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Abstract: Vegetation indices are widely used to assess vegetation dynamics. The Normalized
Vegetation Index (NDVI) is the most widely used metric in agriculture, frequently as a proxy for
different physiological and agronomical aspects, such as crop yield or biomass, crop density, or
drought stress. Much effort has therefore been directed to NDVI forecasting, which is usually
correlated with precipitation. However, in Mediterranean and arid climates, the relationship is
more complex due to prolonged dry periods and sparse precipitation events. In this study, we
forecast the NDVI 7 and 30 days ahead for Mediterranean permanent grasslands using a machine
learning Random Forest (RF) model for the period from 2015 to 2022. The model compares two soil
moisture products as predictors: simulated soil moisture values based on in situ soil moisture sensor
observations and remote sensing-derived observations of Soil Water Index (SWI) values. We further
analyzed the anomalies of the predicted NDVI using the z-score. The results show that both products
can be used as reliable predictors for permanent grasslands in Mediterranean areas. Predictions at
7 days are more accurate and better forecast the negative effect of drought on vegetation dynamics
than those at 30 days. This study shows the potential of using a simple methodology and readily
available data to predict the grassland growth dynamics in the Mediterranean area.

Keywords: Random Forest; grassland; SWI; vegetation index

1. Introduction

Savanna-like agroforestry systems cover about 3.5 million hectares in Mediterranean
Europe and about 1 million hectares in North Africa [1,2]. This land use is composed of
scattered oak trees (Quercus rotundifolia), and permanent grassland (unrenewed herbage
layer of 5 or more years) for livestock grazing [2]. In the Iberian peninsula, savanna-like
systems are called Dehesa in Spain and Montado in Portugal; these names refer to the fact
that the land is divided into large plots bordered by stone walls, where rotational grazing
(rangeland) is practiced [2]. Grassland ecosystems play an important role in sustaining
the economy of marginal lands in the Mediterranean through livestock production and
in preserving their endemic biodiversity and cultural heritage [3]. Drought is a severe
natural event with a gradual onset, vast impact range, long duration, and the potential to
recur frequently within short periods, resulting in significant losses. As global warming
progresses, the frequency of droughts has been notably increasing [4,5]. Most regions
worldwide experience droughts, particularly arid areas, where annual rainfall is limited to
a few events. The impact of drought on vegetation is profound, as it influences the thermal
inertia of the soil and atmosphere, surface temperature, soil moisture, and rainfall, among
other environmental factors. Satellite-based indices have proven effective in detecting and
identifying drought conditions globally [6–8]. Mediterranean grasslands are especially
vulnerable to drought. These ecosystems are heavily influenced by climatic factors such
as precipitation and temperature, which control the soil moisture content and vegetation
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growth [9,10]. Indeed, in the Mediterranean climate, grassland production is limited due to
frequent long, dry summers, which cause severe crop yield drops and, hence, important
economic losses. This susceptibility of Mediterranean grasslands to drought is increasingly
exacerbated by climate change [11]. Therefore, accurate forecasts of grassland yield, particu-
larly during dry periods, are crucial for both farmers and policymakers to apply mitigation
measures and, hence, ensure food security [12]. In recent years, the integration of earth
observation technologies has significantly advanced the field of environmental monitoring.
Researchers have leveraged the Sentinel-1 and Sentinel-2 EO data, as well as innovative
machine learning techniques, to address critical challenges in water resource management,
crop growth assessment, and long-term ecological studies. Numerous quantitative tech-
niques have been suggested and used to examine the dynamics and distribution of soil
moisture across various scales. Soil moisture can be determined through two primary
techniques: direct and indirect methods. The gravimetric method is the most accurate
for measuring soil surface moisture in direct soil moisture estimation. This technique in-
volves physically extracting a soil sample, drying it to remove moisture, and then weighing
it to determine the moisture content. Although it provides precise measurements, the
gravimetric method is labor-intensive, expensive, complex, and potentially destructive
to the sampling site [13]. Indirect methods, such as time domain reflectometry (TDR)
and frequency domain reflectometry (FDR), offer accurate soil moisture measurements
without the need for sample extraction. These techniques involve sending electromagnetic
waves into the soil and measuring the reflected signals to determine moisture content.
TDR and FDR are known for their high temporal resolution and ability to provide direct
measurements at various depths. However, their spatial representation is limited, which
can be a significant drawback for large-scale studies [14,15]. Emerging technologies, such
as cosmic-ray neutron sensing (CRNS) and global positioning system (GPS) techniques,
partially address the spatial representation issue. CRNS measures soil moisture by de-
tecting changes in the neutron flux emitted from the soil, providing a non-invasive and
large-scale moisture estimation. Several studies have shown that CRNS maintains accuracy
comparable to point sensors even under adverse conditions. GPS-based methods utilize
signal reflections from the ground to estimate soil moisture, offering another innovative
approach to large-scale soil moisture monitoring [16]. Using SSM estimating instruments
presents specific advantages, including portability, ease of installation, operation, and main-
tenance, and the relative maturity of the technologies. These instruments can provide high
temporal resolution and direct measurements at various depths. However, the challenges
associated with these methods include their labor-intensive nature, high cost, complexity,
and potential destructiveness, particularly in the case of gravimetric sampling. Despite
these challenges, the ongoing development and integration of new technologies continue
to enhance the accuracy and applicability of soil moisture measurement techniques [17].

