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Abstract: According to the requirements of Tartary buckwheat breeding, it is necessary to develop a
method for the rapid detection of functional substances in seeds. To ensure a diverse sample pool, we
utilized the stable recombinant inbred lines (RILs) of Tartary buckwheat. The coefficients of variation
of the total flavonoid, vitamin E (VE), and GABA contents of the RIL population were 15.06, 16.53,
and 36.93, respectively. Subsequently, we established prediction models for the functional substance
contents in Tartary buckwheat using near-infrared spectroscopy (NIRS) combined with chemometrics.
The Kennard–Stone algorithm divided the dataset into training and test sets, employing six different
methods for preprocessing spectra. The Competitive Adaptive Reweighted Sampling algorithm
extracted the characteristic spectra. The best models for total flavonoid and VE were normalized
using the first derivative. The calibration correlation coefficient (Rc) and prediction correlation
coefficient (Rp) of the total flavonoid and VE prediction models were greater than 0.94. The optimal
GABA prediction model underwent preprocessing via normalization combined with the standard
normal variate, and the Rc and Rp values were greater than 0.93. The results demonstrated that the
NIRS-based prediction model could satisfy the requirements for the rapid determination of total
flavonoids, VE, and GABA in Tartary buckwheat seeds.

Keywords: NIRS; crop; flavonoid; vitamin E; GABA; breeding; rapid detection

1. Introduction

Buckwheat, a member of the Polygonaceae family, is a dicotyledonous annual plant.
Its two main cultivated species are common buckwheat and Tartary buckwheat [1]. As
lifestyles evolve, concerns about people’s health status escalate, accompanied by a height-
ened awareness of health. Tartary buckwheat has garnered significant attention as a
functional food due to its abundance of flavonoids, vitamin E (VE), gamma-aminobutyric
acid (GABA), and other bioactive compounds [2–4]. These constituents play crucial roles in
enhancing human health, serving as antioxidants and anticancer agents, and contributing
to cardiovascular and cerebrovascular well-being [5–7].

Flavonoids are natural compounds abundant in Tartary buckwheat that possess di-
verse biological activities and medicinal significance [8]. Studies have indicated that these
flavonoids can regulate insulin resistance, ensure stable insulin secretion, and stabilize
blood glucose levels [9]. Furthermore, they have been observed to modulate blood lipid lev-
els in patients with type 2 diabetes [10]. Additionally, the antioxidant properties of Tartary
buckwheat flavonoids render them valuable and promising for both food and pharmaceu-
tical development [11]. The seed is the most crucially utilized part of Tartary buckwheat,
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exhibiting a high concentration of bioactive flavonoids (0.67–2.27%) and abundant flavonoid
components, notably rich in rutin (70–85% of total flavonoids), a characteristic absent in
other major crops such as rice, wheat, and maize [12,13]. VE, exclusively sourced from
plants [14], is notably more abundant in Tartary buckwheat than in common buckwheat.
Certain studies have suggested that the plant-derived VE serves a dual function: protecting
plants from oxygen toxicity and enhancing plant stress resistance [15]. VE exerts beneficial
effects on human health by reducing the risk of cardiovascular disease [16] and potentially
regulating the proliferation and death of pancreatic cancer cells [17]. GABA, a neurotrans-
mitter, has several health benefits. Research has indicated that its role in regulating brain
function contributes to maintaining brain health and improving cognitive function [18].
Additionally, low GABA levels have been associated with the onset of depression [19],
implying that augmenting GABA levels exogenously may rebalance neurotransmitters
and alleviate depressive symptoms. Tartary buckwheat, a GABA-rich food, particularly
in its sprouted form, has a higher GABA content than unsprouted varieties [20]. The
consumption of buckwheat grains or sprouts abundant in GABA may promote emotional
stability and mental well-being.

Currently, the predominant international methods for assessing functional nutrient
components in foods are classical, which can be associated with drawbacks such as time
consumption, labor intensiveness, and environmental impact [8,21]. Flavonoid content
is typically measured using high-performance liquid chromatography and spectropho-
tometry [22]. The primary detection method for VE is reverse-phase chromatography,
and the determination of GABA content typically involves high-performance liquid chro-
matography and ultraviolet colorimetry [23]. Nevertheless, these conventional chemical
analysis methods often require long sample handling and testing durations at the expense
of reagents and equipment. By contrast, near-infrared spectroscopy (NIRS) offers faster and
more cost-effective alternatives. NIRS creates predictive models for various components
by synthesizing the spectral bands produced by O-H, N-H, C-H, and other hydrogen-
containing groups that are absorbed and doubled in frequency during group stretching
vibrations. This synthesis combines the spectrum and chemical data with stoichiometric
methods [24]. NIR spectroscopy conducts non-destructive analyses on untreated samples,
thus saving the time and cost associated with sample processing. NIRS has extensive
applications in the food, agricultural, and pharmaceutical industries [3,25–31]. For instance,
Platov et al. employed UV-VIS-NIR spectroscopy alongside multivariate analysis to effec-
tively classify and identify buckwheat grains [27]. Zhang et al. successfully employed NIRS
to rapidly detect moisture, ash, protein, fat, and other nutrients in buckwheat [29]. Addi-
tionally, models for the accurate and rapid detection of amylose and amylopectin contents
in sorghum grains were established [30]. Wang et al. utilized NIRS to non-destructively
determine the protein and fat content of torreya [31].

The establishment of a model for the rapid detection of functional components, such
as total flavonoids, VE, and GABA, in Tartary buckwheat using NIRS technology can be of
significance for quality assessment, breeding, and functional food development. Hence, this
study focused on collecting data from an inbred line population of Tartary buckwheat to
acquire chemical values with substantial coefficient variation, ultimately aiming to establish
a robust prediction model.

2. Materials and Methods
2.1. Experimental Materials and Spectra Acquisition
2.1.1. Experimental Materials

In this study, 175 samples were collected from a stable recombinant inbred line (RIL)
population of two Tartary buckwheat varieties: the Shanxi province registered variety
‘Jinbuckwheat No. 2’ and the local thin-shelled Tartary buckwheat variety ‘Millet buckwheat’
from Yunnan. After harvesting, the seeds were dried in an oven (Model MGL-125B, Taisite
Instrument, Tianjin, China) at 60 ◦C for 2–3 d. Subsequently, the dried seed spectra were
scanned, and the selected portions were ground and hulled using a high-speed grinder
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(Model FW100, Taisite Instrument, Tianjin, China) and subsequently passed through an
80-mesh sieve to ascertain their chemical composition.

2.1.2. Spectra Acquisition

The NIR spectra of the whole buckwheat grains were obtained using the MPA type
Fourier transform near-infrared spectrometer (Model MPA, Bruker Corporation, Karlsruhe,
Germany) from Bruker Spectral Instrument Co. LTD of Germany. using the diffuse
reflectance method. OPUS 8.0 was applied as the acquisition software. Each sample
underwent a single scan repeated 64 times, with a resolution of 4 cm−1 and a scanning
range spanning from 4000 to 12,000 cm−1. Each sample was scanned three times, and the
spectral average value was computed for modeling purposes.

