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Abstract: The precise quantification of soil salinity and the spatial distribution are paramount
for proficiently managing and remediating salinized soils. This study aims to explore a pioneering
methodology for forecasting soil salinity by combining the spectroscopy of soda saline–alkali soil with
crack characteristics, thereby facilitating the ground-based remote-sensing inversion of soil salinity.
To attain this objective, a surface cracking experiment was meticulously conducted under controlled
indoor conditions for 57 soda saline–alkali soil samples from the Songnen Plain of China. The
quantitative parameters for crack characterization, encompassing the length and area of desiccation
cracks, together with the contrast texture feature were methodically derived. Furthermore, spectral
reflectance of the cracked soil surface was measured. A structural equation model (SEM) was
then employed for the estimation of soil salt parameters, including electrical conductivity (EC1:5),
Na+, pH, HCO3

−, CO3
2−, and the total salinity. The investigation unveiled notable associations

between different salt parameters and crack attributes, alongside spectral reflectance measurements
(r = 0.52–0.95), yet both clay content and mineralogy had little effect on the cracking process due to
its low activity index. In addition, the presence of desiccation cracks accentuated the overall spectral
contrast of salt-affected soil samples. The application of SEMs facilitated the concurrent prediction
of multiple soil salt parameters alongside the regression analysis for individual salt parameters.
Nonetheless, this study confers the advantage of the swift synchronous observation of multiple salt
parameters whilst furnishing lucid interpretation and pragmatic utility. This study helps us to explore
the mechanism of soil salinity on the surface cracking of soda saline–alkali soil in the Songnen Plain
of China, and it also provides an effective solution for quickly and accurately predicting soil salt
content using crack characteristics, which also provides a new perspective for the hyperspectral
measurement of saline–alkali soils.

Keywords: soil salinization; spectral response; desiccation crack; texture feature; structural
equation modeling

1. Introduction

Soil salinization represents a widespread global phenomenon associated with soil
degradation, posing significant challenges to both agricultural development and eco-
logical stability. China, hosting the world’s third-largest area of saline soils spanning
3.69 × 107 hm2, equivalent to approximately 4.88% of its available land area, is particularly
impacted [1]. Among the salt-affected regions in China, the Songnen Plain stands out with
a saline–alkali area of 3.73 × 106 hm2, primarily consisting of sodium bicarbonate and
sodium carbonate as the main salt minerals. Due to the relative high clay content and
adsorbable cations, the salt-affected soils in the Songnen Plain suffer from a serious desicca-
tion cracking process during water evaporation, suggesting that exploring the relationship
between crack extents and salinity levels can therefore help to expeditiously and accurately
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obtain soil salinity data, assess the degree of soil salinization, and delineate the extent of
salinized soil, which is also pivotal for guiding soil amelioration efforts, optimizing soil
land utilization, and safeguarding the local food security.

Field sampling followed by traditional laboratory analysis is considered the most
direct method for detecting soil salinity [2,3]. However, these conventional methods are not
efficient in providing real-time soil salinity parameters due to their time-consuming testing
processes, long measurement periods, and high labor costs. To overcome these limitations,
the electromagnetic induction method is commonly employed to determine salt content
without physical contact. This method involves measuring the correlation between the
primary magnetic field and the induced secondary magnetic field to quickly assess the
apparent soil conductivity [4,5]. While electromagnetic induction sensors like the EM-38
are widely used for monitoring soil salinity, soil texture, and other soil properties in the
field [6,7], their accuracy is affected by the physical and chemical properties of different soil
types, which are also sensitive to environmental influences [8,9]. In contrast, hyperspectral
remote-sensing technology offers a powerful and effective approach for monitoring soil
salinity. This technique relies on the diagnostic spectroscopy of different salt minerals and
utilizes the wide band range and high spectral resolution of hyperspectral sensors [10,11].
Numerous studies have emphasized the significance of hyperspectral remote sensing
in extracting and predicting soil salinity levels. These studies have provided valuable
insights into the spectral characteristics and sensitive bands associated with different levels
of salinity [12–15]. However, it should be noted that previous ground-based spectral
measurements have mainly focused on soil samples obtained through sieving (particles
with sizes of 2 mm or less), and spectral data derived from large-scale remote-sensing
images often encounter mixed pixel issues, limiting their ability to accurately represent the
actual surface conditions of salt-affected soils.