Efremova et al. [18] conducted a study focusing on efficient soil moisture content
(SMC) mapping using Sentinel-1 and Sentinel-2 data. Their methodology, employing a
cycle-consistent adversarial network (CycleGAN) for time-series gap filling, demonstrated
promising results in vineyards in South Australia’s Eden Valley. The use of Random
Forest (RF) algorithms outperformed other machine learning models, showcasing the
potential for accurate and real-time SMC predictions. Wentao Yu et al. [19] delved into the
prediction of vegetation properties using deep recurrent neural networks with long short-
term memory and gated recurrent units. Their models proved highly accurate in predicting
vegetation indices based on historical observations from MODIS and Sentinel-2 data. The
pixel-based models exhibited superior performance compared with traditional models,
offering precise predictions across different regions, vegetation types, and growing seasons.
Geng et al. [20] introduced an innovative approach aimed at prolonging the temporal
coverage of soil moisture (SM) products by employing an artificial neural network in
conjunction with MODIS optical products. Their method proved to be viable in regions
characterized by moderate vegetation cover, offering a valuable resource for extensive
ecological and hydrological studies over extended periods. The resulting long-term SM
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products exhibited a robust correlation with on-site measurements, underscoring the
capability of this approach to contribute to the improvement of global water cycle studies.
Tong et al. [21] addressed the significant gaps in Soil Moisture Active Passive (SMAP) data
over the Tibetan Plateau. They proposed two methods: a machine learning technique using
a Random Forest algorithm and a geostatistics technique employing ordinary kriging. Both
methods demonstrated high correlation with official SMAP SM products, indicating their
potential to fill gaps and to reconstruct complete SM data over this critical region. The
results were cross-validated, showing robust performance with low root mean square error
(RMSE) values.

Different methods have been developed for predicting grassland dynamics and yield
using weather forecasting. McDonnel et al. [22], attempted 1- and 6-day forecasts of the
grassland dynamics using management inputs, such as fertilizer application, and weather
inputs, such as temperature and precipitation. Trnka et al. [23] developed an accurate
grassland growth model, including not only the weather and the fertilizer application as
inputs, but also the soil moisture balance. The benefit of using soil moisture information is
that it integrates weather, evapotranspiration, plant-available water and, hence, vegetation
state information. Indeed, soil moisture is an essential driver of grassland dynamics; it can
explain up to 60% of the grassland yield variability and, when considered in productivity
models, greatly improve model performance [24]. In the literature, vegetation dynamics are
commonly monitored by remote sensing techniques, and, in particular, by using the Nor-
malized Difference Vegetation Index (NDVI). NDVI is a simple indicator of the vegetation
greenness, and it is widely applied to estimate vegetation density and crop yields [25,26].
Notably, in Spain, the NDVI is used for agricultural insurance purposes to quantify grass-
land yield losses during the growing season (October–June) and compensations due to
drought or extreme weather conditions [27]. Previous studies have shown that the NDVI
can be estimated from soil conditions; in particular, they show a good correlation in dry
climates [28]. For instance, Chen et al. [29] found a good correlation between soil moisture
and the NDVI in Australia’s mainland, observing that the highest positive correlations
occur when the soil moisture precedes the NDVI by one month. Inland, however, where the
tree cover is denser, soil moisture and the NDVI are positively correlated over a range of
temporal scales (lag time from 0 to 5 months). In climates characterized by prolonged dry
seasons, such as in southern Spain, the NDVI has shown to be better correlated with soil
moisture than precipitation [30]. In the particular case of grassland areas, Wang et al. [31]
found a better correlation in semi-arid than humid regions of the USA.

Previous studies have shown the potential of using the NDVI to support grazing and
harvesting planning; in particular, using NDVI predictions to anticipate water deficiencies
and, hence, yield losses [32]. One approach to predict the NDVI is by using autoregressive
models, i.e., to forecast future NDVI values using a linear combination of past NDVI values.
This approach has shown high reliability in forestry land uses, mainly thanks to plant
growth seasonality [33]. Another approach not based on the use of past data is the use
of seasonal weather forecasts. Iwasaki [34] tried to predict the NDVI distribution in an
arid climate for 1–3 months using a seasonal weather forecast. They showed an especially
weak prediction efficiency and advised against the use of precipitation forecasts for NDVI
prediction in dry regions. Considering the NDVI as a proxy of vegetation growth, some
studies have also used parametric crop growth models to forecast NDVI values. However,
parametric crop growth models have shown a low NDVI prediction accuracy [35] and a
worse performance than the increasingly popular approach of machine learning-based
methods [36].