2.2. Determination of the Contents of Total Flavonoid, VE, and GABA

The methods for determining the total flavonoids, VE, and GABA in Tartary buckwheat
were conducted following Wang’s protocol [32] with minor adjustments to the procedural
workflow.

2.2.1. Determination of Total Flavonoids of Tartary Buckwheat

After acquiring the spectrum, 0.0200 g of powder from each test material was measured
and placed in a 2 mL centrifuge tube. After the addition of 2 mL of 75% CH3OH to the
tube, the powder was placed in a constant-temperature water bath (Model DK98-2, Taisite
Instrument, Tianjin, China) set at 60 ◦C for 2 h, then removed and centrifuged (Model D2012
plus, Dalong Xingchuang Experimental Instruments (Beijing) Co., Ltd., Beijing, China)
at 8000 rpm for 10 min at room temperature. Following filtration, the supernatant was
collected. Subsequently, 50 µL of filtrate was mixed with 400 µL of 0.1 mol/L AlCl3, 600 µL
of 1.0 mol/L KAc, and 200 µL of 75% CH3OH in succession. After thorough shaking, 250 µL
was extracted, and the absorbance value of the filtrate was determined at a wavelength of
420 nm (Model T6-1650E, Puxi General Instrument Co., Ltd., Beijing, China). This process
was repeated three times for each sample, and the average value was used for modeling.

The concentration (C) of the total flavonoid in the extraction solution was determined
using the standard curve. The standard curve of total flavonoid is y = 46.537x − 2.2425,
R2 = 0.9961, the calibration value is in the range of 0–13 µg/mL. Subsequently, the total
flavonoid content of the samples was calculated using the following formula:

X (%) = (C × N × (V/m) × 10−6) × 100% (1)

C—the concentration of total flavonoids in the liquid to be measured (µg/mL);
V—volume of the liquid to be measured (mL);
N—the total dilution of the sample;
m—the mass of the sample (g).

2.2.2. Determination of VE in Tartary Buckwheat

The sample powder (0.1000 g) was accurately measured and dissolved in a 2 mL
centrifuge tube. Subsequently, 2 mL of 60% ethanol was added and allowed to stand for
5 min. It was then extracted for 20 min at room temperature using an ultrasonic power
of 100 W and then centrifuged for 5 min at room temperature at a speed of 5000 rpm.
The resulting supernatant was adopted as the sample extraction solution. The extraction
solution was added to a 10 mL centrifuge tube and diluted to 7 mL with methanol (5 mL).
Then, 1 mL of C12H10N2O was added at a concentration of 6 mmol/L, followed by 1 mL of a
1 mmol/L FeCl3 solution. After 15 s, 1 mL of 40 mmol/L H3PO4 solution was immediately
added and mixed thoroughly. This constituted the sample liquid for measurement. The
sample liquid (250 µL) was adopted for the spectrophotometric analysis, and the absorbance
was measured at a wavelength of 510 nm (Model T6-1650E, Puxi General Instrument Co.,
Ltd., Beijing, China). The process was repeated three times for the same sample, and the
values were averaged during modeling.
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Initially, the concentration of C (µg/mL) of the VE in the measured liquid was deter-
mined using a standard curve. The standard curve of VE is y = 44.061x − 2.04, R2 = 0.9991,
and the calibration value is in the range of 0–13 µg/mL. Subsequently, the VE content of
the sample was calculated using the following formula:

X (mg/100 g) = C × V × N/(m × 10) (2)

C—VE concentration in the liquid to be measured (µg/mL);
V—volume of liquid to be measured (mL);
N—the total dilution of the sample;
m—the mass of the sample (g).

2.2.3. Determination of GABA Content in Tartary Buckwheat

The sample powder was weighed to the nearest 0.0500 g. CH3OH was added to
a 2 mL centrifuge tube up to the 2 mL mark. Subsequently, the mixture was placed in
an oscillating water bath (Model DK98-2, Taisite Instrument, Tianjin, China) at 40 ◦C for
10 min, followed by centrifugation at 12,000 r/min for 5 min (Model D2012 plus, Dalong
Xingchuang Experimental Instruments (Beijing) Co., Ltd., Beijing, China). The supernatant
was discarded, and this process was repeated four times. It was then dried until a constant
weight was achieved, and 2 mL of distilled water was added to the remaining precipitate.
The resulting solution was the sample extraction solution obtained by heating in a water
bath at 80 ◦C for 10 min. One milliliter of the extract was collected, and 0.4 mL of 0.5 mol/L
AlCl3 solution was added. The mixture was shaken for 5 min at room temperature and
centrifuged at 12,000 r/min for 5 min. Then, 500 µL of the supernatant was collected, and
0.6 mL of 1 mol/L KOH solution was added. The previous step of shock centrifugation
was repeated. The supernatant (60 µL) was taken, and it was combined with 0.2 mL of
0.1 mol/L Na2B4O7 buffer and 0.16 mL of 6% C6H5OH solution. Thorough mixing was
performed, followed by the addition of 0.12 mL of a 5% NaClO solution. The mixture
was then heated in a water bath at 80 ◦C for 20 min and immediately transferred to an
ice bath for 5 min. Subsequently, 0.4 mL of 60% C2H5OH was added, and the mixture
was left to stand for 10 min to allow the development of color, thus forming the liquid
to be measured. The absorbance of the test solution was measured at 625 nm using an
enzyme-labeled instrument (Model T6-1650E, Puxi General Instrument Co., Ltd., Beijing,
China). The procedure was repeated three times with the same sample, and the average
value was obtained during modeling.

The GABA concentration in the liquid to be measured was determined using a stan-
dard curve, denoted as C (µg/mL). The standard curve of GABA is y = 29.885x − 1.0852,
R2 = 0.9977. The calibration value range of the three equations is 0–13 µg/mL. Subsequently,
the GABA content in the sample was calculated using the following formula:

X (‰) = C × V × N/(m × 106) × 1000‰ (3)

C—GABA concentration in the liquid to be measured (µg/mL);
V—volume of the liquid to be measured (mL);
N—the total dilution of the sample;
m—the mass of the sample (g).

2.3. Data Processing and Model Evaluation
2.3.1. Data Processing

The chemical values of the total flavonoids, VE, and GABA in Tartary buckwheat were
calculated and analyzed using Excel. Subsequently, the chemical values were systematically
analyzed using Origin 2022. MATLAB R2023b was applied to preprocess the spectrum,
partition the dataset, screen the feature wavelengths, and construct the model. Six types
of spectral were applied. The normalization was always applied before data processing,
and then preprocessing was carried out in six different ways; the first method was nothing
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but normalization, the second method was standard normal variate transformation (SNV),
the third method was multiplicative scatter correction (MSC), the forth method was the
Savitzky–Golay smoothing filter (SG), the fifth method was the first derivative, and the sixth
method was the second derivative. The normalization primarily mitigated the influence
of the uncorrelated variables, such as instrument sensitivity differences and sample size
inconsistencies, to accentuate the signal [33]. SNV eliminated the impacts of solid particle
size, surface scattering, and light path alterations on the diffuse reflected light [34]. The
MSC addressed the scattering effects resulting from the uneven particle distribution and
size [35,36]. The SG contributed to the signal denoising, data smoothing, and feature
extraction [37]. The derivation effectively removed the interference from the baseline and
other backgrounds, thereby enhancing resolution and sensitivity [38].

