Evaluation of the Quality of New Japonica Rice Resources in Three Provinces of Northeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of the Field Experiment
2.3. Measurement of Rice Characteristics
2.3.1. Grain Shape
2.3.2. Taste Analysis
2.3.3. Sensory Evaluation of Taste
2.3.4. Determination of Water Content
2.3.5. Gelatinization Characteristics
2.4. Data Analysis
3. Results and Discussion
3.1. Target Taste Characteristics of Japonica Rice Growing in Northeastern China and Their Coordination with Other Quality Traits
3.2. Differences in Taste among Rice Varieties Growing in Northeastern China
3.3. Some Reflections on the Breeding of New Varieties of Edible Rice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruan, J.M.; Zhang, J.; Liu, Y.H.; Dong, W.J.; Meng, Y.; Deng, A.X. Effects of free air temperature increase on nitrogen utilization of rice in northeastern China. Acta Agron. Sin. 2022, 48, 193–202. [Google Scholar] [CrossRef]
- Chen, P.; Liu, J.C.; Zhao, X.S. Demand elasticity estimation and market potential of middle and high-end rice in China: A case study of the yangtze river delta market. China J. Rice Sci. 2023, 37, 102–112, (In Chinese with English Abstract). [Google Scholar]
- National Agricultural and Food Research Organization. New Rice for Multi-Use; Noro: Tsukuba, Japan, 2012; pp. 1–3. (In Japanese) [Google Scholar]
- Uehara, Y. Breeding, diffusion and adoption as parents of rice varieties,”kinuhikari” and “dontokoi” with a superior eating quality, excellent grain quality and stable high yielding ability. Res. Breed. Sci. 2001, 3, 157–167. (In Japanese) [Google Scholar] [CrossRef]
- Kobayashi, A.; Tomita, K.; Hayashi, T.; Tanoi, M.; Machida, Y.; Nakaoka, F. A new rice cultivar with high eating quality, ‘Ichihomare’. Res. Breed. Sci. 2018, 20, 138–143. (In Japanese) [Google Scholar] [CrossRef]
- Li, H.; Zhou, S.C.; Huang, D.Q.; Wang, Z.D.; Wang, Z.R.; Zhou, D.G. Breeding and enlightenment of high quality fragrant rice Meixiangzhan 2. Fujian Daomai Tech. 2021, 39, 1–6. [Google Scholar]
- Ma, H.Z. Comparative Study on Quality Characteristics of High-Quality Edible and Flavorful japonica Rice in Different Ecological Regions. Master’s Thesis, Yangzhou University, Yangzhou, China, 2021; pp. 83–84. [Google Scholar]
- Li, H.; Zhang, R.Y.; Dai, C.J.; Lan, J. Comparison of rice quality differences in three provinces of Northeast China. Chin. Rice 2013, 19, 18–22. [Google Scholar]
- Chen, M.J. Study on Rice Quality Formation and Starch Characteristics in the Core Area of High-Quality Japonica Rice Production in Northeast China. Ph.D. Thesis, Jilin University, Changchun, China, 2022; p. 123. [Google Scholar]
- Ahmed, N.; Tetlow, I.; Nawaz, S.; Iqbal, A.; Mubin, M.; Rehman, M.; Butt, A.; Lightfootc, D.; Maekawa, M. Effect of high temperature on grain filling period, yield, amylase content and activity of starch biosynthesis enzymes in endosperm of basmati rice. J. Food Agric. Environ. 2015, 95, 2237–2243. [Google Scholar] [CrossRef] [PubMed]
- Teng, B.; Zeng, R.; Wang, Y.; Liu, Z.; Zhang, Z.; Zhu, H.; Ding, X.; Li, W.; Zhang, G. Detection of allelic variation at the Wx locus with single segment substitution lines in rice (Oryza sativa L). Mol. Breed. 2012, 30, 583–595. [Google Scholar] [CrossRef]