With the advance of remote sensing methods and the informatization of agricultural
operations, machine learning algorithms provide the possibility of developing forecasting
or decision tools for land managers, farmers, and other agro-forestry stakeholders [37–39].
Machine learning approaches provide powerful tools that are applied in different fields [40]
such as weed detection [41], soil analysis [42], management zone clustering [43], irrigation
and yield prediction, and stress prediction [44,45]. However, predicting vegetation devel-
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opment remains a current challenge because several ecosystem processes affect vegetation
dynamics [46]. Currently, process-based models are not able to predict accurately the vege-
tation dynamics that interrelate the multiple ecosystem processes that impact vegetation
growth [46]. For this reason, the use of machine learning, due to its high performance and
multifold applicability, has quickly increased worldwide [47]. Different approaches have
been widely applied to predict vegetation dynamics, such as artificial neural networks,
support vector regression, Random Forest, and regression trees [48]. These methods are
characterized of the independence of the relationship between the predictors and the predic-
tive variable, particularly when compared with traditional models such as linear regression,
which imply a Gaussian distribution for the input variables [49]. Roy [50] compared the
performance of some of the most used machine learning algorithms to forecast the large-
area average of the NDVI in Bangladesh and showed that the Random Forest algorithm
had the best performance. Also Wang et al. [51] and Yin et al. [52] have demonstrated
the efficacy of employing the Random Forest method to predict pasture dynamics. In the
first study on the Loess Plateau, the model successfully forecasted a westward decrease in
the aboveground biomass (AGB), with the NDVI identified as a key factor. In the second
study on the Tibetan Plateau, the Random Forest model demonstrated high accuracy in
predicting pasture height, considering seven influential variables. Both studies highlight
the effectiveness of using this machine learning model in comprehending pasture dynamics
across diverse environmental conditions.

In this study, we present an innovative NDVI forecasting model based on the appli-
cation of the Random Forest machine learning algorithm and the use of past and present
temperature and soil moisture information as predictors. Soil moisture information consists
of two products: modeled daily soil moisture values and satellite-derived values of the
Soil Water Index (SWI) at a point and single-pixel scale, respectively. Using each soil
moisture product, we created two versions of the NDVI forecasting model that we tested
and compared for 7-day and 30-day lead times in a Mediterranean permanent grassland.
Furthermore, we analyzed vegetation anomalies in response to drought by temporally
detrending the NDVI dataset.

2. Materials and Methods
2.1. Study Area

The study was carried out at the Santa Clotilde commercial farm located in the north of
the Córdoba province, Southern Spain (38.2◦ N; 4. 17◦ W, 700 m a.m.s.l.). The main activity
of the Santa Clotilde farm is the extensive livestock production in the Dehesa agroforestry
system (Figure 1); bovines and swine grazing there rotationally throughout the whole year.
The soil texture is sandy loam according to the USDA (6.7% clay, 64% sand, 29.3% loam);
due to rotational grazing, the first 30 cm of the soil profile holds 70% of the total carbon
stock [53]. According to the Köppen–Geiger classification, the climate is Mediterranean,
with an average annual rainfall of 878 mm, cold dry winter seasons, long summers, and a
mean temperature of 25.4 ◦C [54]. For in-field monitoring of soil moisture dynamics, three
TDR soil moisture sensors (Campbell Scientific CS655) were installed at different depths
(5 cm, 15 cm, and 25 cm) in an open field, as shown in Supplementary Materials. Each
sensor measured the soil moisture every hour. To compare the soil moisture dynamics
with the satellite-derived SWI, which is representative within the top 20 cm of the soil,
we decided to use the daily average value from the series of three sensors installed in
the open field; the data are shown in Figure 2. The Campbell Scientific CS655 sensors
used in this study are advanced TDR sensors, each consisting of two 30 cm long stainless
steel waveguides connected to a printed circuit board. These sensors measure the soil
moisture content with an accuracy of ±2.5% v/v for typical mineral soils. However, their
accuracy and stability can be affected by the soil’s electrical conductivity and temperature,
with the sensor output becoming unstable at electrical conductivity values greater than
20 dS/m. A temperature correction polynomial is provided to account for the sensor’s
strong dependence on the soil temperature [55,56]. Precipitation data are obtained using the
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SM2RAIN-ASCAT satellite-based method. SM2RAIN-ASCAT is a global product obtained
from the Advanced SCATterometer (ASCAT) satellite through the SM2RAIN algorithm
developed by Brocca et al. [57]. The SM2RAIN algorithm allows for the calculation of
rainfall using the inverse equation of water balance with in situ or satellite-based soil
moisture data [58]. We also estimated the satellite-based Soil Water Index (SWI) at the study
area. The SWI of the Copernicus Global Land Service [59] is acquired from measurements of
near-surface soil moisture supplied by ASCAT by means of an algorithm that summarizes
and exponentially weights past measurements according to the time length T, which ranges
between 001 and 100 [60]. The T factor indicates how many past observations of surface soil
moisture affect the current value of the SWI. Conceptually, a higher delay and an increasing
smoothing signal detected at the soil surface from a higher T value is comparable to the
effect of soil water infiltration. Thus, the SWI is a reliable proxy of soil moisture content
at the 20 cm depth [57,61]. Specifically, this study has been selected with a value of the
T-parameter equal to 20 days.
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Figure 2. Top panel—daily soil moisture information observed in the study area: the blue line
is the soil moisture measured by field sensors; the red line is the Soil Water Index (SWI). Bottom
panel—daily precipitation obtained using the SM2RAIN-ASCAT method.