The dataset was divided into training and test sets in a 4:1 ratio using the Kennard–
Stone (KS) algorithm. The competitive adaptive reweighted sampling (CARS) method was
employed to screen the characteristic bands from the preprocessed spectra, and then the
model was constructed using the partial least squares method.

2.3.2. Model Evaluation

The model was verified using the leave-one-out cross-validation method, and the
best model was selected on the basis of several criteria: the cross-validation root means
square error (RMSECV), the root mean square error of the test set (RMSEP), the coefficient
of determination of the training set (Rc), the coefficient of determination of the test set
(Rp), and the residual deviation of prediction (RPD) [33,34,38,39]. In this context, the RMSE
reflected the predictive ability and smaller values indicated better performance. The Rc
and Rp represented the level of agreement between the predicted and actual values, with
values closer to 1 indicating better agreement, and the RPD reflected the accuracy and
robustness of the model [38]. The RPD had specific thresholds, where RPD < 1.5 indicated
poor predictive ability and unsuitability for prediction; 1.5 ≤ RPD < 2.5 suggested moderate
predictive ability, enabling use for prediction; and RPD ≥ 3.0 indicated excellent predictive
ability [39].

3. Results
3.1. Determination of Functional Components of Tartary Buckwheat and Analysis of Variation

The total flavonoid, VE, and GABA contents in Tartary buckwheat grains were assessed
using traditional methods. Table 1 presents that the total flavonoid content ranged from
1.20% to 3.37%, averaging 2.42%. The VE content varied between 1.82 and 5.26 mg/100 g,
averaging 3.33 mg/100 g, and the GABA content ranged from 0.37‰ and 2.50‰, averaging
1.34‰. The coefficients of variation (CV) for total flavonoids, VE, and GABA were 15.06,
16.53, and 36.93, respectively. The skewness and kurtosis values for each component were
less than 1, indicating an approximately normal distribution. The dispersion levels of these
functional substances were relatively high, signifying a significant variability in the sample
content and good representativeness.

Table 1. Statistical a5alysis of total flavonoid, VE, and GABA contents in the seeds of RILs of Tartary
buckwheat.

Functional
Component

Number of
Samples (NS) Range Mean Value

(MV) Skewness Kurtosis Standard
Deviation (SD)

Coefficient of
Variation (CV)

Total flavonoid 175 1.20–3.37 2.42 −0.462 0.276 0.36 15.06
VE 173 1.82–5.26 3.33 0.061 0.502 0.55 16.53

GABA 173 0.37–2.50 1.34 0.054 −0.818 0.49 36.93

Note: The unit for the total flavonoid range and mean value in the table is %, the unit for the VE range and mean
value is mg/100 g, the unit for the GABA range and mean value is ‰, and the unit for the SD is the same as the
unit for the mean value between the same rows. These units apply throughout this study.
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3.2. Construction of the Near Infrared Model
3.2.1. Near Infrared Spectrum of Tartary Buckwheat

The model creation can be related to the spectrum quality, with crucial factors includ-
ing peak distinguishability, intensity, and reproducibility. The ideal spectral data exhibited
clear peaks, minimal noise, and consistent patterns across repeated measurements. Figure 1
presents an overlap diagram featuring 175 buckwheat spectra in the near-infrared range,
with each color denoting a sample. This illustrated the absorption intensity of Tartary
buckwheat within the spectral region of 4000–12,000 cm−1, where the absorption peak
spans approximately from 7500 to 4000 cm−1, demonstrating robust differentiation and re-
peatability of the near-infrared spectra. Although the absorption peaks across the samples
were similar, their intensities varied, resulting in clear and smooth spectra with mini-
mal noise interference. These spectra served as suitable resources for the construction of
near-infrared models.
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3.2.2. Partitioning of the Sample Set

In this experiment, the KS algorithm partitioned the dataset, revealing an improved
predictive capacity when the training and test sets were divided in a 4:1 ratio. Table 2
presents detailed information on Tartary buckwheat samples categorized into sample sets.
The mean values and SD of the total flavonoids, VE, and GABA in both the training and
test sets were comparable. Furthermore, the analytical data in the test set were within the
range of those in the training set.

Table 2. Sample data for the training and test sets used in modeling.

Functional Component NS Sample Size Range MV SD

Total flavonoid
training set 140 1.20–3.37 2.44 0.37

test set 35 1.71–2.90 2.39 0.35

VE
training set 138 1.82–5.26 3.37 0.54

test set 35 1.94–4.30 3.26 0.54

GABA
training set 138 0.37–2.50 1.31 0.51

test set 35 0.53–2.27 1.39 0.43

3.3. Creation of Total Flavonoid Prediction Models

To construct the prediction model for total flavonoid in Tartary buckwheat using
spectral and chemical data, the KS algorithm partitioned the data into a 4:1 ratio for the
training and test sets. Six pretreatment methods were applied, and the CARS algorithm
divided the total wavenumber into 2307 points, selecting 155–217 points for modeling. This
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narrowed the wavenumber range to 6.7–9.4% of the total, followed by modeling using the
partial least squares method with 13 principal components. As shown in Table 3, both the Rc
and Rp values of the models constructed after the normalized plus derivative preprocessing
spectra surpassed 0.9, with corresponding RPDs of 2.9944 and 2.8988, respectively, and
the first-order derivative model proved to be superior. However, the models created after
normalized + SG and normalized + SNV pretreatment were not viable, yielding RPDs of
1.4063 and 1.4692, respectively, which were below 1.5. Nonetheless, the RPDs for the other
models exceeded 1.5, rendering them suitable for predicting the chemical value of total
flavonoids (Table 3).

Table 3. Effect of pretreatment method on total flavonoid models.

Pretreatment Method Rc Rp RMSECV RMSEP RPD

Normalization 0.9586 0.7725 0.1062 0.2245 1.5719
Normalization + MSC 0.9621 0.8324 0.1018 0.1959 1.8013
Normalization + SNV 0.9491 0.7303 0.1175 0.2509 1.4063

Normalization + First derivative 0.9956 0.9419 0.0350 0.1178 2.9944
Normalization + Second derivative 0.9954 0.9389 0.0356 0.1217 2.8988

Normalization + SG 0.9534 0.7483 0.1126 0.2401 1.4692

Figure 2 illustrates the regression plot of the optimal prediction model for total
flavonoid content.

Agronomy 2024, 14, x FOR PEER REVIEW 8 of 15 
 

 

reliability. This level of performance was sufficient for the rapid and dependable predic-
tion of the total flavonoid content in Tartary buckwheat in practical applications. 

 
Figure 2. Regression plot of true and predicted values of total flavonoid. 