- Nakamura, S.; Satoh, H.; Ohtsubo, K. Development of formulae for estimating amylose content, amylopectin chain length distribution, and resistant starch content based on the iodine absorption curve of rice starch. Biosci. Biotech. Bioch. 2015, 79, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Prakash, S.; Nicholson, T.M. Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohyd. Polym. 2016, 146, 253–263. [Google Scholar] [CrossRef]
- Tsai, C.L.; Sugiyama, J.; Shibata, M. Changes in the texture and viscoelastic properties of bread containing rice porridge during storage. Biosci. Biotech. Bioch. 2012, 76, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Zhang, J.G.; Yang, C.G.; Sun, Q. Effect of different growing environment on taste quality of rice. Jilin Agric. Sci. 2008, 33, 1–4+24. [Google Scholar]
- Qin, K.X.; Liu, L.L.; Liu, T.Y.; Cheng, W.H.; Shi, Y.G. Correlation between physicochemical properties and eating qualities of rice. J. Northeast Agric. Univ. (Engl. Ed.) 2014, 21, 60–67. [Google Scholar]
- Li, X.H.; Pan, G.J.; Zhang, R.Y.; Meng, Q.H.; Cheng, A.H.; Wang, W.W. Current status of palatability quality of japonica rice variety and promotion strategy. North. Rice 2009, 39, 71–74. [Google Scholar]
- Wei, X.S. Study on Regional Difference of High-Quality Japonica Rice Quality. Master’s Thesis, Jilin University, Changchun, China, 2020; p. 49. [Google Scholar]
- Zhao, L.Y.; Duan, X.L.; Liu, H.B. Novel grade classification tool with lipidomics for Indica rice eating quality evaluation. Foods 2023, 12, 944. [Google Scholar] [CrossRef] [PubMed]
- National Standard of the People’s Republic of China. Sensory Evaluation Method for Cooking and Edible Quality of Paddy and Rice. In General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; National Standard of the People’s Republic of China: Beijing, China, 2018; pp. 1–16. [Google Scholar]
- Umemoto, T.; Aoki, N.; Lin, H.; Nakamura, Y.; Inouchi, N.; Sato, Y.; Yano, M.; Hirabayashi, H.; Maruyama, S. Natural variation in rice starch synthase IIa affects enzyme and starch properties. Funct. Plant Biol. 2004, 31, 671–684. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, Z.; Cui, J.; Matsue, Y.; Ogata, T.; Kusutani, A. Sensory Ttest for the palatability of japanese rice cultivars by Chinese and Japanese panels. Jpn. J. Crop Sci. 2015, 84, 176–181. [Google Scholar]
- Matsunami, M.; Matsunami, T.; Ogawa, A.; Toyofuku, K.; Kodama, I.; Kokubun, M. Genotypic variation in biomass production at the early vegetative stage among rice cultivars subjected to deficient soil moisture regimes and its association with water uptake capacity. Plant Prod. Sci. 2012, 15, 82–91. [Google Scholar] [CrossRef]
- Matsuo, N.; Mochizuki, T. Growth and yield of six rice cultivars under three water-saving cultivations. Plant Prod. Sci. 2009, 12, 514–525. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, X.; Cup, Z.; Huang, X.; Kusutani, A.; Ito, S.; Matsue, Y. Physicochemical properties related to palatability of Chinese japonica–type rice. J. Fac. Agric. Kyushu Univ. 2016, 61, 59–63. [Google Scholar] [CrossRef]
