14294458 −0.133 1.18 Ca_23043 GB
peptidyl-prolyl cis-trans

isomerase CYP37,
chloroplastic

Regulation of the
electron transport

chain [50]

LS Ca5_7212528 0.177 2.59 Ca_21567 GB AP-5 complex
subunit mu

Vesicle transport
regulator [51]

NPB Ca5_27676347 0.172 2.02 Ca_08885 92 bp, 3′
iron-sulfur assembly
protein IscA-like 1,

mitochondrial

Assembly of
mitochondrial

iron-sulfur proteins [52]

NSB Ca1_22298342 0.13 0.93 Ca_20631 GB 40S ribosomal protein
S28-1-like

PoNP Ca1_26015468 −0.121 1.42 Ca_18590 445 bp, 3′
triose

phosphate/phosphate
translocator,
chloroplastic

Phosphate transport,
light response [53]

PoW Ca5_665190 0.144 1.05 Ca_23223 763 bp, 5′ ninja-family
protein AFP2

Regulator of AREB/ABF
transcription factors [54]

Table 3. QEIs located within protein-coding genes and their 1 Kb flanking regions. * Abbreviations of
trait names are in Tables S1 and A1; ** K16—Kuban in 2016, K22—Kuban in 2022, A—Astrakhan,
*** GB—gene body, 3′—downstream, 5′—upstream.

Trait
Name * QEI Add env1

(K16) **
Add env2

(K22)
ADD

env3 (A) R2 Gene QTN
Position Annotation Function

100SW Ca2_15153528 0.096 −0.144 0.048 1.07 Ca_18572 28 bp, 3′ dof zinc finger protein
DOF1.4-like

Abiotic stress tolerance
[55]

100SW Ca4_12413458 0.056 −0.1268 0.071 0.81 Ca_04464 GB *** cyclic dof factor 1-like
Regulates a

photoperiodic flowering
response [56]

DF Ca4_27283954 0.166 −0.048 −0.118 1.5 Ca_20463 695 bp, 3′
putative Ulp1 protease

family catalytic
domain-containing

protein

SUMO protease [57]
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Table 3. Cont.

Trait
Name * QEI Add env1

(K16) **
Add env2

(K22)
ADD

env3 (A) R2 Gene QTN
Position Annotation Function

DF Ca7_37894908 0.06 −0.133 0.074 0.92 Ca_16382 GB
ubiquitin

carboxyl-terminal
hydrolase 2

Involved in the direct or
indirect regulation of
AUX/IAA proteins

stability [58]

DFst Ca3_22914338 −0.06 0.175 −0.113 1.76 Ca_06215 GB

pentatricopeptide
repeat-containing

protein At2g44880-like,
partial

ABA hypersensitivity at
germination, RNA

editing [59]

DFst Ca5_11805008 0.112 0.003 −0.115 0.95 Ca_17114 GB cucumisin-like Serine protease [60]

DFst Ca7_25029782 0.113 0.035 −0.148 1.34 Ca_23595 GB probable
polygalacturonase

Polygalacturonases
involved in cell

separation in the final
stages of pod shatter and
in anther dehiscence [61]

Dmat Ca1_26611572 0.147 −0.009 −0.138 1.43 Ca_18616 194 bp, 5′ WUSCHEL-related
homeobox 9-like

Homeodomain
transcription factor

required for meristem
growth and early
development [62]

Dmat Ca1_31837660 −0.098 0.009 0.089 0.62 Ca_26401 GB cytokinin
dehydrogenase 6-like

Catalyzes the oxidation
of cytokinins [63]

Dmat Ca3_8285781 −0.025 −0.137 0.162 1.62 Ca_24378 GB

homeobox-leucine
zipper protein

PROTODERMAL
FACTOR 2-like

Regulator of shoot
epidermal cell

differentiation [64]

LS Ca1_42237742 0.262 0.013 −0.275 6.31 Ca_22678 395 bp, 5′ transcription factor
bHLH49-like

Involved in cell
elongation

regulation [65]

NPB Ca4_25599443 0.117 0.011 −0.128 1.29 Ca_16586 GB endochitinase A-like Antifungal protection in
crops [66]

NPB Ca7_28494061 −0.091 −0.016 0.106 0.85 Ca_18936 183 bp, 3′ leucine-rich repeat
extensin-like protein 4

Represent a link between
the cell wall and plasma

membrane [67]

NPB Ca8_8247161 −0.017 0.123 −0.106 1.15 Ca_11459 GB aspartic proteinase-like
protein 2

Pathogen stress response
[68]

PoNP Ca1_3619635 −0.00 0.189 −0.189 2.34 Ca_00444 GB protein MALE
DISCOVERER 2-like

Involved in recognition
female gametes after

pollination [69]