2.2. Soil Moisture Model

To estimate the soil moisture dynamics of the Mediterranean permanent grasslands,
we modeled the soil moisture, using as water input the daily satellite rainfall data from
ASCAT data [58]. The soil moisture dynamic model is conceptually based on the BEACH
model [62], which divides the soil moisture reservoir in two layers: the top layer, whose
depth is delimited by the root zone and whose water balance is determined by rainfall,
evapotranspiration, runoff, and deep percolation; and the passive layer, where soil moisture
is mainly driven by deep percolation. In this study, we simplify the model to only represent
the top layer of 25 cm depth. Irrigation input is not considered because it is a rainfed
grassland. The soil moisture model (SM25) calculates the volume of water stored in the soil
(St; in mm), considering the stored volume from the previous day (St−1):

St = St−1 + R f − ETact − Dp (1)

where St is the daily soil moisture (mm); St−1 is the soil moisture of the antecedent day
(mm); Rf is the net precipitation (mm); ETact is the actual evapotranspiration (mm); and Dp
is the deep percolation (mm).

To compute the Rf that reaches the soil surface, we apply the formula proposed by
Morgan and Duzant [63]:

R f = R − PI (2)
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where R is the total daily precipitation (mm) and PI is the plant interception (mm). To
calculate PI, we apply the empirical equation proposed by Braden [64] as a function of the
leaf area index (LAI), the canopy cover (CC) and the daily precipitation (R; in mm):

PI = aLAI

(
1 − 1

1 + CCR
aLAI

)
(3)

where PI is the daily plant interception (mm); a is an empirical coefficient that ranges
between 0.3 (before senescence) and 0.6 (end of the senescence period) [65]; CC is the
canopy cover; and LAI is the leaf area index. Similar to the DREAM model [66] and the
SWAP model [67], the actual evapotranspiration (ETact) is calculated as a combination of
the reference evapotranspiration (ET0) from the vegetated fraction (CC) and the actual
evaporation from the bare soil fraction (1 − CC):

ETact = ETvegCC + Esoil(1 − CC) (4)

where ETveg is the actual daily evapotranspiration from the vegetated fraction (in millime-
ters) and Esoil is the actual daily evaporation of the bare soil fraction (in millimeters), shown
in (5) and (6). Both ETveg and Esoil depend on the degree of water availability in the soil.
The degree of water availability is expressed by the actual soil moisture divided by the
field-capacity soil moisture. This approach is based on the following assumptions (5) [68]:

If the soil moisture of the previous day is higher than the water stored in the soil at
field capacity:

ETveg = ETo − PI (5)

Esoil = ETo (6)

therefore
ETact = (ETo − PI)CC + ETo(1 − CC) (7)

If the soil moisture of the previous day is lower than the water stored in the soil at
field capacity (Sfc) and higher than at the wilting point (Swp), ETact is equal to the potential
plant evapotranspiration (in mm) plus the actual soil daily evaporation of the bare soil
fraction (in mm), then we have (8) and (9):

ETveg = (ETo − PI)

(
St−1 − Swp

S f c − Swp

)
(8)

Esoil = ETo

(
St−1 − Swp

S f c − Swp

)
(9)

Therefore (10):
ETveg = 0 and ETsoil = 0 (10)

Deep percolation Dp was simulated by applying the same BUDGET model method [69],
given by (11):

Dp = dsτ(θsat − θ f c)

(
e(θ−θ f c) − 1

e(θsat−θ f c) − 1

)
(11)

where ds is the depth of the soil A-horizon (mm); θ is the soil moisture expressed as millime-
ters of water depth per millimeter of soil depth; θsat is the soil moisture at saturation; θfc is
the soil moisture at field capacity; and τ is a drainage parameter, given by Equation (12):

0 ≤ τ = 0.08660.8063log10(Ksat) ≤ 1 (12)

where Ksat is the saturated hydraulic conductivity (mm d−1).
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2.3. Soil Moisture Model Calibration and Validation

For the soil moisture model calibration and validation, we used the observed daily
soil moisture values from 17 March 2017 to 1 February 2021. Data from 17 March 2017 to
23 June 2019 were used for the model calibration and from 24 April 2019 to 12 February
2020 for the model validation. Model performance was evaluated using the Nash–Sutcliffe
efficiency (NSE). NSE determines the relative magnitude of the residual variance compared
with the observed data variance [70]. For the model calibration computation, we used
the Non-dominated Sorting Genetic Algorithm (NSGA-II) and considered the following
parameters: canopy cover (CC); saturated hydraulic conductivity in mm/day (Ksat); soil
moisture ratio at wilting point in mm/mm (Swp); soil moisture ratio at field capacity in
mm/mm (Sfc); and soil moisture ratio at wilting saturation in mm/mm (theta_sat). The
NSGA-II was set to maximize the NSE.