Under natural conditions, it is a common occurrence for clayey soil to undergo shrink-
age and develop desiccation cracks during the process of water evaporation. This phe-
nomenon is influenced by several soil properties, including soil salinity, clay content, and
mineralogy. Specifically, soils with a higher clay content are more susceptible to severe
shrinkage deformation, resulting in more prominent desiccation cracks [16–18]. The pres-
ence of different clay minerals can also impact swell–shrinkage cracking, as indicated by
their respective plasticity indexes. Soils with lower smectite content and higher amounts
of kaolinite, illite, and quartz tend to exhibit smaller shrinkage strains [19–21]. Regarding
salt-affected soils, soil salinity also has a significant influence on the cracking process
of cohesive salt-affected soils. Extensive research has demonstrated that changes in soil
physicochemical parameters, specifically the type of salt minerals and the exchangeable
sodium percentage, play a crucial role in the cracking process. In a study conducted by
Ren et al. [22], the authors utilized a large number of soil samples collected under natural
conditions to establish a relationship between the texture features of desiccation cracks
and the salinity of soda saline–alkali soils. They employed a four-level orthogonal wavelet
decomposition and found that high-frequency texture features, such as energy and the L1
norm, exhibited an exponential correlation with EC1:5 values of salt-affected soils. Another
study by Zhang et al. [23] focused on predicting the main salt parameters of salt-affected
soils in the Songnen Plain of China. They compared three different methods and discovered
that total salinity promotes the process of desiccation cracking in soda saline–alkali soils.
They also demonstrated that the artificial neural network (ANN) method can accurately
predict Na+ and EC1:5 levels. Fujimaki et al. [24] investigated the relationship between
the crack characteristics and physicochemical parameters of saline soils. They evaluated
EC1:2 values in agricultural fields with desiccation cracks in the Nile Delta and found that
cracks facilitate the rapid movement of soil salts through water, thereby influencing the
distribution of soil salts. Additionally, Zhang et al. [25] conducted a study on pure clay of
bentonite and observed that the salt concentration significantly induced and altered the
morphology and patterns of desiccation cracks. As the concentration of the sodium chloride
(NaCl) solution increased, larger crack lengths and lower crack densities were obtained. In
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order to gain a comprehensive understanding of the mechanism underlying desiccation
cracking in saline–alkali soil and provide valuable insights for engineering practices, Xing
et al. [26] conducted a study wherein they treated soil samples with saturated solutions
of NaCl at concentrations of 5 g/L, 50 g/L, and 100 g/L. The results of their experiments
demonstrated a gradual decrease in both soil-crack area and crack length with increasing
Na+ concentration. However, an opposite trend was observed for crack number, which
increased with increasing Na+ concentration. Wang et al. [27] suggested different results
in their research, wherein NaCl treatments were found to increase both the total area and
average width of desiccation cracks in shrink–swell light clays. This discrepancy highlights
the complexity of the desiccation cracking process and emphasizes the need for further
investigation. Although previous studies have examined the desiccation cracking process
under varying salinity conditions, the specific mechanism through which salinity influences
the soil-cracking process remains unresolved. This uncertainty may be attributed to the
complex interactions between different cations and soil particles, which are influenced by
factors such as ion concentration, valence state, topography, climate, and soil type.

Although numerous studies have investigated the effects of soil salinity and salt
mineral composition on the cracking process of different salt-affected soils, most of these
studies have focused on determining the control of the soil-cracking process and its impact
on the extent of soil surface cracking through experimentation with a limited number
of sample variations under controlled desiccation cracking conditions. However, there
is a lack of research that aims to predict soil salinity in real-world scenarios based on
crack characteristics. Furthermore, the hyperspectral characteristics of salt-affected soil,
which provide important information about the type and content of soil salt minerals, have
not been extensively studied in relation to cracked saline–alkali soil. Additionally, the
complexity of cracks can further influence the spectral response of the soil surface, while
the crack area can also affect the volume scattering process of electromagnetic radiation.
Therefore, integrating crack characteristics and the spectral response through ground-based
remote-sensing methods can greatly improve the accuracy of soil salinity content prediction,
thereby facilitating soil salinity monitoring. This study attempts to perform desiccation
cracking experiments under controlled indoor conditions using soil samples with different
salinity levels. Three types of crack parameters, including crack length, crack area, and
texture feature, were quantitatively extracted from the crack patterns of soil samples under
completely dry conditions. Meanwhile, spectral data of cracked soil samples were also
measured in this study. After that, structural equation modeling (SEM) was explored to
realize single-parameter and multi-parameter prediction methods for soil salt parameters
including EC1:5, pH, Na+, HCO3

−, CO3
2−, and the total salinity by combing the crack

characteristics and spectral responses of cracked saline–alkali soils. This not only enables
the effective prediction of salt information in cracked soil from a ground-based remote-
sensing perspective but also enhances the experimental process and scheme design for the
hyperspectral measurement of saline–alkali soil surfaces. As a result, this study provides
valuable data support for local soil remediation efforts and strengthens the remediation of
soda saline–alkali soil in the Songnen Plain, China. Furthermore, this approach propels
the field of hyperspectral remote sensing for soil salinization monitoring and extends the
application of soil hyperspectral remote-sensing technology. Additionally, this research
also attempts to improve the experimental process and scheme design for hyperspectral
measurement of saline alkali soil surfaces, providing crucial data for local soil remediation
efforts and advancing the application of hyperspectral remote sensing for soil salinization
monitoring.

2. Materials and Methods
2.1. Study Area

The Songnen Plain is located in the center of Northeast China between the Liao River
and the Heilongjiang River, which has a flat topography, low elevation, a high water table
and poor drainage. The soils in the western Songnen Plain are highly saline, with EC1:5
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mainly ranging from 0.04 to 3.99 dS/m [28,29]. Sodium carbonate (Na2CO3) and sodium
bicarbonate (NaHCO3) are the main salt minerals, and it is commonly known as one of the
main areas affected by soil salinization in China and one of the three areas with the highest
degree of soda salinization in the world, with a saline soil area of up to 2.55 × 106 hm2 [30].
A specific city within the Songnen Plain that suffers significantly from salinization is Da’an
City located in Jilin Province. This city is situated in the western part of the Songnen
Plain and experiences a temperate continental monsoon climate, with an average annual
rainfall ranging from 400 to 500 mm, predominantly occurring from July to August. The
irregular distribution of this rainfall, coupled with an average annual evaporation rate of
1500–1900 mm, results in a pronounced imbalance between evaporation and precipitation.
Consequently, the soil surface exhibits conspicuous shrinkage and cracking due to water
evaporation. Furthermore, the poor infiltration capacity of soda–saline soils inhibits the
downward movement of salt, thereby rendering the physicochemical properties of the soil
surface relatively stable. With consideration given to road accessibility, the heterogeneity
of the physicochemical properties of salt-affected soils, and the spatial distribution of soil
salinity levels, different regions experiencing desiccation cracking were selected under
natural conditions. Each crack region was then set up with several sampling points based
on the difference in surface crack states. A total of 57 sampling sites with different salinities
were finally selected and recorded using a handheld GPS (Figure 1). After that, all soil
samples were collected from 0 to 20 cm, dried, crushed, passed through a 2 mm sieve,
and divided into two parts. The first part was used for soil physicochemical property
measurements, and the other part was prepared for soil surface cracking experiments and
spectroscopy measurements under controlled conditions.
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2.2. Soil Property Measurements