PoNP Ca3_1396781 −0.047 0.258 −0.212 3.75 Ca_19418 GB

protein
DEHYDRATION-

INDUCED 19
homolog 5-like

Involved in dehydration
and salinity stress

signaling pathways [70]

PoNP Ca4_22873605 −0.131 −0.06 0.191 1.89 Ca_14464 518, bp 5′
putative disease

resistance protein
At3g14460

PoNP Ca5_17861341 −0.028 −0.143 0.17 1.65 Ca_22848 GB aspartyl protease family
protein At5g10770-like aspartyl protease

PoNP Ca6_47911283 −0.151 0.056 0.095 1.15 Ca_23445 GB alanine aminotransferase
2-like alanine aminotransferase

PoNP Ca7_20945484 −0.035 0.175 −0.139 1.68 Ca_14487 863 bp, 3′
Retrovirus-related Pol

polyprotein from
transposon TNT 1-94

PoW Ca2_6214519 −0.249 0.024 0.225 3.56 Ca_20925 775 bp, 3′ fructose-bisphosphate
aldolase 1, chloroplastic

Involved in
photosynthesis [71]

PoW Ca2_12581771 0.003 0.16 −0.163 1.64 Ca_18081 GB ATP synthase subunit
delta’, mitochondrial [72]

PoW Ca2_18976694 0.12 −0.014 −0.105 0.8 Ca_15955 GB B3 domain-containing
protein At5g42700-like

AP2/B3-like
transcriptional factor

[73]

PoW Ca2_34943639 −0.067 0.2 −0.139 2.07 Ca_16876 GB
tRNA

(guanine(26)-N(2))-
dimethyltransferase

Posttranscriptional
modification of tRNA

[74]

PoW Ca3_8932912 −0.351 0.047 0.304 6.83 Ca_25280 GB alcohol
dehydrogenase-like 6 alcohol dehydrogenase
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Table 3. Cont.

Trait
Name * QEI Add env1

(K16) **
Add env2

(K22)
ADD

env3 (A) R2 Gene QTN
Position Annotation Function

PoW Ca6_15593063 0.038 −0.222 0.184 2.66 Ca_05341 GB protein EMBRYO
DEFECTIVE 514 [75]

PWwP Ca3_19996983 0.103 0.589 −0.692 21.59 Ca_09401 GB proteasome subunit beta
type-4-like

PWwP Ca4_24437355 −0.218 −0.019 0.2367 2.69 Ca_20867 194 bp, 3′ cyclase-associated
protein 1

Increases the rate of
nucleotide exchange on

actin [76]

3.5. Superior Genotypes for Key Traits

The development of high-yielding and early-maturing chickpea varieties is limited
by a significant reduction in genetic and adaptive variation. Chickpea landraces provide
a wide range of genetic variations that have not been thoroughly explored and utilized
systematically by breeders [77,78].

To identify genotypes with high yield and early maturation among the VIR landraces
we calculated two statistics, namely (1) the number of favorable alleles of the QTN and
QEI loci controlling Dmat and yield-related traits (PoW, PoNP, PWwP and 100SW), and
(2) the “trait improvement” (TI) score as the difference between the number of favorable
alleles and the alleles negatively affecting the trait for each accession. Since QEI loci are
environment-specific, the repertoire of the QEI alleles in samples was assessed for each
environment separately.

The number of favorable alleles for the QTNs associated with the Dmat trait does
not exceed four in the samples (Table S10). The highest TI score of 4 or 5 is calculated for
14 samples. The number of favorable alleles for the QTN loci associated with yield-related
traits ranges from 17 to 26 (Table S11). Twenty two samples had a TI score higher than 10,
and two of them have the highest TI score of 13.

In the Kuban region, there are more favorable alleles of the QEI loci for the Dmat trait
and fewer alleles with negative effects compared to the Astrakhan OS (Tables S12–S14). The
highest TI score for landraces grown in the Kuban region in 2016 and 2022 ranges from 4 to
9, with 26 accessions scoring in this interval at each of the outstations (Tables S12 and S13).
In the Astrakhan region, only four landraces have positive TI scores, with a value not
exceeding 3 (Table S14).

A similar situation was observed for the QEI loci associated with yield-related traits:
in the Kuban region, 21 accessions in 2016 and 11 in 2022 showed the highest value of TI
score in the interval from 6 to 16, with the number of favorable alleles ranging from 29 to 40
(Tables S15 and S16). However, in Astrakhan, a large number of favorable alleles (from 25
to 32) is counterbalanced by an equally large number of alleles characterized by a negative
effect. As a result, only five samples produced a positive TI score value (Table S17).

