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Abstract: Concern over the harmful impacts of heavy metal pollution in soil has increased dramati-
cally on a global scale. For the sake of environmental preservation, accurate estimates of the heavy
metal concentrations in soil are essential. This study provides valuable data regarding heavy metal
concentrations in soil collected from field crops production area in Central and Western Serbia. Five
wider localities in the zones of Central and Western Serbia were selected for the collection of soil
samples. Based on our research, focused on determining the total contents of heavy metals in the soil
and the degree of pollution in the environment caused by their behavior, distribution, and origin, it
can be concluded that there is pronounced variability in relation to localities. Heavy metal contents
were mostly within the same ranges as those in similar soils from Europe and around the world. Any
pollution control system must include heavy metal monitoring, including the methodical collection
of data on the concentrations of heavy metals in a particular environment. Before environmental
degradation occurs, it is crucial to set pollution limits and implement efficient monitoring procedures.

Keywords: heavy metals; soil contamination; Central and Western Serbia

1. Introduction

Soil in the central and western parts of the Republic of Serbia is facing numerous pres-
sures, including the expansion of urban zones, pollution from agriculture and industry, erosion,
low crop diversification, and extreme weather events associated with climate change [1].

From chemical, physiological, and ecological points of view, heavy metals form a het-
erogeneous group of elements. The concentrations of toxic metals are different depending
on the geological base, the type of soil, the geographical area, and climatic factors [2]. The
distribution and availability of potentially toxic elements in the soil depend on a large
number of biotic and abiotic factors, the most common of which are the geomorphological
and geochemical characteristics of the parent substrate of the soil, weather characteristics,
soil texture and structure, soil pH reactions, oxidation–reduction processes, cationic ex-
change capacity (CEC), content of organic matter, soil microorganisms, etc. [3–7]. Their
behavior in the soil and availability to plants, in addition to their concentrations, are also
influenced by the physico-chemical properties of the soil. Research has shown that there are
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correlations between the toxic metal content of the soil and the pH of the soil; the content
of the clay fraction; the cation adsorption capacity; the character of organic matter; Fe, Mn,
and Al oxides; and the redox potential [8]. Numerous mechanisms occur in the soil that
affect the destinations of hazardous metals, including volatilization, sorption by microbiota,
occlusion, diffusion, dissolution, uptake, migration, and binding with organic matter [9].
According to research, pedogenesis processes concentrate Ag, As, Cd, Cu, Hg, Pb, S, Bi,
and Zn in the surface soil layer, whereas Al, Fe, Ga, Mg, Ni, Sc, Ti, V, and Zn are found
in the lower strata of the soil profile, where they typically attach to deposits of clay and
hydrated oxides. Insufficient time for pedogenesis processes to relocate and distribute
harmful metals to deeper soil layers is one of the main causes of the high concentrations
of toxic metals seen in the surface layers of polluted soils in recent times [10,11]. Due to
intensive technological and industrial development, large amounts of harmful and toxic
substances enter the environment in various ways. Among these substances, there is a
significant share of heavy metals, which, due to their indestructibility, toxicity, and biogeo-
chemical circulation, represent a major problem for the environment [12,13]. Environmental
protection experts face significant difficulty when it comes to heavy metal pollution in soil.
In addition to causing morphological variation and abnormal growth in plants, HMs in soil
have been shown to cause severe health-related effects in humans, including cancer, anemia,
impaired kidney function, and skin lesions [14–16]. Determining the levels of the heavy
metals in soil is of great importance, in order to study the potential level of environmental
pollution in more detail, the mechanisms of movement and binding of heavy metals, and
their mobility and potential bioavailability [17].

The objectives of this study were to determine the levels of the heavy metals iron (Fe),
manganese (Mn), zinc (Zn), copper (Cu), nickel (Ni), and lead (Pb) in the agricultural soils
of Central and Western Serbia.