2.4. NDVI Forecasting Models

The NDVI forecast model uses the available NDVI, temperature, and current soil
moisture data to predict the NDVI values. We developed two NDVI forward-forecasting
models using the two selected soil moisture products:

NDVISWI : NDVIt0 + x ∼ SWI + T20 + NDVIt0

NDVI_SM25 : NDVIt0 + x ∼ SM_25 + T20 + NDVIt0

where NDVIt0+x is the forecasted NDVI at day t0+x (7 or 30); SWI is the Soil Water index
(SWI); and T20 is the cumulative mean temperature of the previous 20 days. T20 was
selected instead of other cumulative day ranges based on it achieving the highest perfor-
mance in terms of NSE values; NDVIt0 is the observed NDVI value at present. The values
were retrieved from the Copernicus Sentinel-2 using Google Earth Engine. Observed NDVI
values were also used as a reference to compare the forecasted results. The observed NDVI
corresponds to an area of 21 m radius, covering a grid of approximately 3 × 3 pixels with
10 m of spatial resolution, located in the hill–plateau of the Santa Clotilde farm in open
grassland to avoiding the influence of trees; SM_25 is the simulated soil moisture at 25 cm
soil depth. The grassland’s NDVI was predicted by applying the Random Forest machine
learning algorithm [71]. This approach is composed of accumulation of singular decision
trees (estimators) that allow an exceptional achievement of prediction accuracy [72]. Each
tree’s predictions depend on randomly sampled values, and as we increase the number of
trees in the forest, the overall predictive accuracy becomes more reliable. The effectiveness
of a Random Forest depends on how strong the individual trees are and how much they
correlate with each other. Unlike some other methods, Random Forests use a random selec-
tion of features for each tree, making them robust against noise. The algorithm internally
monitors the error rates, the strength of predictions, and the correlations between trees.
This information helps in assessing how well the model responds to an increasing number
of features [71]. The training and testing of the NDVI forecast models were performed
from 21 July 2015 to 30 December 2021, using 50% of the data for each one. Prediction
performance was evaluated using the NSE and the mean bias error (MBE). MBE is used to
estimate the bias between the predicted value and the observed value [73]. In comparison
with the NSE, the MBE provides a view of how close the forecasts are to the measurements
in absolute values, displayed respectively in (13) and (14).

NSE = 1 − ∑n
t=1 [q obs(t)− qsim(t)]2

∑n
t=1 [q obs(t)− qobs]

2 (13)

MBE =
1
n∑n

t=1(qobs(t)− qsim(t)) (14)

Moreover, we assessed the grassland vegetation response to droughts by filtering the
NDVI dataset temporally. To calculate the vegetation response to environmental condition,



Agronomy 2024, 14, 1798 9 of 19

we estimated the anomalies (Z-Score) [68] (15). Conceptually, these anomalies represent
the intra-seasonal variations in the NDVI in response to fluctuations in the environmental
conditions (e.g., drought conditions) [74].

Z − score =
NDVIt − NDVImean, i

NDVIstdi
(15)

where NDVIt is the NDVI observed at time step t; NDVImean,i is the monthly mean of the
NDVI daily values; and NDVIstdi is the monthly standard deviation of the NDVI daily
values. A positive or negative value of the Z-Score indicates a period wetter or drier than
the average, respectively. This helps us identify exceptionally dry periods, which can have
an important impact on grass production.

In order to evaluate the correlation between the anomalies (Z-Score) simulated by the
NDVI models and the observed ones, we applied Pearson’s correlation (16):

rx,y =
∑n

i=1(xi − x )(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(16)

where rx,y is the correlation coefficient; n is the length of the time series; i is the study period
(in years); xi and yi are the NDVI anomalies, respectively; and x and y are the mean values
of the NDVI. If the value of rx,y is greater than zero, it is a positive relationship; if rx,y is a
negative value, it is a negative relationship; if rx,y is equal to zero, there is no relationship
between the two variables [70]. In addition, a significance test was conducted, calculating
the p-value with a significance level set at less than 0.05.

3. Results
3.1. Soil Moisture Dynamics

The calibration and validation results of the soil moisture model yielded NSE values
of 0.71 and 0.70, respectively (Supplementary Materials). This indicates that the model is
able to satisfactorily simulate the observed soil moisture. In Figure 3, we compared the
results of the soil moisture dynamics modeled over the study period. Figure 3a displays the
difference between the ground-observed soil moisture and the simulated moisture values.
The results show that the model generally overestimates the observed values. This can be
explained by the fact that not all the precipitation events are reflected by sensors (e.g., see
the dotted rectangle in Figure 3, where wet periods are not reflected in an increase in the
observed soil moisture). It must be also noted that we are comparing values obtained at
different spatial scales; the precipitation data and, hence, the model results are pixel values,
while soil moisture observations are point values. Furthermore, sensors were deployed in
open fields subject to rotational grazing; this dynamic scenario could potentially induce
local modifications in the physical and hydraulic soil properties.

We observed differences between the two soil moisture products throughout the study
period in how quickly they responded to precipitation. The SM25 reached higher values
of soil moisture (in mm) more quickly than the SWI, as shown in Figure 3b. This may be
due to a dissimilarity issue in the spatial scales between point (model) and pixel values
(satellite observations) [75]. Differences between the two soil moisture products have
been widely discussed. Deng et al. [76] analyzed and compared 670 soil moisture stations
globally, highlighting that satellite products offer better correlation with observed data and
more consistent performance compared with land surface models, which exhibit greater
variability and a less accurate response to precipitation events. However, satellite products
can present significant biases under specific climate and land cover conditions, while
land surface models require improvements in their response to precipitation to enhance
their reliability.
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Figure 3. Soil moisture dynamics. Panel (a) shows the difference between the ground-assessed and
modeled soil moisture dynamics; negative values are in red, while positive values are in blue. In
panel (b), the green line shows the soil moisture model simulations; the blue line, the observed soil
moisture; the red line, the Soil Water Index (SWI) dynamics during the study period. Panel (c) shows
the precipitation events based on satellite data.