Landraces VIR1171, VIR0603, VIR0620, and VIR0668 grown at the Kuban OS in 2016
are characterized by high TI scores for both QTN and QEI loci associated with the Dmat trait.
However, we found only two such landraces, namely, VIR0620 and VIR0799 cultivated at
the Kuban OS in 2022 (Table S18). In addition, the VIR0230, VIR0244, VIR0030 and VIR0042
landraces at the Kuban OS in 2016, VIR0637 at the Kuban OS in 2022, as well as VIR0855 at
the Astrakhan OS show high TI values for the QTNs and QEIs related to productivity.

High TI score values for QEI loci associated with the Dmat and yield-related traits
are observed in two landraces, namely VIR0241 and VIR0918 at the Kuban OS in 2016 and
2022, respectively (Table S19).

4. Discussion

In recent years, mixed linear models have been extensively utilized to predict genomic
regions linked to crucial traits in chickpeas [22,24,25,31,79]. However, the majority of
these models [3,4,80] merely address the additive effects of markers and fail to estimate



Agronomy 2024, 14, 1762 12 of 19

dominance effects or gene-by-environment interactions. Importantly, the IIIVmrMLM
model [12,13] utilized in this study enables the comprehensive evaluation of these effects.

Cultivars are evaluated based on their performance when grown in different envi-
ronments [81,82]. Traits important for commercial agriculture, such as yield and maturity,
often vary significantly between environments due to genotype-by-environment interac-
tions. Therefore, it is essential to model these interactions and assess a genotype’s ability
to provide adaptive alleles for the successful breeding of resilient and sustainable crop
varieties [77].

In this study, 159 accessions from the VIR collection, including 145 landraces and
13 cultivars, were planted in three different environments. The first two environments
were the Kuban outstation in 2016 and 2022, and the third was the Astrakhan OS in 2022.
In 2022 at the Kuban outstation, daily temperatures were lower compared to 2016, and
precipitation levels were higher. The Astrakhan OS experienced the hottest and driest
agricultural conditions across all environments (see Tables S2–S4 for details).

The evaluation of 12 important agronomic traits (Table S1) revealed significant varia-
tion within a single environment and across different environments (Table S5, Figure 1a).
The most pronounced variation across environmental gradients was observed for pro-
ductivity and phenological traits, suggesting a genotype-by-environment interaction. To
comprehend the genetic factors responsible for trait variation across different environments,
we utilized the IIIVmrMLM program in Multi_env (multi-environment) mode.

We have confidently identified a total of 161 QTNs with stable genetic effects across
various environments and 256 QEIs with environment-specific effects (Tables S8 and S9).
Collectively, both QTNs and QEIs account for a significant proportion of the variation
across traits (Table 1).

Twenty two QTNs and 45 QEIs are linked to protein-coding genes, likely identifying
potential causal genes (see Tables 2 and 3). The functions of many of these genes are
known. For instance, Ca5_8331723, which is associated with 100SW, is located within the
Ca_18706 gene for E3 ubiquitin-protein ligase MBR2. This gene promotes the degradation
of the Flowering Locus T regulator in Arabidopsis [45] (Table 2). The QTNs Ca1_27596774
and Ca1_8374473, which impact phenological traits, are found in the flanking regions of
Ca_25069 and Ca_08073 genes, respectively. These genes control circadian rhythm [46]
as well as the response to pathogens and salinity [47]. The QTN Ca4_8807893, associated
with the HFP trait, is located in the Ca_08378 gene, which encodes the transcription fac-
tors involved in responding to unfavorable environmental conditions [48]. The QTNs
Ca6_53308665 and Ca1_26015468, associated with HFP and PoNP, respectively, are down-
stream of the Ca_22925 and Ca_18590 genes, which control sugar [49] and phosphate
transport [53]. QTN Ca5_665190, associated with PoW, is upstream of the Ca_23223 gene
implicated in hormone signaling [54].

Quantitative trait loci such as Ca7_37894908, Ca7_25029782 and Ca1_31837660 (see
Table 3), associated with phenological traits, are located within genes that control AUX/IAA
protein stability, cell separation during pod formation [58,61], and the oxidation of cy-
tokinins [63], respectively. The QEIs Ca1_26611572 and Ca3_8285781, associated with the
time from germination to full maturation (i.e., Dmat), map to the Ca_18616 and Ca_24378
genes. These genes encode a transcription factor participating in the regulation of meristem
growth [62] and a homeobox-leucine zipper protein PROTODERMAL FACTOR 2-like
(Table 3), respectively. Incidentally, PROTODERMAL FACTOR 2 regulates the differentia-
tion of shoot epidermal cells in Arabidopsis [64].

The QEI Ca1_42237742, associated with leaf size, is upstream of the Ca_22678 gene
involved in the regulation of cell elongation [65]. The QEI Ca7_28494061, associated with
NPB, is located 183 bp downstream of the Ca_18936 gene, which encodes leucine-rich repeat
extensin-like protein 4. This might coordinate processes in the cell wall, as leucine-rich
extension receptors are known to do [67].