2. Materials and Methods
2.1. Study Sites and Sample Collection

The study area, located in Central and Western Serbia, consisted of five localities (Gruža:
43◦54′0′′ N, 20◦46′0′′ E; Kragujevac: 44◦01′0′′ N, 20◦55′0′′ E; Kraljevo: 43◦43′33′′ N, 20◦41′22′′ E;
Čačak: 43◦53′29′′ N, 20◦20′59′′ E; and Užice: 43◦51′31′′ N, 19◦50′56′′ E), from which 100 soil
samples were collected at surface (0–30 cm) depth for one year, between December 2020 and
December 2021, considering that the surface layers of soil (up to 30 cm) are exposed to the
highest degrees of accumulation of most heavy metals and metalloids (Figure 1).

Figure 1. Map of the study area: Central and Western Serbia, and the distribution of soil sampling points.
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2.2. Soil Sampling and Chemical Analysis

Tests of soil samples included the following: pH in H2O and 1M KCl was deter-
mined using the SRPS ISO 10390:2007 potentiometric method; CaCO3 (%)—the SRPS ISO
10693:2005 volumetric method; organic matter (%)—calculated from organic carbon (C)
with CNS Analyzer (http://www.statsoft.com, accessed on 10 July 2024); total nitrogen
(%)—CNS Analyzer; available phosphorus (P2O5)—AL method, spectrophotometrically;
available potassium—K2O-AL method, flame photometrically. The contents of heavy met-
als in all analyzed samples were determined using inductively coupled plasma–optical
emission spectroscopy (ICP-OES, Thermo Scientific, Cambridge, UK) iCAP 6000 series with
an optical system (Eschelet grid) and CID detector with provided cooling of the camera
at −45 ◦C. An inductively coupled plasma–optical emission spectrometer was used to
determine the concentrations of several heavy metals (including Fe, Mn, Zn, Cu, Ni, and
Pb) that were present in the digested solution [18,19].

2.3. Statistical Analysis

Principal component analysis (PCA) simplifies the interpretation of patterns in data
by highlighting variables that exhibit similar behaviors. In this study, PCA was applied to
analyze 100 samples from five locations in Central and Western Serbia, focusing on research
variables such as chemical parameters and heavy metal content in soil samples. The results
are presented in biplots, providing a clear visualization of the relationships among these
variables. The data analysis was conducted using StatSoft Statistica 12 (StatSoft Inc., Tulsa,
OK, USA) and R software, version 4.0.2 (64-bit) http://www.statsoft.com, accessed on
10 July 2024.

3. Results
3.1. Chemical Properties and Levels of Heavy Metals in Soils

Experimentally obtained chemical parameters and heavy metal contents (pH, as well
as the contents of P2O5, K2O, N, organic matter, Fe, Mn, Zn, Cu, Ni, Pb, Cd, and Cr) in
soil samples from 100 sites in the regions of Central and Western Serbia are presented in
Supplementary Table S1. According to the results, the pH levels (H2O) ranged from 4.30 to
7.61. Most samples fell within the range of 5 to 6, indicating acidic soil. The pH (KCl) ranged
from 3.73 to 6.89, generally showing increased acidity compared to pH (H2O). The nutrient
contents were also investigated for the samples presented in Supplementary Table S1. The
P2O5 content ranged from 0.3 to 85 mg 100 g−1, with high variability in soil P content across
samples. The K2O content ranged from 16.4 to 60 mg 100 g–1, indicating adequate to high
K2O levels for plant growth. The nitrogen content ranged from 0.10% to 0.44%, indicating
low to moderate N levels. The organic matter content ranged from 1.83% to 7.69%. Higher
organic matter was generally found in samples from Užice, indicating potentially richer soil
compared to other locations. The Fe content ranged from 1.8 to 126 µg g–1, indicating high
variation across samples. Manganese levels also varied significantly (from 4.6 to 136 µg g–1),
with some soils being very rich in Mn. Zn concentrations were generally low (0.44 to
10 µg/g), with a few samples showing higher values. Cu levels varied between 0.52 and
15.8 µg g–1, with higher values indicating potential contamination or rich natural deposits.
Ni concentrations were generally low to moderate, ranging from 0.76 to 13.56 µg g–1. Pb
levels were mostly low, ranging from 0 to 5.7 µg g–1, indicating minimal contamination.
The Cd level was uniformly low (0.1 µg g–1) across all samples, indicating a consistent
presence at low levels. Most Cr values were zero, suggesting negligible Cr content in the
soil. The location of Gruža was characterized by pH values suggesting moderately acidic
to neutral soil, high variability in P2O5 and K2O contents, and generally moderate organic
matter content. The soil samples from Kragujevac were more acidic compared to those from
Gruža and showed higher levels of Fe and Mn in some samples. The soil samples from
Kraljevo were more acidic, with some very high organic matter content. These samples
showed high variability in Fe and Mn contents, and some samples had high levels of Pb
and Zn. The soil samples from Čačak were predominantly acidic. Many samples had high
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levels of iron and organic matter, along with very high levels of Zn and Pb. The soil samples
from Užice were generally more neutral, with consistently high organic matter content and
higher levels of Mn and Fe. Some samples also showed very high Zn and Pb contents.