3.2. NDVI Forecasting Models Results

Figures 4 and 5 show the results of the NDVI prediction at 7 and 30 days ahead,
respectively. For both versions of the NDVI forecast model, the results are satisfactory. As
expected, the 7-day lead time forecasts (NSE over 0.9 and MBE lower than 0.02) are better
than the 30-day lead time forecasts (NSE over 0.80 and MBE lower than 0.02). The training
and the testing model’s performances of NDVI forecasting model are displayed in Table 1.
From Figures 4 and 5, we can break down the seasonal grassland dynamics into two main
stages: the growing season (light blue area in Figures 4 and 5), when NDVI values raise
and reach the highest values, and the senescence season, when the NDVI decreases and
reaches the lowest values. In the Mediterranean climate, the grassland growing season is
characterized by a fluctuation in NDVI values during the productive season (harvest or
grazing season) as a result of dry periods [77,78]; this underlines the relationship between
the phonology dynamics and soil moisture dynamics [79]. The peak values of the NDVI
obtained with both forecasting models at both 7- and 30-day lead times were between
0.50 and 0.80, which are in the order of magnitude of the observed values found in the
literature for arid and semi-arid climates, which range between 0.53 and 0.78 [32]. These
results not only demonstrate the significance of soil moisture as a driver of grassland
dynamics in Mediterranean climates but also show the potential use of the two proposed
NDVI forecasting models to predict seasonal variations in the NDVI. Regarding the intra-
seasonal variations or anomalies (Z-score), Figures 6 and 7 show that both NDVI_SM25 and
NDVI_SWI for the 7-day lead time (r = 0.92, p-value < 0.05, for both models; see Table 1)
perform better than for the 30-day lead time (NDVI_SWI30 r = 0.54, NDVI_SM2530 r = 0.60,
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p-value < 0.05; Table 2). We observe similar results comparing performances focusing only
on the growing season. Indeed, both versions of the NDVI forecast models, NDVI_SWI7
and NDVI_SM257, showed satisfactory performances at the 7-day lead time, recording a
high correlation with the observed anomalies (r = 0.93 and r = 0.92, respectively). Instead,
the tNDVI forecast models at the 30-day lead time did not predict NDVI anomalies during
the growing periods. However, the NDVI_SM2530 model predicts slightly better NDVI
anomalies than the NDVI_SWI30 model (respectively, r = 0.56 and r = 0.62). Taking, as an
example, the growing season of 2017–2018 with 454 mm of precipitation, and the season
from 2018–2019, with 1796 mm (Figures 6 and 7), we can observe how the models perform
under particularly dry and wet weather conditions. Under these two conditions, both
7-day forecasting models predict anomalies satisfactorily (r = 0.93 for both models); in
contrast, forecasting models at 30 days are weakly correlated to the observed anomalies
(respectively, r = 0.59 for NDVI_SWI30 and r = 0.65 for NDVI_SM2530). This shows the
limitation of using past and present data to forecast NDVI anomalies in the mid and long
term. Future work should explore the use of mid- and long-range weather forecasting
products to improve the performance of this type of NDVI forecasting model. In particular,
NDVI_SM25 may benefit from using weather forecasting data to feed the soil moisture
model and, thus, to obtain soil moisture forecasts of one or several months.
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Figure 4. NDVI forecast model results vs observations (NDVI_obs) for a 7-day lead time. The top
panel, with the green line, displays the forecasts obtained using SWI remote-sensed observations as
the soil moisture information (NDVI_SWI). The bottom panel, with the blue line, displays the forecasts
obtained using the soil water model (NDVI_SM25). The period corresponding to the growing season
is shaded in light blue. The observed NDVI is represented with red dots. The forecasting performance
of the whole assessment is provided at the upper-left corner.
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tural insurance. In Spain, agricultural insurers, under the jurisdiction of the Spanish gov-
ernment, use the NDVI anomaly method to assess grassland yield loss caused by drought 
or extreme weather events, estimating remotely the production deficit with an NDVI-
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from the last 20 years and during the guaranteed period, which corresponds to the grow-
ing season, as the 10-day mean NDVI minus 0.5–1.5 times the 10-day standard deviation 

Figure 5. NDVI forecast model results vs observations (NDVI_obs) for a 30-day lead time. The top
panel, with the green line, displays the forecasts obtained using SWI remote-sensed observations as
the soil moisture information (NDVI_SWI). The bottom panel, with the blue line, displays the forecasts
obtained using the soil water model (NDVI_SM25). The period corresponding to the growing season
is shaded in light blue. The observed NDVI is represented with red dots. The forecasting performance
of the whole assessment is provided at the upper-left corner.

Table 1. Training and testing the NSE performance value for the different NDVI forecasting models.

Period SWI7 SM257 SWI30 SM2530

Calibration 0.94 0.90 0.91 0.91
Validation 0.73 0.66 0.60 0.61

Table 2. Pearson correlation (p-value < 0.05) between the observed NDVI anomalies and the forecasted
anomalies at 7 and 30 days. The overall correlation takes into consideration the entire study period; the
growing season (GS) correlation takes into consideration only the growing season of the study period;
the 2017–2018 correlation takes into consideration the driest growing season of our study period.