3.4. Effects of Different Pretreatment Methods on VE Modeling 
When modeling the VE using Tartary buckwheat grain spectra, the data were parti-

tioned into training and test sets in a 4:1 ratio using the KS algorithm. In addition, six 
pretreatment methods were applied to preprocess the spectra. The CARS algorithm di-
vided the spectrum into 2307 wavenumber points, of which 155–238 points were selected, 
representing 6.71–10.3% of the total wavenumber points. Subsequently, modeling was 
conducted using the least squares method, resulting in the selection of a model with 15 
principal components.  

Table 4 illustrates the significant variations in the prediction effectiveness among the 
models constructed using the six pretreatment methods. Among these, the model utilizing 
normalized plus first derivative pretreatment exhibited the highest prediction perfor-
mance, with the Rc and Rp exceeding 0.94 and the RPD nearly reaching 3. This model 
enabled the efficient prediction of the VE content in Tartary buckwheat. Conversely, the 
model employing the normalization plus MSC pretreatment of the spectrum demon-
strated poor predictive ability. Despite the Rc and Rp values above 0.8, the RPD was 
merely 0.3435, indicating overfitting and rendering the model unusable (Table 4). 

Table 4. Effect of pretreatment method on VE models. 

Pretreatment Method Rc Rp RMSECV RMSEP RPD 
Normalization 0.9856 0.7748 0.0915 0.3483 1.5562 

Normalization + MSC 0.9861 0.8483 0.0900 1.5780 0.3435 
Normalization + SNV 0.9870 0.8586 0.0869 0.2794 1.9399 

Normalization + First derivative 0.9957 0.9427 0.0504 0.1848 2.9330 
Normalization + Second derivative 0.9980 0.9329 0.0343 0.1974 2.7459 

Normalization + SG 0.9807 0.8633 0.1057 0.3008 1.8021 

Figure 3 depicts the regression diagram of the optimal model for predicting the VE 
content in Tartary buckwheat, employing a 4:1 split between the training and test sets, and 
utilizing the pretreatment method of normalization plus the first derivative. The data 
points representing the true and predicted values clustered closely around the best-fit line, 
thereby demonstrating a strong correlation. The Rc and Rp values for both the training 

Figure 2. Regression plot of true and predicted values of total flavonoid.

This model was developed with a 4:1 split between the training and test sets and
utilized normalization combined with the first derivative preprocessing method. In the
plot, the blue dots represent the training set, and the red stars denote the prediction set.
Notably, most data points closely aligned with the best-fit line, indicating a relatively
accurate prediction by the model. Both the Rc and Rp values for the training and test
sets were close to 1 at 0.9956 and 0.9419, respectively. The high correlation coefficients
between the training and test sets suggested a strong association between the predicted
and total flavonoid content, indicating excellent predictive capability. The lower RMSECV
and RMSEP values (0.0350 and 0.1178, respectively) signified superior model performance.
These low values further affirmed the accuracy of the model. Additionally, the RPD value
served as another indicator for assessing the predictive ability. The RPD value exceeding 3
represented the strong predictive ability and stability in the model. With the RPD value
of 2.9944, which was close to 3, the model demonstrated high prediction accuracy and
reliability. This level of performance was sufficient for the rapid and dependable prediction
of the total flavonoid content in Tartary buckwheat in practical applications.
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3.4. Effects of Different Pretreatment Methods on VE Modeling

When modeling the VE using Tartary buckwheat grain spectra, the data were par-
titioned into training and test sets in a 4:1 ratio using the KS algorithm. In addition, six
pretreatment methods were applied to preprocess the spectra. The CARS algorithm di-
vided the spectrum into 2307 wavenumber points, of which 155–238 points were selected,
representing 6.71–10.3% of the total wavenumber points. Subsequently, modeling was
conducted using the least squares method, resulting in the selection of a model with
15 principal components.

Table 4 illustrates the significant variations in the prediction effectiveness among the
models constructed using the six pretreatment methods. Among these, the model utilizing
normalized plus first derivative pretreatment exhibited the highest prediction performance,
with the Rc and Rp exceeding 0.94 and the RPD nearly reaching 3. This model enabled
the efficient prediction of the VE content in Tartary buckwheat. Conversely, the model
employing the normalization plus MSC pretreatment of the spectrum demonstrated poor
predictive ability. Despite the Rc and Rp values above 0.8, the RPD was merely 0.3435,
indicating overfitting and rendering the model unusable (Table 4).

Table 4. Effect of pretreatment method on VE models.

Pretreatment Method Rc Rp RMSECV RMSEP RPD

Normalization 0.9856 0.7748 0.0915 0.3483 1.5562
Normalization + MSC 0.9861 0.8483 0.0900 1.5780 0.3435
Normalization + SNV 0.9870 0.8586 0.0869 0.2794 1.9399

Normalization + First derivative 0.9957 0.9427 0.0504 0.1848 2.9330
Normalization + Second derivative 0.9980 0.9329 0.0343 0.1974 2.7459

Normalization + SG 0.9807 0.8633 0.1057 0.3008 1.8021

Figure 3 depicts the regression diagram of the optimal model for predicting the VE
content in Tartary buckwheat, employing a 4:1 split between the training and test sets, and
utilizing the pretreatment method of normalization plus the first derivative. The data points
representing the true and predicted values clustered closely around the best-fit line, thereby
demonstrating a strong correlation. The Rc and Rp values for both the training and test sets
approached 1 at 0.9957 and 0.9427, respectively, indicating high accuracy. Moreover, the
low RMSECV and RMSEP values of 0.0504 and 0.1848, respectively, confirmed the excellent
predictive ability of the model. With the RPD close to 3, at 2.933, the model exhibited
high reliability and excellent prediction performance, rendering it suitable for the rapid
determination of the VE content in Tartary buckwheat.
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3.5. Effects of Different Pretreatment Methods on the Modeling of GABA

For the GABA modeling, the CARS algorithm divided the total wavenumber into
2307 points, of which 135–197 points were selected for the model construction, constituting
5.8–8.5% of the total wavenumber. This selection enhanced the wavenumber utilization effi-
ciency. The modeling employed the partial least squares method with a model comprising
16 principal components.

Table 5 presents that the most effective model utilized the normalized + SNV pretreat-
ment spectrum. With the Rc and Rp values of 0.9941 and 0.9322, respectively, along with
an RPD of 2.7352, this model demonstrated the robust predictive ability for the GABA
content in Tartary buckwheat. Conversely, the model constructed using normalized + MSC
preprocessing spectroscopy exhibited poor performance, with a notably high RMSEP (RPD
0.8692). However, other models exhibited favorable predictive effects, exhibiting Rc and
Rp values surpassing 0.95 and 0.85, respectively, along with RPDs exceeding 2.

Table 5. Effect of pretreatment method on GABA models.