In this study, all physicochemical parameters of the soil samples, mainly consisting
of ion content, pH, soil electrical conductivity (EC), mass soil moisture and soil texture,
were analyzed and measured in the laboratory, [31]. The ion contents were all measured
using soil extracts with a soil/water mass ratio of 1:5. Specifically, Na+ and K+ were
measured using the flame photometer method; Ca2+ and Mg2+ were measured using
the EDTA complexation titration method; Cl− was measured using the silver nitrate
(AgNO3) solution titration method; and CO3

2− and HCO3
− were measured using the

double indicator neutralization method. Salinity referred to the sum of all salt ion contents.
It should be noted that the SO4

2− content was neglected because the SO4
2− content in the

Songnen Plain soils was very limited. The total soil salinity referred to the sum of all ion
contents measured above. In this study, both ion contents and the total soil salinity refer
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to the proportion of ion contents measured through the soil extraction solution to the dry
soil mass of each sample, with the same unit of mg/g. Additionally, pH1:5 and EC1:5 were
determined using a soil suspension with a soil/water mass ratio of 1:5 and was measured
based on the potentiometric and conductivity methods, respectively. Moreover, the soil
textures of all soil samples were also determined by a Malvern MS-2000 laser particle size
analyzer to measure the particle size distributions of clay (0–2 µm), silt (2–50 µm) and sand
(50–2000 µm).

2.3. Soil-Cracking Experiment

Before conducting the cracking experiment, the thorough homogenization of the
samples was ensured by removing impurities such as grass clippings. To create a well-
saturated slurry, water was added to each soil sample, resulting in an initial soil moisture
level of 50%. Additionally, the dry weight of each sample was recorded. Taking into account
the friction and water permeability of the sample box bottom, square wooden boxes with
inner dimensions of 50 cm by 50 cm and a height of 3 cm were prepared. The saturated
slurry of each soil sample was then poured into the respective sample box, ensuring a
smooth surface. Subsequently, all soil samples were placed in a controlled laboratory
environment with a temperature of 25 ◦C, a humidity of 35%, and a pressure of 101 kPa.
These controlled conditions were essential to consistently regulate the water evaporation
during the desiccation cracking test. It is noteworthy that the mass soil moisture of each
sample was monitored every 12 h during the cracking process by calculating the difference
between its dry weight and the measured weight. The experiment was considered complete
when the weights of all soil samples no longer decreased [32,33].

2.4. Photography and Spectroscopy of Cracked Soil Samples

Upon the completion of the cracking experiment, standardized measurements were
performed on all cracked soil samples (Figure 2). The soil surface with desiccation cracks
was photographed and analyzed using spectroscopy (Figure 2a). A high-resolution digital
camera was utilized for the photography; it was placed on a height-adjustable platform
with the camera lens positioned 1 m vertically above the ground. A fixed square area
measuring 50 cm × 50 cm, centered on the projection of the lens, was defined on the
ground. The camera was white-balanced and set with a uniform aperture size and exposure
time. Afterward, each soil sample was placed within this fixed area and photographed
(Figure 2b). To correct for geometric aberration in crack patterns across all soil samples, a
checkerboard grid calibration plate was then prepared and photographed under the same
conditions (Figure 2c).
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The spectral response of cracked saline–alkali soil was acquired using an ASD Field-
Spec3 hyperspectral spectrometer with a visible near-infrared detector (VNIR: 350–1000 nm,
sampling interval of 1.4 nm, and spectral resolution of 3 nm) and a short-wave infrared
detector (SWIR: 1000–2500 nm, sampling interval of 2 nm, and spectral resolution of 10 nm).
Spectral measurements were conducted under clear and cloudless weather conditions.
Specifically, the spectrometer was fixed on the platform with an optical probe (25◦ field
of view) positioned 1 m above the fixed square area. Each soil sample was then placed
within this area, corresponding to a circular region with a diameter of approximately
45 cm (Figure 2d). After that, dark current removal and whiteboard calibration procedures
were performed, and 10 spectral reflectance measurements were collected and averaged
to account for instrument noise. Finally, the reflectance of each cracked soil sample was
resampled at 10 nm intervals to further reduce equipment noise and the dimensionality of
the data.

2.5. Extraction of Crack Characteristics

The MATLAB software 2023a was utilized in this study to extract crack parameters
from all soil samples that were subjected to cracking. Initially, the calibration plate was
geometrically corrected based on the coordinates of the grid intersection positions. A
polynomial geometric correction model was then developed [34]. Subsequently, a batch
operation of geometric correction was applied to all crack images taken under the same
photographic conditions, and the resulting images were cropped accordingly (Figure 3a).
Following this, the color images were converted to grayscale by averaging the red, green,
and blue components (Figure 3b). It is important to note that, to eliminate the impact of
sample frames producing shadows on the image edges, the grayscale images were further
cropped to a uniform size of 47.5 cm × 47.5 cm. The crack image was then subjected
to binarization and inversion using the threshold determined from the histogram of the
grayscale image (Figure 3c). This process indicated that the white areas of the images repre-
sented the cracks, while the black areas represented the uncracked soil surface [35]. Finally,
skeletonization was performed on each binary image to obtain the crack network with a
width of only one pixel [36], and any redundant blurs generated during the skeletonization
process were removed (Figure 3d).
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Crack length (CL) and crack area (CA) are the foundational geometric features charac-
terizing the cracks on the soil surface after pre-processing operations on the crack image.
In this study, the actual size of pixel (S) is determined using the length of 47.5 cm and
its corresponding pixel number. After that, the CL of each soil samples was calculated
by multiplying S and the total number of crack skeletons. After that, the numbers of
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both the whole crack image and extracted crack area were used to determine the crack
ratio [37,38], which was then used to calculate the CA of each soil sample. In addition,
the classical gray level co-occurrence matrix (GLCM) is proposed for the texture features
of crack patterns [39,40]. Specifically, the second-order combined conditional probability
density of the binary image under different orientations under directions of 0◦, 45◦, 90◦