Period SWI7 SM257 SWI30 SM2530

Overall 0.92 0.92 0.54 0.60
GS 0.93 0.92 0.56 0.62

GS17-18 0.93 0.93 0.59 0.65
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Figure 6. The forecasting models’ detection of NDVI_SWI anomalies. The black line shows the NDVI
anomalies predicted at 7 days (upper graph) and at 30 days (bottom graph). The dark blue shading
shows the observed positive NDVI anomalies; the red shading shows the observed negative NDVI
anomalies. The light background shading highlights the growing season.
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Figure 7. The forecasting models’ detection of NDVI_SM25 anomalies. The black line shows the
NDVI anomalies predicted at 7 days (upper graph) and at 30 days (bottom graph). The blue dark
shading shows the observed positive NDVI anomalies; the red shading shows the observed negative
NDVI anomalies. The light background shading highlights the growing season.

Prediction of NDVI anomalies gains particular importance in the context of agricultural
insurance. In Spain, agricultural insurers, under the jurisdiction of the Spanish government,
use the NDVI anomaly method to assess grassland yield loss caused by drought or extreme
weather events, estimating remotely the production deficit with an NDVI-based indicator
called the Guaranteed Vegetation Index [27]. It is calculated using data from the last
20 years and during the guaranteed period, which corresponds to the growing season, as
the 10-day mean NDVI minus 0.5–1.5 times the 10-day standard deviation multiplied by
an economical estimator. This model is based on past estimations; however, the use of
NDVI forecasting models, such as the ones presented in this study, can let both farmers
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and insurers anticipate production deficits and, hence, compensations. However, it must
be noted that their potential applicability is rather different. The SWI version, which uses
satellite products, increases the potential of the scalability of its use from single pixel scales
to larger areas comprising multiple pixels. The use of the soil moisture model version,
combined with seasonal weather forecast data, could potentially increase the temporal
scale and potentially obtain better performance for longer lead times than 7 days. While
the results of the study are promising, we recognize that there were several limitations,
such as there being only one observation point and the use of historical meteorological data.
Considering the limited literature on the use of soil moisture products as NDVI predictors,
we advise further investigation into other bioregions and at a larger scale. Moreover, the
use of stationary weather prediction can be explored to extend the forecasting period to
predict anomalies. Field NDVI assessment can be carried out to better fit the models and to
assess discrepancies with satellite-based NDVI observations.

4. Discussion

The prediction of grassland dynamics and yield is a critical aspect of agricultural
management, with various methods developed to enhance its accuracy and reliability.
Traditional approaches have primarily relied on weather forecasting and management
inputs, such as fertilizer application and temperature and precipitation data. However,
the integration of soil moisture information has significantly improved these models,
offering a more comprehensive understanding of the vegetation state. Remote sensing
techniques, particularly the NDVI, have become essential tools in monitoring and predicting
vegetation dynamics. The increasing application of machine learning algorithms has
further revolutionized this field, providing powerful tools for developing forecasting and
decision-making systems for land managers and stakeholders. This discussion explores
the evolution and efficacy of these methods, emphasizing the advancements in remote
sensing and machine learning that have enhanced the prediction of grassland growth
dynamics. Various methods have been developed to predict grassland dynamics and yield
using weather forecasting. McDonnell et al. [22] explored forecasts of grassland dynamics,
incorporating management inputs like fertilizer application and weather inputs such as
temperature and precipitation. Trnka et al. [23] improved grassland growth models by
including soil moisture balance, which integrates weather, evapotranspiration, and plant-
available water, enhancing the vegetation state information. Soil moisture can explain up
to 60% of grassland yield variability and significantly improves productivity models [27].

Remote sensing techniques, especially the NDVI, are commonly used to monitor
vegetation dynamics. The NDVI is a simple indicator of vegetation greenness and is widely
used to estimate vegetation density and crop yields [28,29]. In Spain, the NDVI quantifies
grassland yield losses and compensates for drought or extreme weather conditions during
the growing season (October–June) [30]. Research has shown that the NDVI can be esti-
mated from soil conditions, demonstrating a strong correlation in arid climates [31]. For
instance, Chen et al. [29] found a good correlation between soil moisture and the NDVI
in Australia, with the highest positive correlations when soil moisture precedes the NDVI
by one month. In regions with dense tree cover, soil moisture and the NDVI are positively
correlated over various temporal scales (0 to 5 months). In climates with prolonged dry
seasons, such as in southern Spain, the NDVI correlates better with soil moisture than
with precipitation [21,33]. Wang et al. [31] observed a stronger correlation in semi-arid
regions than in humid areas of the USA. The NDVI has potential in supporting grazing and
harvesting planning, especially in predicting water deficiencies and yield losses [35–37].
Autoregressive models, which forecast future NDVI values using past data, have shown
high reliability in forestry land uses due to plant growth seasonality [38]. Iwasaki [39]
attempted to predict the NDVI distribution using seasonal weather forecasts in an arid
climate but found weak prediction efficiency. Parametric crop growth models have also
been used to forecast the NDVI but have shown low accuracy compared with machine
learning-based methods [41].
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Machine learning algorithms, enabled by advancements in remote sensing and agri-
cultural digitalization, offer robust forecasting tools for land managers, farmers, and
agro-forestry stakeholders [42–44]. However, predicting vegetation development remains
challenging due to multiple ecosystem processes that affect vegetation dynamics [52,53].
Process-based models struggle to accurately predict vegetation dynamics because they
cannot adequately interrelate these ecosystem processes [53]. Consequently, the use of
machine learning, with its high performance and broad applicability, is rapidly increasing
worldwide [54]. Approaches such as artificial neural networks, support vector regression,
Random Forests, and regression trees are widely used to predict vegetation dynamics.
These methods do not rely on relationships between predictors and the predictive variable,
unlike traditional models such as linear regression, which assume a Gaussian distribution
for input variables [56].