Pretreatment Method Rc Rp RMSECV RMSEP RPD

Normalization 0.9936 0.8903 0.0579 0.2007 2.1786
Normalization + MSC 0.9929 0.9161 0.0611 0.5031 0.8692
Normalization + SNV 0.9941 0.9322 0.0553 0.1599 2.7352

Normalization + First derivative 0.9973 0.9032 0.0378 0.2028 2.1560
Normalization + Second derivative 0.9989 0.8950 0.0245 0.1944 2.2494

Normalization + SG 0.9943 0.9067 0.0547 0.1793 2.4385

Figure 4 illustrates the optimal GABA prediction model achieved under the condition
of normalization + SNV preprocessing, with the 4:1 split between the training and test sets.
Although the data points of the training set closely aligned with the best-fit line, those
of the test set exhibited slight scattering in proximity to the fit line, indicating the strong
predictive ability of the model. The data points from both sets were evenly distributed
around the best-fit line, highlighting the stability and consistency of the model across the
measurement range. The Rc and Rp values for both the training and test sets surpassed 0.9,
nearing 1, with the RMSECV and RMSEP values of 0.0553 and 0.1599, respectively. The
RPD of 2.7352 indicated the effective prediction performance, suggesting its suitability for
rapid GABA content prediction in Tartary buckwheat.
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4. Discussion
4.1. Sample Diversity

Numerous factors affected the model construction, with the sample representation and
diversity being the most significant. The representative samples ensured the universality
and generalizability of the model, facilitating the accurate prediction of the chemical values
across different samples. The flavonoid content in buckwheat grains was observed to vary
between 1.02% and 2.84% [40], and the major forms of VE were identified as γ-tocopherol
(117.8 µg/g), δ-tocopherol (7.3 µg/g), and α-tocopherol (2.1 µg/g) [41]. In this study, the
total flavonoid, VE, and GABA contents in the inbred lines ranged from 1.2% to 3.37%,
1.82 to 5.25 mg/100 g, and 0.37‰ to 2.49‰, respectively. These findings provided a solid
foundation for the successful establishment of a widely applicable model for this study.

4.2. Pre-Processing of the Spectrum

Before creating the model, the preprocessing of the spectrum was essential to eliminate
the errors induced by the noise and other factors during the scanning of the spectrum.
Different preprocessing methods yielded varying effects, necessitating testing and com-
parison of various approaches [42]. After numerous tests, the model generated using
normalization + derivative and normalization + SNV for spectrum preprocessing exhibited
superior evaluation metrics. The normalization scaled the data to a specific range or distri-
bution to mitigate the dimensional differences among various features and enhance the
model training efficiency and stability [37]. However, this process may induce a baseline
drift [38]. The derivative processing effectively eliminated the baseline drift and overlay
effects, thereby significantly enhancing the predictive efficiency of the model [38]. The
SNV primarily addressed the grain size imbalances and was crucial for modeling the full
spectrum [41].

4.3. Sample Splitting

The partitioning of the sample set can play a crucial role in model development.
Common partitioning methods include KS and sample set partitioning based on joint x-y
distance (SPXY) methods. The KS method relies on sample similarity to ensure balanced
subsets, thereby preventing bias towards specific sample types and enhancing the gen-
eralization of the model across different subsets [37]. In Khamsopha et al.’s modeling,
the samples (n = 201) were divided into a calibration set (n = 140) and a prediction set
(n = 61) [43]. In the modeling by Zhang et al., the samples (n = 112) were divided into
a calibration set (n = 82) and a prediction set (n = 30) [30]. In addition, there are 2:1 [3],
3:1 [31], and 5:1 [44,45] ratios of training sets and test sets during the modeling process. The
SPXY, an extension of the KS method, comprehensively considers the sample concentration
and spectral distance for sample screening. Wang et al. employed both the SPXY and KS
algorithms for sample partitioning in modeling soybean meal nutrients and determined
the superiority of the KS algorithm for water and protein [42]. During the research process
of this project, the KS algorithm was utilized to divide the training set and the test set into
different proportions for modeling. Finally, it was found that the most favorable model
was created when the ratio between the two was 4:1.

4.4. Extraction of the Characteristic Spectrum

Near-infrared spectroscopy faces several challenges, including low absorption in-
tensity and sensitivity, spectral bandwidth, and significant overlap. The whole spectrum
modeling combines these issues with high information redundancy and collinearity, leading
to suboptimal model prediction performance [46]. Therefore, a variable selection method
is necessary to isolate pertinent wavenumber variables and enhance model accuracy and
stability. CARS, which can identify the most useful variables from thousands of wavenum-
bers, improves the predictive ability while reducing model complexity [47]. In Li et al.’s
study, the SPA and CARS feature screening methods were adopted to classify the rice mold
by screening feature wavenumber and creating models. The findings revealed that the
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feature wavenumber identified by the CARS algorithm exhibited superior discriminative
power, thereby enhancing the discriminative ability of the model [48]. The spectral mul-
tivariate quantitative correction methods include both linear and nonlinear approaches.
The widely utilized linear correction algorithm is the partial least squares method, and the
most common nonlinear correction algorithms include the BP neural network and support
vector machine [49]. Li et al. constructed a near-infrared model for the flavonoid content in
peanut kernels using full-wavenumber spectroscopy, achieving the Rc value of 0.884 for
the correction set [50]. By contrast, this study yielded improved modeling results following
the feature spectrum extraction using the CARS algorithm. The correlation coefficients
between the modeling and test sets surpassed 0.94. PLS modeling offered the advantage of
effectively reducing dimensions and eliminating complex collinearities between variables
by extracting the principal components from the matrices of independent and dependent
variables. In our previous study, the GABA prediction model for Tartary buckwheat leaves,
built using the near-infrared full spectrum, exhibited coefficients of determination of 0.9328
and 0.9149 for the training and test sets, respectively [3]. In this study, the utilization
efficiency of the wavenumber was significantly enhanced by employing the CARS algo-
rithm, consequently improving the predictive capability of the model constructed using
the least-squares method. The coefficients of determination for the training and test sets
were 0.9941 and 0.9322, respectively.

4.5. Modeling of Whole Grains

Researchers typically scan the spectrum after crushing the sample and subsequently
employ the entire spectrum to construct a compositional prediction model. This approach
unavoidably prolongs the sample processing time [3,28,29]. Zhang et al. demonstrated
the effective spectral modeling of intact sorghum grains, yielding a favorable modeling
effect [30]. Li et al. observed that modeling the near-infrared spectra of paddy, brown rice,
and rice separately yielded reliable models for predicting rice amylose content [50]. To
cater to the requirements of buckwheat breeding and enhance the utility of the model, the
experiment collected spectra from whole grains before modeling. Subsequently, separate
NIR models for total flavonoids, VE, and GABA were developed. The findings of this
study demonstrated that the satisfactory spectral modeling of Tartary buckwheat grains
was achievable using suitable processing methods. This efficacy was attributed to the
rich information content present in whole grains and the reliable pretreatment methods
facilitating the enhanced information extraction for modeling purposes.