- Ma, Z.H.; Wang, Y.B.; Cheng, H.T.; Zhang, G.C.; Lyu, W.Y. Biochemical composition distribution in different grain layers is associated with the edible quality of rice cultivars. Food Chem 2020, 311, 125896. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, D.; He, L.H.; Wang, T.; Lu, H.; Yang, F. Correlation of taste values with chemical compositions and Rapid Visco Analyser profiles of 36 indica rice (Oryza sativa L.) varieties. Food Chem. 2021, 349, 129176. [Google Scholar] [CrossRef] [PubMed]
- Mao, T.; Zhang, Z.; Ni, S.J.; Zhao, Y.Z.; Li, X.; Zhang, L.L. Assisted selection of eating quality progeny of indica (O. sativa L. ssp. indica) and japonica (O. sativa L. ssp. japonica) hybrids using rice starch properties. Genet. Resour. Crop. Evol. 2021, 68, 411–420. [Google Scholar] [CrossRef]
- Shi, S.J.; Wang, E.T.; Li, C.X.; Cai, M.L.; Cheng, B.; Cao, C.G. Use of protein content, amylose content, and RVA parameters to evaluate the taste quality of rice. Front. Nutr. 2022, 8, 758547. [Google Scholar] [CrossRef] [PubMed]
- Okadome, H.; Toyoshima, H.; Ohtsubo, K. Many-sided evaluation of physical properties of cooked rice grains with a single apparatus. Nippon. Shokuhin Kagaku Kogaku Kaishi 1996, 43, 1004–1011, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Allahgholipour, M.; Ali, A.J.; Alinia, F.; Nagamine, T.; Kojima, Y. Relationship between rice grain amylose and pasting properties for breeding better quality rice varieties. Plant Breed. 2010, 125, 357–362. [Google Scholar] [CrossRef]
- Li, C.F.; Ji, Y.; Li, E.P. Understanding the influences of rice starch fine structure and protein content on cooked rice texture. Starch 2022, 74, 253. [Google Scholar] [CrossRef]
- Champagne, E.T.; Bett-Garber, K.L.; Thomson, J.L.; Fitzgerald, M.A. Unraveling the impact of nitrogen nutrition on cooked rice flavor and texture. Cereal Chem. 2009, 86, 274–280. [Google Scholar] [CrossRef]
- Balindong, J.L.; Ward, R.M.; Liu, L.; Rose, T.J.; Pallas, L.A.; Ovenden, B.W.; Snell, P.J.; Waters, D.L.E. Rice grain protein composition influences instrumental measures of rice cooking and eating quality. J. Cereal Sci. 2018, 79, 35–42. [Google Scholar] [CrossRef]
- Ma, Z.H.; Gao, M.H.; Cheng, H.T.; Song, W.W.; Lu, L.J.; Lyu, W.Y. Differences in rice component distribution across layers and their relationship to taste. J. Sci. Food Agric. 2024, 104, 1824–1832. [Google Scholar] [CrossRef]
Region | Parameter | Score | Smell | Appearance | Palatability | Taste |
---|---|---|---|---|---|---|
Liaoning Kaiyuan | Value | 0.90 ± 0.41 a | 0.77 ± 0.35 a | 0.97 ± 0.50 a | 0.94 ± 0.45 a | 0.75 ± 0.38 a |
Variable coefficient | 0.45 | 0.45 | 0.52 | 0.48 | 0.50 | |
Range of variation | −0.05 to 1.33 | −0.06 to 1.17 | 0.00–1.50 | −0.13 to 1.60 | −0.08 to 1.17 | |
Liaoning Panjin | Value | 0.67 ± 0.59 a | 0.92 ± 0.46 a | 0.78 ± 0.60 a | 0.80 ± 0.53 a | 0.53 ± 0.53 a |
Variable coefficient | 0.87 | 0.50 | 0.77 | 0.67 | 0.99 | |
Range of variation | −0.31 to 1.38 | −0.45 to 1.46 | −0.18 to 1.40 | −0.31 to 1.50 | −0.27 to 1.25 | |
Heilongjiang | Value | 0.73 ± 0.49 a | 0.94 ± 0.32 a | 0.76 ± 0.66 a | 0.83 ± 0.47 a | 0.77 ± 0.35 a |
Variable coefficient | 0.67 | 0.34 | 0.87 | 0.57 | 0.46 | |
Range of variation | −0.31 to 1.55 | 0.00–1.46 | −0.33 to 1.82 | −0.25 to 1.55 | −0.08 to 1.20 | |
Jilin | Value | 0.90 ± 0.56 a | 0.84 ± 0.66 a | 0.84 ± 0.58 a | 0.62 ± 0.68 a | 0.59 ± 0.54 a |