3.2. Chemometric Results

An unrooted tree diagram was generated using R software version 4.0.2 (64-bit) with
the “ape” package (Analysis of Phylogenetics and Evolution). This tool was employed
to graphically represent the chemical parameters and heavy metal contents in soil data,
as assessed through cluster analysis. The experimental results were first organized into a
matrix, followed by a hierarchical cluster analysis. The distance matrix was calculated using
the Euclidean method, and the cluster analysis was conducted using the “complete” linkage
method. Sample similarities are depicted by the proximity of branches, as shown in Figure 2.
The samples are identified using the numerical values provided in Supplementary Table S1.

Figure 2. The unrooted phylogenetic tree based on chemical parameters and heavy metal content in the
soil data. The samples were labeled according to numerical values shown in Supplementary Table S1.

Several clusters were observed; Cluster 1 gathered samples having increased organic
matter, N, K2O, P2O5, Zn, and Cu contents, while Cluster 2 was established based on sam-
ples having increased Ni content. Cluster 3 consisted of samples with elevated Mn content,
while the Cluster 4 included samples with higher levels of KCl and H2O. Cluster 5 was
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characterized by samples with increased Fe content. Statistically significant correlations
(p < 0.001) were identified between several chemical parameters and heavy metal contents
in the samples, as illustrated in Figure 2, in which the colors of the circles represent their
correlation coefficients, while their sizes reflect the p-values of the correlations. The highest
positive correlations were found between H2O content and KCl content (r = 0.963), K2O
and P2O5 contents (r = 0.346), and N and organic matter contents (r = 0.469). Fe content
was negatively correlated to the contents of H2O and KCl (r = −0.712 and r = −0.737,
respectively), while Mn content was negatively correlated to those of H2O and KCl
(r = −0.694 and r= −0.6597, respectively). Fe and Mn contents were positively corre-
lated (r = 0.396). Zn content was positively correlated to the contents of P2O5 and K2O
(r = 0.409 and r = 0.407, respectively), while Cu content was positively correlated to P2O5
and Zn contents (r = 0.392 and r = 0.447, respectively). Ni content was positively correlated
to the content of organic matter (r = 0.372) and negatively correlated to the contents of H2O
and KCl (r = −0.379 and r = −0.368). Pb content was negatively correlated to H2O content
(r = −0.361) (Figure 3).

Figure 3. Color correlation graph between chemical parameters and heavy metal contents in the
soil samples.

The principal component analysis (PCA) of the chemical parameters and heavy metal
contents in the samples revealed that the first three principal components accounted for
63.0% of the total variance within the 12-parameter factor space (including H2O, KCl, P2O5,
K2O, N, organic matter, Fe, Mn, Zn, Cu, Ni, and Pb contents). According to the PCA results,
Fe content, which contributed 17.7% to the total variance, and Mn content, contributing
14.3%, had positive influences on the first principal component (PC1). In contrast, the
contents of H2O and KCl, contributing 25.9% and 25.5% respectively, had negative impacts
on the calculation of PC1.
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The contents of P2O5 (9.3% of the total variance, based on correlations), K2O (21.4%),
N (11.1%), organic matter (15.6%), Zn (26.5%), and Cu (11.2%) showed positive influences
on the second principal component (PC2). The contents of P2O5 (20.4% of the total variance,
based on correlations) and Cu (13.6%) showed positive influences on the third principal
component (PC3) calculation, while the contents of N (18.3%), organic matter (21.1%), and
Ni (13.1%) exerted negative influences to PC3, as shown in Figure 4. The samples were
labeled with the numerical values provided in Supplementary Table S1.