and 135◦ was calculated for GLCMs, with the formula listed below:

p(i, j) = g{(x1, y1) , (x2, y2) ∈ m × n| f (x1, y1) = i, f (x2, y2) = j} (1)

where i, j denotes the gray values of the gray image f (x, y) at coordinate positions (x1, y1)
and (x2, y2), and p(i, j) refers to the second-order combined conditional probability density.
In order to describe the texture state of the image more intuitively, the contrast texture
feature (CON) of the crack image was calculated to further characterize the clarity of the
cracked image [41] and to reflect texture intensity of the neighboring image elements of the
cracked image. The CON formula is as follows:

CON =
Ng−1

∑
n

n2

{
Ng

∑
i=1

Ng

∑
j=1

p(i, j)

}
, |i − j| = n (2)

where Ng represents the number of gray levels in the GLCM. Since the generation and
development direction of desiccation cracks are random, the arithmetic means of CON
calculated from different directions were taken as the final CON of the cracked image.

2.6. Structural Equation Model

A structural equation model (SEM) integrates the characteristics of factor analysis
and path analysis, which is widely applied in fields such as psychology, education, and
finance [42,43]. It provides a powerful tool for identifying, modeling, and explaining rela-
tionships among multiple variables, particularly in complex scenarios involving multiple
indicators [44]. Due to its unique analytical capability, an SEM is often used for qualita-
tive analysis in the field of geography [45–47], with relatively fewer studies employing
quantitative analysis. We note that when it is necessary to describe an abstract concept
or phenomenon with multiple indicators using an SEM, these indicators are integrated
into latent variables, while the indicators themselves serve as manifest variables. In the
framework of an SEM, latent variables can be further classified into both exogenous and
endogenous latent variables. Exogenous latent variables can independently influence other
variables without being affected by other factors, while endogenous latent variables are
influenced by other latent variables or external factors. In this study, crack characteristics
and spectral responses are considered as exogenous latent variables, while soil physico-
chemical properties refer to endogenous latent variables of soil samples. The SEM consists
of measurement equations and structural equations, where the measurement model is a pre-
requisite and foundation of SEM analysis, used to represent the inherent relationships between
measurement variables and corresponding endogenous or exogenous latent variables.

The mathematical expression of the exogenous variable equation can be expressed as

X = Λxξ + δ (3)

where X represents exogenous observed variables. Λx is the factor loading matrix between
X and ξ. δ is the measurement error term of exogenous variables.

The mathematical expression of the endogenous variable equation can be repre-
sented as

Y = Λyη + ε (4)

where Y represents exogenous observed variables. Λy refers to the factor loading matrix
between Y and η. ε is the measurement error term of exogenous variables.
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The mathematical expression of the structural model can thus be represented as

η = Bη + Γξ + ζ (5)

where ξ and η refer to exogenous and endogenous latent variables, respectively. Bη is the
factor loading between endogenous latent variables. Γ represents the relationship matrix
between ξ and η. ζ refers to the residual error term of the structural equation [48]. The
schematic diagram of the structural equation model is shown in Figure 4.
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2.7. Correlation Analysis

In order to quantitatively analyze the relationships between the different crack char-
acteristics, spectral responses and physicochemical parameters of soda saline–alkali soils,
the following formulas were utilized in this study to calculate the Pearson correlation coef-
ficients between the main physicochemical parameters (pH, EC1:5, Na+, HCO3

−, CO3
2−,

salinity) and crack feature parameters of the saline soils in the Songnen Plain. This was in
addition to the correlation coefficients between the main physicochemical parameters of
the soil and spectral reflectance [49].

R =

n
∑

i=1
(xi − x)× (yi − y)√

n
∑

i=1
(xi − x)×

n
∑

i=1
(yi − y)

(6)

where R is the Pearson correlation coefficient calculation result, xi refers to the measured
soil salt parameters, yi describes the crack feature parameters or spectral reflectance, and n
represents the number of soil samples.

3. Results
3.1. Physicochemical Parameters

The statistical results of the main salt parameters are shown in Table 1. The table
indicates that the pH of the soil samples ranged from 8.01 to 10.77, while EC1:5 ranged
from 0.06 dS/m to 3.39 dS/m, suggesting that all soil samples exhibited obvious alkaline
characteristics. Additionally, Table 1 also shows that contents of Na+, HCO3

−, CO3
2−,

and soil salinity covered from 0.12 to 14.12 mg/g, 0.15 to 4.99 mg/g, 0 to 5.51 mg/g, and
11.06 to 29.73 mg/g, respectively, indicating quite a large distribution. The coefficient of
variation exceeding 63.40% indicated a considerable degree of dispersion among the salt
parameters of the samples, which also suggested the wide coverage of the samples and
significant differences in salt parameters. The soil moisture of all soil samples after the
drying process covered a range from only 2.04% to 4.31% with an average value of 2.97%,
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suggesting that the desiccation cracking is well completed. Table 1 also indicates that the
soil samples belong to a typical soil texture of clay loam, according to the soil taxonomy
proposed by the United States Department of Agriculture (USDA).

Table 1. Statistical description of soil properties.