4.6. Potential Limitations

Scientists use modeling of RIL populations to predict chemical values and to perform
QTL mapping and achieve good results [51–53]. In this study, near-infrared models were
successfully constructed to predict the total flavonoid, VE, and GABA contents of Tartary
buckwheat. The Rc and Rp values of the best model are both above 0.93, which may
contribute to these RIL populations achieving high quality in production, breeding, and
QTL mapping. However, modeling RIL populations also has drawbacks. It has been found
that modeling natural populations has better predictive power for exotic samples than
modeling RIL populations. This could be related to the narrower range of chemical values
in RIL populations [52]. The construction of the model is influenced by various factors, the
representativeness and diversity of the samples being among the most important. A wider
range of chemical values in the sample increases the applicability of the constructed model.
Therefore, the predicted results of samples with chemical values within the range of RILs
will be more accurate. To expand the scope of the model, we need to add samples outside
the group of inbred lines to the modeling samples.

The model created in this study can predict the total contents of flavonoids, vitamin E,
and GABA in the seeds of Tartary buckwheat relatively accurately. To apply these models
in practice during breeding or cultivation, near-infrared spectra must first be collected.
With the development of the technology, scientists have been able to use convolutional
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neural network technology to extract the NIR band in satellite imagery [54] and utilize the
reflectivity of the resolution imaging spectrometer in the red and near-infrared spectral
regions to estimate chlorophyll-α concentrations in turbid coastal and estuarine production
waters [55]. Drones equipped with RGB cameras are used to repeatedly collect image
information from plots to achieve real-time monitoring of the height and growth rate of
crops grown on the plots [56]. In the future, we may also try to use satellite images and
drone technology to collect near-infrared spectral information, which will be imported into
the near-infrared model to realize real-time monitoring of field samples.

5. Conclusions

In this study, the NIRS technology offered a rapid and reliable method for predicting
the contents of total flavonoids, VE, and GABA in the RILs of Tartary buckwheat. The
CARS algorithm was used to filter the features of the original spectra of the grains of the
RIL population of Tartary buckwheat, and a series of quantitative analysis models based
on PLS were built. The constructed model achieved Rp values of 0.9419, 0.9427, and 0.9322
in predicting the total flavonoid, VE, and GABA contents, respectively. This significantly
reduced the cycle time for seed selection and quality assessment in buckwheat breeding,
thereby enhancing the work efficiency and providing practical value.

Author Contributions: Resources, L.Z., Q.C. and T.S.; Funding acquisition, L.Z. and Q.C.; Project ad-
ministration, L.Z.; Writing—review and editing, L.Z., Q.C., T.S., J.D., J.H., H.L. and F.C.; Supervision,
L.Z.; Investigation, Q.D.; Data curation, Q.D.; Methodology, Q.D.; Writing—original draft, Q.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the earmarked fund for China Agricultural Research system
(grant number CARS 07-A5), the National Natural Science Foundation of China (grant number
31760430), the major science and technology project and key research and development plan of
Yunnan Province (grant number 202202AE090020), and the Qianshi new seedling project (grant
number [2021]B17).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author/s.

Acknowledgments: We would like to thank all the reviewers who participated in the review.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Luo, S.; Huang, J.M.; Yi, Y.; Zhang, Z.Y. Development status, problems, advantages and countermeasures of guizhou buckwheat

industry. Tillage Cultiv. 2017, 6, 49–53+68.
2. Qu, Z.H.; Bai, J.; Liu, R.M.; Wang, D.Q.; Zuo, W.B. Effects of variety and environment on flavonoid content in F. esculentum

Moench. J. Shanxi Agric. Sci. 2023, 51, 1404–1409.
3. Zhu, L.W.; Zhou, Y.; Cai, F.; Deng, J.; Huang, J.; Zhang, X.N.; Zhang, J.G.; Chen, Q.F. Quantitative analysis of perennial buckwheat

leaves protein and GABA using near infrared spectroscopy. Spectrosc. Spectr. Anal. 2020, 40, 2421–2426.
4. Zhang, Z.L.; Zhou, M.L.; Tang, Y.; Li, F.L.; Tang, Y.X.; Shao, J.R.; Xue, W.T.; Wu, Y.M. Bioactive compounds in functional buckwheat

food. Food Res. Int. 2012, 49, 389–395. [CrossRef]
5. Chang, Z.H.; NiMa, Y.Z.; Huang, H.J.; Laba, Z.X.; Gao, X.L.; Tian, P.J.; Yin, Z.J. Exploring the mechanism of Tartary Fagopyrum

tataricum on pancreatic cancer based on data mining. Tibet J. Agric. Sci. 2023, 45, 29–34.
6. Wang, Y.F.; Chen, X.Y.; Han, S.Y.; Zhu, L.S.; Liu, S.M.; Lv, H.; Chu, J.X. Experimental study on total flavones from buckwheat leaf

in fighting pain and in flammation. Acad. J. Shanghai Univ. Tradit. Chin. Med. 2004, 11, 54–55.
7. Zhu, L.S.; Ma, X.C.; Han, S.Y.; Liu, S.M.; Lv, H. Effects of total flavones of buckwheat leaf on blood lipid and lipid peroxides. Chin.

J. Clin. Rehabil. 2004, 24, 5178–5179.
8. Ke, J.; Ran, B.; Sun, P.; Cheng, Y.; Chen, Q.; Li, H. An evaluation of the absolute content of flavonoids and the identification of

their relationship with the flavonoid biosynthesis genes in Tartary buckwheat seeds. Agronomy 2023, 13, 3006. [CrossRef]
9. Tan, P.Y.; Guo, W.B. Research progress of Tartary buckwheat flavonoids on human body’s physiological function and mechanism.

Med. Recapitul. 2018, 24, 1627–1632.
10. Qiu, J.; Liu, Y.P.; Yue, Y.F.; Qin, Y.C.; Li, Z.G. Dietary Tartary buckwheat intake attenuates insulin resistance and improves lipid

profiles in patients with type 2 diabetes: A randomized controlled trial. Nutr. Res. 2016, 36, 1392–1401. [CrossRef]

https://doi.org/10.1016/j.foodres.2012.07.035
https://doi.org/10.3390/agronomy13123006
https://doi.org/10.1016/j.nutres.2016.11.007


Agronomy 2024, 14, 1826 13 of 14

11. Lei, L.T.; Zhou, Y.C.; Pu, X.Y. Preparation of flavonoid compounds from Tartary buckwheat and study on their antioxidative and
hypoglycemic effects. Chin. Food Ind. 2023, 02, 102–104.

12. Qin, P.Y.; Wang, Q.A.; Shan, F.; Hou, Z.H.; Ren, G.X. Nutritional composition and flavonoids content of flour from different
buckwheat cultivars. Int. J. Food Sci. Tech. 2010, 45, 951–958. [CrossRef]

13. Yao, P.; Huang, Y.; Dong, Q.; Wan, M.; Wang, A.; Chen, Y.; Li, C.; Wu, Q.; Chen, H.; Zhao, H. FtMYB6, a light-induced SG7
R2R3-MYB transcription factor, promotes flavonol biosynthesis in Tartary buckwheat (Fagopyrum tataricum). J. Agric. Food Chem.
2020, 68, 13685–13696. [CrossRef] [PubMed]

14. Duan, C.Y.; Xiong, X.; Jing, M.Y.; Gao, Y.; Hou, F.F.; Xing, G.M.; Li, S. Genetic analysis and QTL localization of vitamin E content
in Hemerocallis citrina Baroni. J. Hebei Agric. Univ. 2023, 46, 38–45.