Figure 4. PCA ordination of chemical parameters and heavy metal contents in the soil samples is
presented as follows: (a) projection in the PC1-PC2 plane, and (b) projection in the PC1-PC3 plane.
The samples are labeled with the numerical values provided in Supplementary Table S1.

4. Discussion

Currently, agriculture is fighting to adapt to climate change and provide wholesome
food for the world’s expanding population on dwindling amounts of arable land. At
the same time, the negative impacts of human activities, including agriculture, on the
environment have to be minimized [17,19]. Soil characteristics such as humidity, total
contents of essential elements (carbon, nitrogen, and phosphorus), soil pH reaction, cation
exchange capacity, and other parameters are of great significance for the development of
many ecological processes, such as carbon reserve deposition, nitrogen mineralization,
decomposition of organic matter, water purification, etc. [20–22]. While heavy metals
are generally present in the soil in sufficient quantities, they are predominantly in their
insoluble forms, which limits their availability to plants, so Zn and Cu are usually absorbed
in clay particles, CaCO3, or organic matter, while Fe is most often found in the form of
hydroxide [23,24]. The elements Cu, Mn, Ni, and Zn are essential for the functioning of
living organisms, but in large concentrations, they can be toxic and have negative effects
on the environment. On the other hand, As, Cd, Cr, Pb, and Hg are considered toxic even
in low concentrations [25]. Previous research indicates that heavy metals and metalloids
most often accumulate in the surface soil layers, and their contents can be several times
higher in deeper layers and in reference values for a specific area [26,27]. The total content,
solubility, and availability parameters of the examined elements depend, to a significant
degree, on the composition of the parent substrate, the soil texture, the content of organic
matter, and soil pH reactions [28].

In the regions of Central and Western Serbia, due to the diversity of the geological
substrate, climatic characteristics, biodiversity, topographical and hydrological conditions,
and anthropogenic influences, different types of soil have formed. The dominant soil types
have slightly acidic or acidic reactions, are carbonate-free or slightly carbonated, are slightly
humus to humus, have very low or low contents of easily accessible phosphorus, and have
optimal or high contents of easily accessible potassium [29].
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In terms of acidity, soil pH represents one of the most important chemical character-
istics, on which many other physical, chemical, and biological properties depend. The
value of pH significantly affects the amounts, types, and contents of organic matter, Fe
and Al oxides, and cation sorption, which increases with increasing pH [30]. Also, pH
affects the dissolution and deposition processes and the redox potential, and represents a
limiting factor in terms of the bioavailability and mobility of essential and potentially toxic
elements [31]. It is known that, in the range from neutral to low pH values, most elements
become more mobile and, therefore, bioavailable [32]; however, exceptions occur with As,
Mo, Se, V, and Cr, whose bioavailability and mobility actually increase in slightly alkaline
environments [33]. A decisive factor could be high pH values, which affect the availability
of nutrients in the soil, primarily phosphorus, as well as the essential micronutrients Fe, Mn,
Zn, and C [31,34]. The amounts of CaCO3 in the analyzed soil samples varied depending
on the location and soil type.

The amount of organic matter (OM) affects soil structure, water retention, water
permeability, and aeration. As for its influence on chemical properties, we primarily mean
the influence that OM has on the cation exchange capacity (CEC), buffering capacity, and
bioavailability of metals [35]. Over the years, there has been a drastic decrease in the content
of OM in the soil, as a result of climate change, management systems, erosion, and other
degradation processes [36]. On more than half of the total land surface in Southeastern
Europe, the content of OM is very low—on average, below 3.4% [37], which is similar to
the results obtained in our research. In the analyzed localities, the content of OM in the
soil ranged from 0.30% to 5.10%, indicating a trend of decreasing content. The variation in
OM content values can be explained by terrain heterogeneity and the presence of multiple
soil types, as well as different management practices that lead to large differences in soil
organic matter stocks. The amount of nitrogen in the soil directly depends on the amount
of OM, so if the content of OM is high, the nitrogen content will be proportionally high [38].
The amount of nitrogen in the tested soil samples ranged from 0.05% to 2.1%. Soils in
most tested locations were very poorly supplied with phosphorus. The content of readily
available potassium (K2O) in the soil ranged from 3.51 mg 100 g−1 to 38.10 mg 100 g−1.