Soil Parameters Min Max Mean SD CV (%) Skewness Kurtosis

pH 8.01 10.77 9.83 0.73 7.41 −1.14 0.18
EC1:5 (dS/m) 0.06 3.39 0.97 0.84 86.64 1.02 0.56
Na+ (mg/g) 0.12 14.12 3.32 3.28 98.95 1.51 2.13
K+ (mg/g) 0.01 0.06 0.02 0.01 67.41 2.14 5.49

Ca2+ and Mg2+ (mg/g) 0.10 1.60 0.53 0.32 59.75 1.19 1.67
HCO3

− (mg/g) 0.12 5.00 1.57 0.99 63.4 1.11 1.38
CO3

2− (mg/g) 0 5.50 1.75 1.56 89.33 1.02 0.14
Cl− (mg/g) 0.08 5.25 1.32 1.46 110.44 1.34 0.86

Salinity (mg/g) 1.06 29.73 8.50 6.46 75.98 1.22 1.43
Soil moisture (%) 2.04 4.31 2.97 0.58 19.65 0.15 −1.12

Clay (%) 25.39 32.04 27.98 1.54 5.49 0.43 −0.27
Silt (%) 28.72 40.4 35.19 3.18 9.03 −0.12 −0.82

Sand (%) 28.26 43.94 36.85 3.64 9.87 −0.21 −0.85

N = 57, SD: standard deviation, CV: coefficient of variation.

3.2. Crack Characteristics

Table 2 shows the crack characteristics obtained from the soil samples following the
drying process. The results revealed a wide range of crack parameters for CL, ranging from
200.00 cm to 797.18 cm, and for CA, ranging from 36.78 cm2 to 547.54 cm2. These findings
indicated significant differences in the geometric crack characteristics among various soil
samples. In addition, CON covered a range from 1.14 to 1.64, fully suggesting the contrast
of the adjacent images and the strength of the texture feature.

Table 2. Statistical results of three crack characteristic parameters of all cracked soil samples.

Soil Parameters Min Max Mean SD CV (%) Skewness Kurtosis

CL (cm) 200.00 797.18 444.26 120.65 27.16 0.54 0.58
CA (cm2) 36.78 547.54 311.80 130.80 41.95 −0.08 −0.78

CON 1.14 1.6 1.44 0.12 8.6 −0.8 −0.24

N = 57, SD: standard deviation, CV: coefficient of variation.

3.3. Spectral Responses

Figure 5 depicts the spectral characteristics of soil samples with different salinity levels;
it was drawn based on 11 samples evenly selected by salinity intervals. It is observed from
the figure that the spectral reflectance curves of the different soda salinized soil samples
were essentially the same in shape. Specifically, the reflectance showed a clear increasing
trend from 350 to 1400 nm. Subsequently, the growth rate of the reflectance curves in the
1400–1800 nm band range slowed down, and the curves were close to parallel. Between
1800 and 1850 nm, the spectral features changed sharply due to the influence of atmospheric
water content. In addition, the reflectance curves in the range of 1850–2350 nm showed
a trend of first increasing and then decreasing, with a peak appearing at approximately
2100 nm.
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Figure 6 shows the absolute values of the correlation coefficients between spectral
reflectance and six main salt parameters, indicating that the curves of EC1:5, Na+, HCO3

−,
and salinity were similar in shape. Specifically, there was an increasing trend below 1400 nm,
with a smaller peak near 500 nm. In the range of 1400–1900 nm, the correlation of the values
of soil physicochemical parameters showed a decreasing and then increasing trend, but the
magnitude of the change was not significant. In addition, the correlation coefficient curves
showed a weak peak near 1900 nm followed by a slow decrease. The correlation coefficient
curves of reflectance of CO3

2− and pH showed a clear decreasing trend between 500 and
1400 nm and a small absorption valley near 1000 nm. In the range of 1400–2500 nm, the
correlation curves of HCO3

− versus pH showed a slow decrease followed by an increase
and then another decrease. It can also be found from the figure that the correlation curve
of pH was much lower than that with HCO3

−. Therefore, the maximum values of the
correlation coefficients between different salt parameters and reflectance can be seen in the
vicinity of the 1990 nm band.
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The reflectance at 1990 nm of 57 soil samples was extracted as the spectral parameter in
the prediction model. Table 3 shows the statistical characteristics of reflectance at 1990 nm
for all samples. It can be seen that the reflectance of different samples covered a large range
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of variation, and the CV of 21.17% indicates that the reflectance of different samples at
1990 nm had a large degree of dispersion, suggesting that there was a large variation in the
reflectance of different samples in this band.

Table 3. Statistical results of spectral characteristics of all cracked soil samples.

Min Max Mean SD CV (%) Skewness Kurtosis

1990 nm 0.11 0.47 0.36 0.08 21.17 −0.9 0.85

N = 57.

3.4. Correlation Coefficients

Table 4 displays the cross-correlations among different soil parameters and crack char-
acteristics and the spectral reflectance of all 57 soil samples. It can be seen that the main soil
salt parameters were positively correlated with all crack parameters but negatively corre-
lated with spectral reflectance. Table 4 also shows that soil physicochemical parameters had
the strongest overall correlation with CON, with correlation coefficients ranging from 0.65 to
0.95. However, the overall correlation between salt parameters and CA was the lowest, with
correlation coefficients ranging only from 0.31 to 0.55. In addition, Na+ had the strongest
correlation with spectral reflectance with a correlation coefficient of −0.89, but pH had the
poorest response to spectral reflectance with a correlation coefficient of −0.56. At the same
time, the correlation of different cleavage features and spectral reflectance with soil salin-
ity basically satisfied the relationship of pH < HCO3

− < CO3
2− < Na+ < EC1:5 < salinity.

Moreover, the poor correlation coefficients from only 0.13 to 0.25 in Table 4 also shows that
the clay content had very little effect on desiccation cracks.

Table 4. Correlation coefficient matrix of salt parameters with crack characteristics and spectral
reflectance.