Ca1_3619635, which is located within the Ca_00444 gene involved in gamete recog-
nition, is associated with the number of pods. The recognition of female gametes after
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pollination is crucial for successful seed formation [69]. Another QEI, Ca4_24437355, asso-
ciated with the weight of plants with pods, is downstream of the Ca_20867 gene involved
in actin dynamics [76].

According to the recent findings [83], only 4 QTNs and 5 QEIs were found to overlap
with the QTNs identified using Super, FarmCPU, and Blink models of the GAPIT package
(Table S20). One of these QTNs, Ca3_8285781, which is associated with NSB, falls into the
Ca_24378 encoding PROTODERMAL FACTOR 2-like. The limited overlap between the
results of these two analyses can be attributed to GAPIT identifying associated markers for
each environment separately, while IIIVmrMLM in Multi_env mode predicts associations
for the three environments simultaneously.

The comparison of GWAS hits with genomic regions from previous studies reveals
that 48 QTNs and 88 QEIs intersect within the LD limits (50 kb) of QTNs identified in
studies [21,22] (Tables S21 and S22). Although different studies assess slightly different
traits, it is not surprising that many matched QTNs are associated with various traits.
For instance, the study by Varshney et al. [21] measured days to 50% flowering instead
of the Dmat, DF, and DFst traits from our study. Nevertheless, most of the associated
traits, while different, measure the same characteristics of the plant, such as 100 seed
weight, yield per plant, harvest index, and the number of primary and secondary branches
characterizing productivity.

This study definitively established that VIR landraces possess multiple favorable
alleles of the QTN loci with stable effects in varying climatic conditions of the Kuban and
Astrakhan regions (Refer to Tables S10 and S11). Furthermore, a greater number of Kuban-
specific favorable alleles of the QEI loci compared to the Astrakhan-specific ones (See
Tables S12–S17) was observed. The impact of the favorable alleles of the QEI loci associated
with the Dmat trait in the Astrakhan region is undeniably additive (see Figure 4), but it is
adequately balanced by an equivalent or even larger number of negative alleles, as sown in
Table S14. Despite these findings, it was irrefutable that the accessions in the Astrakhan OS
matured at a faster rate than those in the Kuban region (Figure 1a and Table S5), suggesting
that the explanation for this observation likely lies within the gene-by-gene interactions.

The analysis reveals negative correlations between maturation time (the Dmat trait)
and several beneficial alleles for Astrakhan-specific QEI loci and loci specific for Kuban
in 2016 (Figure 4). Conversely, a positive correlation is observed between productivity
traits and the number of favorable alleles for most markers and traits, except for the PoW
and 100SW traits measured at the Kuban OS in 2016. In these cases, the correlation was
found to be statistically insignificant, with p-values equal to 0.66 and 0.41, respectively. The
identified markers’ additive effect on most traits suggests that accessions carrying more
favorable alleles are conducive to breeding through the pyramiding of loci.

Large-effect quantitative trait loci (QEIs) such as Ca2_27433383, Ca4_29141628,
Ca5_21206336, and Ca3_19996983 (see Table 1) can be incorporated into marker-assisted
selection programs, while markers with minor effects are more likely to be utilized in
genomic selection (GS) in combination with markers with large effects. Previously GS
models have been employed for the prediction of yield traits in chickpea [32,33]. In this
context, the environment-specific alleles of the QEI loci (Table S9) are particularly signifi-
cant, as breeders can utilize them to develop varieties with improved adaptation to specific
climatic conditions.
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5. Conclusions

The genetic and phenotypic variation present in chickpea landraces has yet to be
comprehensively explored. This study aims to expand the genetic diversity of chickpea by
identifying landraces with adaptive and favorable alleles that control maturity and yield-
related traits, with a specific focus on the VIR landraces. The assessment of traits in varying
environments in the Kuban and Astrakhan regions revealed significant variation across
environmental gradients, indicating genotype-by-environment interactions. To thoroughly
examine stable and environment-specific effects, the IIIVmrMLM model was employed.
The results showed that the VIR landraces possess numerous favorable alleles of the QTN
loci, with stable effects in all tested environments. Importantly, they demonstrate a greater
abundance of Kuban-specific alleles of the QEI loci compared to the Astrakhan-specific ones.
The annotation of the genetic repertoire of favorable alleles in landraces is fundamental
and imperative as the first step towards their integration into modern breeding programs.
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Appendix A

Table A1. Abbreviations of trait names.

Abbreviation Trait

NPB Number of primary branches
NSB Number of secondary branches
PH Plant height, sm
HFP Height to the first pod
PWwP Plant dry weight with pods, g
PoW Pod weight per plant, g
PoNP Pod number per plant
100SW 100 seed weight, g
LS Leaf size
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