15. Ma, J.T.; Qiu, D.Y.; Pang, Y.Z.; Gao, H.W.; Wang, X.M.; Qin, Y.C. Diverse roles of tocopherols in response to abiotic and biotic
stresses and strategies for genetic biofortification in plants. Mol. Breed. 2020, 40, 18. [CrossRef]

16. Sozen, E.; Demirel, T.; Ozer, N.K. Vitamin E: Regulatory role in the cardiovascular system. IUBMB Life 2019, 71, 507–515.
[CrossRef] [PubMed]

17. Ekeuku, S.O.; Etim, E.P.; Pang, K.L.; Chin, K.Y.; Mai, C.W. Vitamin E in the management of pancreatic cancer: A scoping review.
World J. Gastrointest. Oncol. 2023, 15, 943–958. [CrossRef] [PubMed]

18. Wu, Z.; Wang, N.S.; Li, Y.H. Correlation of serum glutamate and gamma-aminobutyric acid levels with clinical symptoms in
chronic schizophrenia patients and their diagnostic value for cognitive impairment. Int. J. Lab. Med. 2024, 45, 95–98+103.

19. Yan, R. The levels and clinical significance of serum glutamate and T-aminobutyric acid in patients with depression. J. Int. Psychl.
2022, 49, 609–611.

20. Tong, X.M.; Chai, C.X.; Wang, Y.Q. Effect of germination on grain quality of Tartary buckwheat and optimization of technology.
Food Mach. 2021, 4, 176–183.

21. Xi, Z.Y. Study on Non-Destructive Detection Method of Buckwheat Based on Near-Infrared Spectroscopy Technology. Master’s
Thesis, Kunming University of Science and Technology, Kunming, China, 2013.

22. Xu, B.C.; Ding, X.L. The quantitative methods of flavonoids in buckwheat (Fagopyrum tataricum). J. Food Sci. Biotechnol. 2003, 02,
98–101.

23. Tang, C.Y.; Wang, T.; Tu, J.; Liu, G.H.; Li, P.; Zhao, J. Comparison of colorimetry and HPLC for determination of γ-aminobutyric
acid in mulberry leaf tea. Food Sci. 2018, 39, 256–260.

24. Zheng, Z.X. Application of near-infrared spectroscopy analysis technology in the feed processing industry. Fujian Agric. Mach.
2019, 1, 24–27.

25. Yang, N.; Ren, G.X. Application of near-infrared reflectance spectroscopy to the evaluation of rutin and d-chiro-inositol contents
in Tartary buckwheat. J. Agric. Food Chem. 2008, 761–764. [CrossRef] [PubMed]

26. Li, W.L.; Han, H.F.; Cheng, Z.W.; Zhang, Y.; Liu, S.Y.; Qu, H.B. A feasibility research on the monitoring of traditional Chinese
medicine production process using NIR-based multivariate process trajectories. Sens. Actuators B Chem. 2016, 231, 313–323.
[CrossRef]

27. Platov, Y.T.; Metlenkin, D.A.; Platova, R.A.; Rassulov, V.A.; Vereshchagin, A.I.; Marin, V.A. Buckwheat identification by combined
UV-VIS-NIR spectroscopy and multivariate analysis. J. Appl. Spectrosc. 2021, 88, 723–730. [CrossRef]

28. Zhu, L.W.; Yan, J.X.; Huang, J.; Shi, T.X.; Cai, F.; Li, H.Y.; Chen, Q.F.; Chen, Q.J. Rapid determination of amino acids in golden
Tartary buckwheat based on near infrared spectroscopy and artificial neural network. Spectrosc. Spectr. Anal. 2022, 42, 49–55.

29. Zhang, J.; Guo, J.; Zhang, M.L.; Zhang, X.; E, J.J. Establishment of rapid detection model of buckwheat nutritional components
based on near infrared spectroscopy. J. Chin. Cereals Oils Assoc. 2020, 35, 151–158.

30. Zhang, B.J.; Chen, S.S.; Li, K.Y.; Li, L.H.; Xu, R.H.; An, C.; Xiong, F.M.; Zhang, Y.; Dong, L.L.; Ren, M.J. Construction and
application of detection model for amylose and amylopectin content in sorghum grains based on near infrared spectroscopy. Sci.
Agric. Sin. 2022, 55, 26–35.

31. Wang, Y.Y.; Dai, Y.J.; Wang, Y.Y.; Yang, J.L.; Xiang, D.H.; Yang, Y.Q.; Zeng, S.W. Research on non-destructive detection of protein
and fat content in Torreya based on near-infrared spectroscopy technology. Sci. Technol. Food Ind. 2024, 45, 1–8.

32. Wang, C.W. The Vegetable Quality Evaluation of Perennial Buckwheat. Master’s Thesis, Guizhou Normal University, Guiyang,
China, 2015.

33. Chen, M.M.; Qiu, Y.C.; Song, Y.; Yang, S.Q.; Zuo, F.; Qian, L.L. Study on origin tracing of mung bean based on near-infrared
spectrum. J. Heilongjiang Bayi Agric. Univ. 2024, 36, 49–54.

34. Yan, H.; Neves, M.D.G.; Wise, B.M.; Moraes, I.A.; Barbin, D.F.; Siesler, H.W. The application of handheld near-infrared spectroscopy
and raman spectroscopic imaging for the identification and quality control of food products. Molecules 2023, 28, 7891. [CrossRef]

35. Lv, D.; Li, R.Y.; Zheng, R.; Zheng, J.Q.; Meng, Z.Y.; Shi, T.X.; Chen, Q.F. Variation analysis of flavonoids content in seeds and seed
traits of tartary buckwheat germplasn resources. Mol. Plant Breed. 2020, 18, 4762–4774.

36. Ren, C.Z.; Shan, F.; Wang, M.; Li, Y.L. Review on nutrition and functionality and food product development of buckwheat. Chin.
J. Grain Oil Sci. 2022, 37, 261–269.