CL (cm) CA (cm2) CON Reflectance

pH 0.66 ** 0.45 ** 0.65 ** −0.56 **
EC1:5 (dS/m) 0.92 ** 0.55 ** 0.94 ** −0.88 **
Na+ (mg/g) 0.91 ** 0.50 ** 0.93 ** −0.89 **

HCO3
− (mg/g) 0.62 ** 0.47 ** 0.61 ** −0.66 **

CO3
2− (mg/g) 0.76 ** 0.31 ** 0.74 ** −0.73 **

Salinity (mg/g) 0.94 ** 0.52 ** 0.95 ** −0.92 **
Clay (%) 0.14 0.26 * 0.13 −0.05

N = 57, CL: Crack length, CA: Crack area; **: the significant level of correlation at p ≤ 0.01; *: the significant level
of correlation at p ≤ 0.05.

3.5. Prediction Models of Salt Parameters

In this study, a modeling set of 40 samples and a validation set of 17 samples were
randomly generated in a 2:1 ratio, gradient by gradient, according to the arranged numerical
order of soil salinity. The CL, CA, CON, and reflectance in the 1990 nm range were selected
as independent variables. An SEM was then developed and validated. Among them, the
SEM of salt parameters was divided into simultaneous models for many-to-many and
individual models for many-to-one.

3.5.1. Multi-Parameter Prediction of SEMs

Table 5 shows the simultaneous modeling of different salt parameters using an SEM.
From the table, it can be seen that the modeling accuracy of EC1:5 and Na+ was the highest,
with an R2 of 0.92 and an RPD above 2. The modeling accuracy of salinity was also good,
with an R2 of 0.9 and an RPD above 2. Thereafter, the model was able to capture the intrinsic
relationship of the data to a large extent and can be used to predict the salinity, EC1:5 and
Na+. Additionally, the prediction R2 of CO3

2− is 0.53, indicating that the model is able
to explain more than half of the observed variance. However, the modeling accuracy of
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the SEM for HCO3
− and pH was very low, with an R2 of only 0.46 and 0.41, respectively.

Furthermore, the relative RPDs for the final three parameters are all less than 2, which
provides additional evidence that the model has limited predictive power with regard to
these parameters.

Table 5. Structural equation models for predicting different salt parameters simultaneously.

Soil Salt
Parameters Formulas R2 RPD RMSE MAE

pH Y = 10.266 + 0.265 X1 + 0.300 X2 + 0.271 X3 − 0.254 X4 0.41 1.08 0.95 0.56
EC1:5 (dS/m) Y = 3.061 + 0.461 X1 + 0.303 X2 + 0.471 X3 − 0.451 X4 0.92 2.15 0.28 0.73
Na+ (mg/g) Y = 3.676 + 1.782 X1 + 0.925 X2 + 1.820 X3 − 1.709 X4 0.92 2.11 0.36 2.65

HCO3
− (mg/g) Y = 2.123 + 0.386 X1 + 0.253 X2 + 0.395 X3 − 0.377 X4 0.46 1.08 0.66 1.16

CO3
2− (mg/g) Y = 3.823 + 0.713 X1 + 0.468 X2 + 0.729 X3 − 0.697 X4 0.53 1.05 0.99 1.50

Salinity (mg/g) Y = 10.823 + 16.797 X1 + 11.030 X2 + 17.124 X3 − 16.084 X4 0.90 2.14 1.98 2.67

N = 40, X1: Crack length (CL), X2: Crack area (CA), X3: CON, X4: Reflectance at 1990 nm.

3.5.2. Single-Parameter Prediction of SEMs

Table 6 presents the prediction results of an SEM for different salt parameters modeled
separately by single parameters. From the table, it can be seen that the prediction accuracy
of EC1:5, Na+, and salinity was high with an R2 of 0.91, 0.91, and 0.94, and the RPD of
these three parameters was above 2. Subsequently, the R2 of predicted CO3

2− was 0.62,
suggesting that the single-parameter prediction of structural equation modeling also had a
certain prediction ability. However, the SEM did not predict pH and HCO3

− well, with
R2 scores of only 0.41 and 0.48, respectively. Moreover, the relative RPD for the final three
parameters was less than 2, suggesting that these salt parameters were predicted with
limited stability.

Table 6. Structural equation models for predicting different salt parameters separately.

Soil Salt
Parameters Formulas R2 RPD RMSE MAE

pH Y = 10.274 + 0.261 X1 + 0.177 X2 + 0.269 X3 − 0.247 X4 0.41 1.10 1.12 0.80
EC1:5 (dS/m) Y = 3.037 + 0.457 X1 + 0.309 X2 + 0.471 X3 − 0.438 X4 0.91 2.18 0.30 0.83
Na+ (mg/g) Y = 8.676 + 1.751 X1 + 1.167 X2 + 1.816 X3 − 1.677 X4 0.91 2.15 0.39 2.54

HCO3
− (mg/g) Y = 1.566 + 0.367 X1 + 0.249 X2 + 0.379 X3 − 0.379 X4 0.48 1.14 0.60 1.02

CO3
2− (mg/g) Y = 3.406 + 0.671 X1 + 0.459 X2 + 0.699 X3 − 0.643 X4 0.62 1.08 0.97 1.47

Salinity (mg/g) Y = 13.889 + 3.6463 X1 + 2.390 X2 + 3.720 X3 − 3.559 X4 0.94 2.66 2.11 2.47

N = 40, X1: Crack length (CL), X2: Crack area (CA), X3: CON, X4: Reflectance at 1990 nm.

3.5.3. Verification of Prediction Models

In order to validate the accuracy of salt parameters, scatter plots were drawn versus pre-
dicted and measured salt parameters for soil samples in the validation set. Figures 7 and 8
display the results of the SEM for single-parameter and multi-parameter prediction, respec-
tively. The red areas in the figures showed the confidence intervals of the fitted data. It was
evident that the single-parameter structural equation modeling exhibited superior fitting
outcomes regardless of the salt parameters compared with the prediction results of multiple
parameters. For different salt parameters, the confidence intervals of total salinity and Na+

can basically cover y = x. In addition, the confidence intervals of EC1:5 also overlapped
with y = x to a certain extent. In addition, it can be seen from both figures that although the
CO3

2− validation performance is poor, it was still better than HCO3
− and pH.
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Figure 8. The results of fitting measured and predicted values of a multiple dependent variables
by SEM.