Iron (Fe) is one of the most abundant elements in nature, and its average content in
soil is about 3.5%, or about 30,000 mg kg−1 [39]. Manganese (Mn), alongside Al and Fe,
is one of the most abundant elements in the lithosphere, and its average content in soil,
globally, ranges from 41 to 550 mg kg−1 [2]. The average copper content in the world’s soils
ranges from 2 to 50 mg kg−1 [25], and the total content usually depends on the parent soil
substrate and the distribution of local and regional characteristics in the soil. In the surface
soil layers, copper is most often found in its divalent form, Cr(II), so it is generally very
toxic and bioavailable; however, the higher the value of the soil pH reaction, the greater
the influence on its mobility, solubility, and availability in the soil [2]. Nickel (Ni), similar
to chromium, can be found in all types of soils, ranging from negligible to extremely high
concentrations [25], and the average nickel content in soils around the world ranges from
13 to 37 mg kg−1 [25]. The content and mobility of nickel in soil is most influenced by pH,
so in soils where pH < 6, nickel becomes very soluble and toxic; meanwhile, in neutral
and weakly alkaline soils, it occurs in the form of hydroxide, with very low mobility and
solubility [25]. Certainly, the factors that significantly influence the mobility and availability
of Ni are OM, CEC, and the contents of clay particles [2]. The main source of lead (Pb) in
soil comes from the parent substrate; however, due to various anthropogenic activities,
the surface layers of the soil are additionally enriched with lead [25]. The average content
of lead (Pb) in soils, globally, is around 27 mg kg−1, and its content in the soil is greatly
influenced by the granulometric composition, i.e., the sizes of the particles to which Pb
can bind, as larger amounts of lead are bound to finer particles of clay and colloids [2].
Zinc (Zn) is one of the most prevalent elements, and its content in soil largely depends
on the composition of the parent material on which the soil forms. It varies widely, from
10 to 100 mg kg−1, while the average value for world soils is 55 mg kg−1 [40]. Many
factors affect the solubility of Zn, but also its ability and method of binding to the soil.
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The most important of these factors are pH, soil texture, CEC, and organic matter content.
The solubility of zinc is highest in an acidic environment, while, with an increase in pH,
especially above 6.5, zinc occurs in forms that are very stable and almost inaccessible to
plants. The content of Zn in the analyzed samples indicates a large variability, depending
on the locality [41]. This has been confirmed in several studies [42,43] and is consistent
with the fact that heavy metals are generally adsorbed on organic matter [44], and that
organic matter contributes to the accumulation of heavy metals in the soil [45]. Kabata–
Pendias et al. [12] conclude that the average content of total Zn in the surface layers of
different global soil types in the world ranges from 17 mg kg−1 to 125 mg kg−1. The
behaviors of heavy metals such as Cd, Cr, Pb, Co, etc. have become a growing concern
in ecological research because of the possibility of ecotoxicity, as well as their persistence,
bioaccumulation, and biomagnification properties, making them a threat to the water and
soil resources’ health [46,47].

5. Conclusions

This study provides valuable data regarding heavy metal concentrations in soil collected
from field crops in production areas of Central and Western Serbia. Based on this research,
and its focus on the total content of heavy metals in the soils of Central and Western Serbia, as
well as on determining the degree of pollution in the environment caused by their behavior,
distribution, and origin, it can be concluded that there is pronounced variability in relation
to localities. Their contents were mostly within the same ranges as those of similar soils
from Europe and around the world. Any pollution control system must include heavy metal
monitoring, including the methodical collection of data on the concentrations of heavy metals
in a particular environment. Before environmental degradation occurs, it is crucial to set
pollution limits and implement efficient monitoring procedures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy14081836/s1, Table S1: Experimental results.
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