Variable coefficient | 0.62 | 0.78 | 0.69 | 1.10 | 0.92 | |
Range of variation | 0.00–1.65 | −0.29 to 1.94 | −0.36 to 1.65 | −0.31 to 1.73 | −0.08 to 1.36 |
Region | Parameter | Taste Value | Appearance | Flavor |
---|---|---|---|---|
Liaoning Kaiyuan | Value | 75.63 ± 3.79 b | 7.20 ± 0.42 b | 7.34 ± 0.41 c |
Variable coefficient | 0.05 | 0.06 | 0.06 | |
Range of variation | 68.83–80.17 | 6.38–7.75 | 6.58–7.82 | |
Liaoning Panjin | Value | 77.31 ± 3.58 ab | 7.50 ± 0.35 a | 7.60 ± 0.42 bc |
Variable coefficient | 0.05 | 0.05 | 0.05 | |
Range of variation | 71.67–84.00 | 6.93–8.03 | 6.97–8.38 | |
Heilongjiang | Value | 78.36 ± 3.39 a | 7.77 ± 0.47 a | 7.89 ± 0.45 a |
Variable coefficient | 0.04 | 0.06 | 0.06 | |
Range of variation | 71.33–85.00 | 6.92–8.60 | 7.07–8.67 | |
Jilin | Value | 78.28 ± 2.93 a | 7.67 ± 0.36 a | 7.74 ± 0.35 ab |
Variable coefficient | 0.04 | 0.05 | 0.04 | |
Range of variation | 72.50–83.67 | 7.03–8.20 | 7.08–8.35 |
Region | Parameter | AAC | Fa | Fb3 | Fb1+Fb2 | Protein |
---|---|---|---|---|---|---|
Liaoning Kaiyuan | Value | 16.88 ± 2.35 ab | 33.38 ± 0.05 ab | 12.69 ± 1.36 ab | 53.93 ± 1.41 bc | 6.23 ± 0.33 a |
Variable coefficient | 0.140 | 0.001 | 0.107 | 0.026 | 0.053 | |
Range of variation | 11.15–19.21 | 33.28–33.43 | 9.62–14.18 | 52.39–57.11 | 5.62–6.67 | |
Liaoning Panjin | Value | 17.64 ± 1.18 a | 33.39 ± 0.040 a | 13.08 ± 1.17 a | 53.52 ± 1.21 c | 6.51 ± 0.48 a |
Variable coefficient | 0.070 | 0.001 | 0.089 | 0.023 | 0.073 | |
Range of variation | 15.47–20.11 | 33.28–33.44 | 9.84–14.58 | 51.98–56.88 | 5.63–7.13 | |
Heilongjiang | Value | 17.75 ± 1.32 a | 33.36 ± 0.037 bc | 12.05 ± 1.10 bc | 54.59 ± 1.14 ab | 5.59 ± 0.33 b |
Variable coefficient | 0.070 | 0.001 | 0.091 | 0.021 | 0.059 | |
Range of variation | 14.48–19.70 | 33.29–33.42 | 10.02–13.88 | 52.69–56.69 | 4.91–6.25 | |
Jilin | Value | 16.19 ± 2.20 b | 33.34 ± 0.053 c | 11.47 ± 1.57 c | 55.19 ± 1.62 a | 6.23 ± 0.57 a |
Variable coefficient | 0.140 | 0.002 | 0.136 | 0.029 | 0.092 | |
Range of variation | 9.72–19.93 | 33.22–33.45 | 8.03–14.87 | 51.68–58.75 | 5.41–7.77 | |
Best material | Yujingxiang6 | 18.94 | 33.42 | 13.82 | 52.76 | 6.64 |
Hetianxiang1 | 18.31 | 33.42 | 13.86 | 52.72 | 6.10 | |
Xinhe981 | 18.31 | 33.37 | 12.30 | 54.33 | 5.25 | |
Jijing830 | 13.54 | 33.36 | 12.12 | 54.52 | 6.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Jyu, X.; Gao, M.; Cheng, H.; Lyu, W. Evaluation of the Quality of New Japonica Rice Resources in Three Provinces of Northeastern China. Agronomy 2024, 14, 1776. https://doi.org/10.3390/agronomy14081776
Ma Z, Jyu X, Gao M, Cheng H, Lyu W. Evaluation of the Quality of New Japonica Rice Resources in Three Provinces of Northeastern China. Agronomy. 2024; 14(8):1776. https://doi.org/10.3390/agronomy14081776
Chicago/Turabian StyleMa, Zhaohui, Xinyue Jyu, Minghui Gao, Haitao Cheng, and Wenyan Lyu. 2024. "Evaluation of the Quality of New Japonica Rice Resources in Three Provinces of Northeastern China" Agronomy 14, no. 8: 1776. https://doi.org/10.3390/agronomy14081776
APA StyleMa, Z., Jyu, X., Gao, M., Cheng, H., & Lyu, W. (2024). Evaluation of the Quality of New Japonica Rice Resources in Three Provinces of Northeastern China. Agronomy, 14(8), 1776. https://doi.org/10.3390/agronomy14081776