Table 7 demonstrates the R2 and the ratio of performance to deviation (RPD) of the
inversion results for different prediction models. From this table, it can be seen that
both SEM conditions have good prediction accuracy for most of the salt parameters. In
conjunction with the criteria proposed by Farifteh et al. [50], the SEM is good in predicting
EC1:5, Na+ and salinity since both inversion models had an R2 above 0.87 and an RPD
above 2.5. Table 7 also indicates that SEMs achieved certain predictive ability for CO3

2−

and pH, with an R2 above 0.5, but the RPD was low, indicating unstable prediction abilities.
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Moreover, Table 7 suggests that for most salt parameters, the accuracy of the SEM for single
parameter was higher than that of the SEM for multiple parameters.

Table 7. Comparison of inversion accuracy of soil physicochemical parameters.

Method Index pH EC1:5 (dS/m) Na+ (mg/g) HCO3− (mg/g) CO32− (mg/g) Salinity (mg/g)

SEM (single) R2 0.54 0.87 0.89 0.42 0.62 0.91
RPD 1.46 2.64 3.08 1.32 1.39 3.24

RMSE 1.09 0.03 0.38 0.07 0.10 2.14
MAE 0.66 0.96 2.78 0.93 1.39 2.43

SEM (multiple) R2 0.54 0.87 0.88 0.48 0.60 0.95
RPD 1.47 2.65 2.70 0.73 1.45 4.33

RMSE 1.03 0.42 0.30 0.54 0.99 1.62
MAE 0.41 0.57 1.25 0.52 0.82 2.54

N = 17, SEM: Structural equation model.

4. Discussion

Soil cracking is a complex mechanical process that is influenced by various factors,
including soil texture, soil chemical properties, and environmental conditions. In this study,
the environmental factors, such as temperature and relative humidity during the drying
process, were maintained at a constant level, suggesting that the impact of experimental
conditions and sample preparation can be disregarded. Moreover, the distribution of soil
samples in this study was relatively concentrated, indicating that the samples had similar
clay content and mineral types. From the findings presented in Table 4, it can be observed
that soil texture had a minimal effect on the desiccation cracking process. The correlation
coefficients between clay content and crack characteristics ranged from only 0.13 to 0.26,
suggesting a weak relationship. Similar results were reported by Zhang et al. [51] in their
study on soda saline–alkali soil in the Songnen Plain. They found that the clay content in
the soil ranged from 20% to 29%, which aligns closely with the measurements obtained in
this study. They also discovered that the activity index of salt-affected soil in the Songnen
Plain ranged from 0.33 to 0.48, indicating that clay particles have little influence on the
expansion and contraction of the salt-affected soil in this region. This can be attributed to
the predominant presence of illite and montmorillonite mixed layers, with a mixed-layer
ratio greater than 50%, along with smaller amounts of illite and kaolinite. Notably, the
montmorillonite content, which exhibits the highest activity, is evidently low.

From Table 4, it can be seen that soil salinity plays a very important role in the
process of desiccation cracking, which may be attributed to several factors. In soda saline–
alkali soils, the presence of exchangeable cations in the salt solution is a crucial factor
that determines the physical properties of the soil during the process of dehydration
and cracking. This, in turn, influences the cracking of the soil surface due to exposure
to salt. From Table 1, it is evident that Na+ is the predominant cation in the Songnen
Plain of China, with a significantly higher content than other types of soil cations. The
surface of cohesive saline soil samples generally carries negative charges, which allows
for the exchange with exchangeable cations [52]. The alteration in charge distribution
further affects the adsorption mechanism of water molecules and consequently leads to
changes in their adsorption behavior [53]. Specifically, the arrangement and behavior of
water molecules are influenced by cations, particularly Na+, resulting in the formation
of a specific bound water film on the soil surface [54]. This kind of water film acts as
a dispersant, increasing the distance between soil particles and reducing their contact
and bonding. As a result, the cohesion and tensile strength of the soil are reduced. With
the further thickening of the bound water film, soil particles become more susceptible to
sliding or separating under stress, leading to a decrease in the overall structural stability
and strength of the soil [55–57]. Additionally, the lubricating effect of the bound water
film between soil particles decreases the internal friction angle and shear strength of the
soil, promoting the desiccation cracking process of salt-affected soils [58]. Moreover, the
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content of monovalent Na+ in the soda saline–alkali soil solution in the Songnen Plain is
significantly higher than that of the divalent Ca2+ and Mg2+, which can negatively impact
the stability of soil aggregates. This weakens the bonding force between soil particles and
makes them more easily separated by water, thereby promoting the process of soil surface
cracking [59]. In addition, salinity reduces the water absorption capacity of the soil. This
may be because clay minerals swell when the concentration of sodium ions in the soil is too
high, leading to a reduction in soil pore space. This reduces the rate of water infiltration
and permeability and disperses soil particles, further decreasing pores and impeding the
flow of water and air. Consequently, the soil becomes more prone to drying and shrinkage,
thereby facilitating the process of desiccation cracking [60]. Notably, studies have suggested
that the diffuse double layer (DDL) also plays a critical role in the process of desiccation
cracking of saline–alkali soils during water evaporation. Specifically, as water evaporates,
the DDL thins, reducing the distance between soil particles and facilitating the propagation
of desiccation cracks on the soil surface [61]. Therefore, a higher salt content leads to
stronger cohesion between soil particles, resulting in increased soil volume shrinkage and
more complex soil-cracking phenomena.