37. Galvao, R.K.H.; Araujo, M.C.U.; Jose, G.E.; Pontes, M.J.C.; Silva, E.C.; Saldanha, T.C.B. A method for calibration and validation
subset partitioning. Talanta 2005, 67, 736–740. [CrossRef] [PubMed]

38. Rabatel, G.; Marini, F.; Walczak, B.; Roger, J. VSN: Variable sorting for normalization. J. Chemom. 2019, 34, e3164. [CrossRef]

https://doi.org/10.1111/j.1365-2621.2010.02231.x
https://doi.org/10.1021/acs.jafc.0c03037
https://www.ncbi.nlm.nih.gov/pubmed/33171044
https://doi.org/10.1007/s11032-019-1097-x
https://doi.org/10.1002/iub.2020
https://www.ncbi.nlm.nih.gov/pubmed/30779288
https://doi.org/10.4251/wjgo.v15.i6.943
https://www.ncbi.nlm.nih.gov/pubmed/37389119
https://doi.org/10.1021/jf072453u
https://www.ncbi.nlm.nih.gov/pubmed/18167074
https://doi.org/10.1016/j.snb.2016.03.023
https://doi.org/10.1007/s10812-021-01231-2
https://doi.org/10.3390/molecules28237891
https://doi.org/10.1016/j.talanta.2005.03.025
https://www.ncbi.nlm.nih.gov/pubmed/18970233
https://doi.org/10.1002/cem.3164


Agronomy 2024, 14, 1826 14 of 14

39. Chu, X.L.; Li, Y.H. Practical Handbook of Near Infrared Spectroscopy, 1st ed.; Chemical Industry Press: Beijing, China, 2023; pp.
139–140.

40. Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Correction to the description of standard normal variate (SNV) and detrend (DT) transfor-
mations in practical spectroscopy with applications in food and beverage analysis—2nd Edition. J. Near Infrared Spectrosc. 1993, 1,
185–186. [CrossRef]

41. Sun, J.H.; Zhang, W.; Shi, J.Q.; Li, Y.K. Selection and application of spectral data preprocessing strategy. Acta Metrol. Sin. 2023, 44,
1284–1292.

42. Wang, L.Q.; Yao, J.; Wang, R.Y.; Chen, Y.H.; Luo, S.N.; Wang, W.N.; Zhang, Y.R. Research on detection of soybean meal quality by
nir based on PLS-GRNN. Spectrosc. Spect. Anal. 2022, 42, 1433–1438.

43. Khamsopha, D.; Woranitta, S.; Teerachaichayut, S. Utilizing near infrared hyperspectral imaging for quantitatively predicting
adulteration in tapioca starch. Food Control 2021, 123, 107781. [CrossRef]

44. Li, S.P.; Wang, J.Y.; Wang, L. Construction and application of amylose content calibration model based on near-infrared spec-
troscopy. Grain Oil Sci. Technol. 2023, 36, 139–143.

45. Chai, Y.H.; Yu, Y.; Zhu, H.; Li, Z.M.; Dong, H.; Yang, H.S. Identification of common buckwheat (Fagopyrum esculentum Moench)
adulterated in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) flour based on near-infrared spectroscopy and chemometrics.
Curr. Res. Food Sci. 2023, 7, 100573. [CrossRef]

46. Cui, C.; Liu, C.L.; Sun, X.R.; Wu, J.Z. Peanut frostbite detection method based on near infrared hyperspectral imaging technology.
Food Ind. Technol. 2024, 45, 226–233.

47. Centner, V.; Massart, D.L.; Denoord, O.E.; Dejong, S.; Vandeginste, B.M.; Sterna, C. Elimination of uninformative variables for
multivariate calibration. Anal. Chem. 1996, 68, 3851–3858. [CrossRef]

48. Li, B.; Su, C.T.; Yin, H.; Liu, Y.D. Hyperspectral imaging technology combined with machine learning for detection of moldy rice.
Spectrosc. Spectr. Anal. 2023, 43, 2391–2396.

49. Chen, P.; Dai, J.W.; Li, J.Y.; Xu, Y.P.; Liu, D.; Chu, X.L. Progress of chemometric methods in near- infrared spectroscopy. Chem.
Reag. 2023, 45, 105–112.

50. Li, Z.; Hong, M.Y.; Cui, S.L.; Chen, M.; Liu, X.K.; Chen, H.Y.; Liu, L.F. Rapid detection method of flavonoid content in peanut seed
based on near infrared technology. Spectrosc. Spectr. Anal. 2024, 44, 1112–1116.

51. Hashemi, S.M.; Perry, G.; Rajcan, I.; Eskandari, M. SoyMAGIC: An unprecedented platform for genetic studies and breeding
activities in soybean. Front Plant Sci. 2022, 13, 945471. [CrossRef]

52. Zhang, H.J.; Wu, J.H.; Luo, Y.; Li, L.J.; Yang, H.; Yu, X.Q.; Wang, X.S.; Chen, L.; Mei, H.W. Comparison of near infrared
spectroscopy models for determining protein and amylose contents between calibration samples of recombinant inbred lines and
conventional varieties of rice. Sci. Agric. Sin. 2007, 6, 941–948. [CrossRef]

53. Jasinski, S.; Lécureuil, A.; Durandet, M.; Bernard-Moulin, P.; Guerche, P. Arabidopsis seed content QTL mapping using high-
throughput phenotyping: The assets of near infrared spectroscopy. Front. Plant Sci. 2016, 7, 1682. [CrossRef]

54. Illarionova, S.; Shadrin, D.; Trekin, A.; Ignatiev, V.; Oseledets, I. Generation of the nir spectral band for satellite images with
convolutional neural networks. Sensors 2021, 21, 5646. [CrossRef] [PubMed]

55. Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Satellite estimation of chlorophyll-α concentration using the red and
NIR bands of MERIS—The Azovsea case study. IEEE Geosci. Remote Sens. Lett. 2009, 6, 845–849. [CrossRef]

56. Holman, F.H.; Riche, A.B.; Michalski, A.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. High throughput field phenotyping of
wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens. 2016, 8, 1031. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1255/jnirs.21
https://doi.org/10.1016/j.foodcont.2020.107781
https://doi.org/10.1016/j.crfs.2023.100573
https://doi.org/10.1021/ac960321m
https://doi.org/10.3389/fpls.2022.945471
https://doi.org/10.1016/S1671-2927(07)60132-1
https://doi.org/10.3389/fpls.2016.01682
https://doi.org/10.3390/s21165646
https://www.ncbi.nlm.nih.gov/pubmed/34451088
https://doi.org/10.1109/LGRS.2009.2026657
https://doi.org/10.3390/rs8121031

	Introduction 
	Materials and Methods 
	Experimental Materials and Spectra Acquisition 
	Experimental Materials 
	Spectra Acquisition 

	Determination of the Contents of Total Flavonoid, VE, and GABA 
	Determination of Total Flavonoids of Tartary Buckwheat 
	Determination of VE in Tartary Buckwheat 
	Determination of GABA Content in Tartary Buckwheat 

	Data Processing and Model Evaluation 
	Data Processing 
	Model Evaluation 


	Results 
	Determination of Functional Components of Tartary Buckwheat and Analysis of Variation 
	Construction of the Near Infrared Model 
	Near Infrared Spectrum of Tartary Buckwheat 
	Partitioning of the Sample Set 

	Creation of Total Flavonoid Prediction Models 
	Effects of Different Pretreatment Methods on VE Modeling 
	Effects of Different Pretreatment Methods on the Modeling of GABA 

	Discussion 
	Sample Diversity 
	Pre-Processing of the Spectrum 
	Sample Splitting 
	Extraction of the Characteristic Spectrum 
	Modeling of Whole Grains 
	Potential Limitations 

	Conclusions 
	References