Roy [50] found that the Random Forest algorithm performed best in forecasting
the average large-area NDVI in Bangladesh. Wang et al. [51] and Yin et al. [52] also
demonstrated the efficacy of the Random Forest method in predicting pasture dynamics.
On the Loess Plateau, the model forecasted a westward decrease in the aboveground
biomass (AGB), identifying the NDVI as a key factor. On the Tibetan Plateau, the Random
Forest model accurately predicted pasture height, considering seven influential variables.
Both studies highlight the effectiveness of this machine learning model in understanding
pasture dynamics across diverse environmental conditions. The integration of NDVI
forecasts based on soil moisture represents a significant advancement in agricultural and
environmental management, particularly for Mediterranean landscapes characterized
by prolonged dry seasons and irregular precipitation. The results of our study clearly
indicate that soil moisture, whether derived from in situ sensors or satellite observations,
plays a crucial role in determining the growth dynamics of permanent grasslands in these
regions. This finding not only confirms what has been suggested by previous studies but
also extends the applicability of NDVI forecasts to contexts characterized by adverse and
variable climatic conditions. The ability of the models to predict grassland growth dynamics
with a lead time of 7 and 30 days not only provides a useful predictive tool for agricultural
planning but also demonstrates the validity of integrating satellite data into environmental
modeling. This is particularly relevant for Mediterranean regions, where access to in situ
measurements may be limited, and the spatial variability in soil moisture can significantly
impact vegetation production. However, this study presents some limitations that require
further investigation. Firstly, the spatial scale of the soil moisture measurements is limited,
which could reduce the generalizability of the results to larger or different areas. The
accuracy of the models may vary in contexts where the distribution of soil moisture is more
heterogeneous or where other environmental factors, such as soil type or varying vegetation
cover, have a greater influence on vegetation dynamics. Moreover, while the developed
models show high reliability in predicting the NDVI, the relationship between the NDVI
and biomass production remains to be further explored. This aspect is fundamental
for translating NDVI forecasts into more precise estimates of agricultural productivity,
which could be used to develop more effective and targeted agricultural and forestry
management policies. Expanding this approach to a larger scale and integrating additional
environmental variables could contribute to improving the accuracy and practical utility of
the forecasts, offering a valuable tool not only for farmers but also for insurance agencies
and policymakers. Although our study confirms the potential of NDVI models based on
machine learning and soil moisture data, the challenge remains to validate these results
on broader spatial scales and in different environmental contexts. Further research could
focus on integrating this approach with biomass growth models in order to develop more
comprehensive and useful forecasting tools for the sustainable management of agroforestry
resources in Mediterranean landscapes and beyond.
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5. Conclusions

In this study, we present two NDVI forecasting models based on the use of machine
learning and past and present weather and soil moisture data as predictors. One model,
NDVI_SM25, uses simulated soil moisture values, and the other, NDVI_SWI, uses satellite-
based Soil Water Index (SWI) values. The performance of both models was evaluated in
a Mediterranean permanent grassland in southern Spain by comparing forecasted and
observed NDVI daily values. Results show high reliability of the models at 7 and 30-day
forecast lead times in predicting seasonal NDVI dynamics and demonstrate the significance
of soil moisture dynamics as a driver of grassland phenology in dry climates. In the
case of intra-seasonal variations or anomalies, the NDVI is significantly better predicted
by both models at a 7-day lead time than at a 30-day lead time. These results show
the potential of using NDVI forecasting models based on soil moisture information and
machine learning to help both farmers and insurers anticipate production deficits and
apply mitigation measures.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agronomy14081798/s1: Figure S1: TDR soil moisture sensors (Campbell
Scientific CS655) installed at different depths (5 cm, 15 cm, and 25 cm) in an open field. Figure S2:
Soil moisture model calibration. The blue line is the observed soil moisture (mm); the red line is the
modeled soil moisture (mm); the dark bar chart shows the rainfall (mm). Figure S3: Soil moisture
model validation. The blue line is the observed soil moisture (mm); the red line is the modeled soil
moisture (mm); the dark bar chart shows the rainfall (mm). Figure S4: Training (a) and testing (b) the
forecasting model NDVI_SM25 at 7 days. Figure S5: Training (a) and testing (b) the forecasting model
NDVI_SWI at 7 days. Figure S6:Training (a) and testing (b) the forecasting model NDVI_SM25 at
30 days. Figure S7: Training (a) and testing (b) the forecasting model NDVI_SWI at 30 days.
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