It has been shown that the reflectance of salinized soil surface decreases with increasing
soil salinity [62,63]. It is also affected by factors such as soil moisture content, surface
roughness and organic carbon [64]. Soil cracking increases the roughness condition of
the surface, leading to an increase in its scattering at the surface. At the same time,
electromagnetic radiation will also cause multiple body scattering in the cracked region,
leading to a significant attenuation of electromagnetic radiation energy, suggesting that
the presence of cracks significantly reduces the reflectivity of the salinized soil surface. In
addition, for samples with different salinity levels, the area of the cracked region increases
due to the increasing salinity. The attenuation of electromagnetic radiation is more intense
compared to the low-salinity region, which further reduces the spectral reflectance of the
samples and also increases the reflectance difference between samples. In the present study,
a desiccation cracking experiment was conducted under controlled laboratory conditions.
The measurement environment had the same effects on the different samples during the
whole drying process, and the moisture content of the samples was so low that its effect on
the spectral reflectance can thus be ignored. It was shown that the main factor affecting the
spectral reflectance was the salt content. From the correlation curves of spectral reflectance
and physicochemical parameters of soil samples, it can be found that the 1990 nm band can
be selected as the characteristic band, which corresponds to the similar findings reported by
Ren et.al. [22]. Figure 5 indicates that when the salinity increased, the reflectance showed a
decreasing trend, which was especially obvious at wavelengths greater than 1400 nm; this
finding is consistent with the findings of Wang et al. [65] and Howari et al. [66]. It is because
NaHCO3 and Na2CO3 are the main components of salt minerals in saline soils. In addition,
according to Wang et al. [65], Na2CO3 saline soil has the lowest albedo shape compared
to Na2SO4 saline soil, NaCl saline soil and non-saline soil. Their results also showed
that at wavelengths above 1400 nm, reflectance decreased significantly with increasing
Na2CO3 content. Howari et al. also [66] showed that the sharp decrease in the reflectance
of NaHCO3 and Na2CO3 with increasing wavelength due to unique resonances induced
by stretching and bending can be considered diagnostic. In addition, according to Tedeschi
and Dell’Aquila [67] and Huang et al. [68], the aggregation capacity of the soil decreases
with soil salinity, probably due to the salt-induced anti-flocculation of the mucilaginous
colloids, leading to the inverse ratio of salinity to spectral reflectance. Figure 5 also shows
that the soil reflectance tended to increase at 350–1400 nm, while the increase slowed
down at 1400–2200 nm and a decreasing trend was observed at 2200–2500 nm. The reason
for this is that the reflectance of NaHCO3 in soil shows a significant decreasing trend at
wavelengths greater than 1400 nm, and the trend becomes more obvious with the increase
in soil salinity.

The use of SEMs has gained significant popularity and has been widely applied in
various fields, including the social sciences, economics, and psychology. In recent years,
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there has been an increasing interest in using SEMs in the field of soil science [69,70]. In this
study, all the regression models developed in Tables 5 and 6 demonstrated high accuracy
in modeling the total soil salinity, EC1:5, and Na+ levels. This can be attributed to the fact
that Na+, being the predominant cation in saline–alkali soils of the Songnen Plain, is closely
associated with soil salinity. The EC1:5 of the soil is mainly influenced by the presence of
soluble ions, making it a commonly used indicator for assessing soil salinity in salt-affected
soils. These findings highlight the strong predictive capabilities of SEMs for salinity, EC1:5,
and Na+. With regards to the prediction of other ions, the overall accuracy of the SEMs
displayed a trend, with CO3

2− > HCO3
− > pH. This can be attributed to the hydrolysis of

CO3
2− and HCO3

− ions in solution, which is often incomplete and reversible. As a result,
the content of CO3

2− and HCO3
− ions remains highly unstable. Additionally, the pH level

is directly determined by the OH− content generated through the hydrolysis of CO3
2− and

HCO3
− ions.

From Tables 1 and 7, it can be seen that the soil samples are very representative, and
the model predictions are very close to the actual measurements. In addition, Table 7 also
indicates that the SEM is able to combine different crack parameters and spectral responses
to quickly and effectively achieve the synchronous prediction of salt parameters, including
Na+, EC1:5, and salinity, with desirable prediction accuracy. However, several complex
statistical assumptions still need to be clarified and satisfied when an SEM is employed,
and multicollinearity and data bias may also affect the precision and explanatory nature
of SEMs. In addition, the complexity of SEMs may increase the difficulty and resource
requirements for model interpretation, validation, and computation. Therefore, in future
studies, both the types of crack parameters and the number of diagnostic spectral bands
can be further considered in an attempt to improve the application potential and accuracy
of the method in online field measurements of soil salt parameters in the Songnen Plain.
Meanwhile, multi-source hyperspectral remote-sensing data from UAV measurements and
satellite images can also be added in future studies to realize the high-precision, large-scale
and fast-rate inversion of regional soil salinity, thus promoting the application development
of soil salinity monitoring using hyperspectral remote sensing.

5. Conclusions

In this study, 57 samples were selected in the Songnen Plain for indoor, controlled
soil-cracking experiments in order to study basic information and understand the cracking
process of soda saline–alkali soil, in addition to the relationship between soil salt parameters
and cracking characterization parameters as well as spectral features. In conclusion, salt
content can promote the drying and cracking process due to the interaction of exchangeable
cations with soil particles, and a binding water film of large thickness formed among
soil particles. Additionally, the main salt parameters, including Na+, EC1:5 and total
salinity, can be effectively predicted, combined with the cracking characteristics and spectral
responses of the soil surface. Although the SEM method for fitting results of single-
parameter prediction has higher accuracy, the SEM method of multi-parameter prediction
has a faster processing speed and prediction efficiency. This study therefore provides the
possibility to further understand the mechanism of soil cracking and effective measurement
methods of salt information in soda saline–alkali soils, which also has great potential for
the management of salinized soils and the development of sustainable agriculture.
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