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Abstract: Plant height and leaf morphology are considered complex agronomy traits; both are sig-
nificantly related to nutrient utilization, lodging resistance, and photosynthetic efficiency, which
ultimately affect biomass and yield. However, the molecular mechanism of leaf morphogenesis is
still unclear. WOX is a group of plant-specific transcription factor families that regulate growth and
development, cell division, and differentiation in plants. In the present study, we identified and char-
acterized the m-876 mutant in barley (Hordeum vulgare L.), which exhibited an extreme reduction in leaf
width and plant height. Using a map-based cloning strategy, the m-876 mutant was narrowed down
to an 11.4 Mb genomic interval on the long arm of chromosome 5. By analyzing the gene annotation
information and nucleotide sequences, we found that HvWOX3A (HORVU.MOREX.r3.5HG0467090)
had a G-to-A substitution at the second exon in the m-876 mutant, resulting in a change of the
coding amino acid from Tryptophan to a premature stop codon at the 200th amino acid position.
Remarkably, the mutation of the HvWOX3A gene leads to changes in gene expression in the m-876
mutant. Collectively, our results indicate that the loss function of the HORVU.MOREX.r3.5HG0467090
gene might be responsible for the phenotypic variation in barley mutants.

Keywords: barley; EMS; WUSCHEL-RELATED HOMEOBOX; plant height; leaf width

1. Introduction

The application of high-yielding semi-dwarf varieties plays an important role in food
production and the grain yield of cereal crops. In barley, decreasing plant height was the
main strategy for increasing the grain yield and the harvest index through reduced crop
lodging [1]. To date, more than 30 types of dwarfs or semi-dwarfs have been extensively
explored in barley, such as breviaristatum-e (ari-e), semi-brachytic 1 (uzu1), and semi-dwarf 1
(sdw1), which have been widely used for modern barley cultivar breeding programs [2]. The
ari-e mutant from Golden Promise is located on chromosome 5HL, encoding the γ-subunit
of the heterotrimeric G-protein (HvDep1), which has mainly been used in several European
cultivars [3,4]. The uzu (HvBRI1) gene is located on the long arm of chromosome 3HL. It
encodes a protein kinase involved in the reception of brassinosteroids, the main dwarfing
gene used for East Asia barley breeding programs [4,5]. The dwarfism controlled by uzu is
caused by a missense mutation of a single-nucleotide substitution that results in an amino
acid change at a highly conserved residue in the kinase domain of the BR-receptor protein
HvBRI1, which is displayed similarly to the BR-insensitive mutant [5]. The barley sdw1
locus is located on 3H and encodes a gibberellin 20-oxidase enzyme (HvGA20ox2). sdw1
alleles have been widely used to develop modern varieties in Europe, East Asia, North
America, South America, and Australia. At the same time, these dwarfing genes in barley
have a negative impact on spike agronomical traits such as spike length, grain density,
delay in heading, and day-length sensitivity [6–8].
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In addition to plant height, leaf size plays a fundamental role in light absorption and
photosynthetic efficiency and ultimately impacts biomass, plant performance, and crop
yield [9,10]. Mutant screens in barley have been identified as narrow, wide, long, or short
leaves [11]. The recessive narrow-leafed dwarf1 (nld1) mutant is identified by a reduced
plant height and leaf width due to a reduced cell number across the plants. Map-based
cloning revealed that the Nld1 gene encodes a WUSCHEL-RELATED HOMEOBOX (WOX)
transcription factor, an ortholog gene of maize factors NARROW SHEATH1/2 (NS1/2), and
the rice-redundant factors Narrow Leaf2/3 (NAL2/3) [12–14]. BIP (HvWOX3) is another
barley WOX3 gene; the leaf-blade length and width of the bifurcated palea (bip) mutant
is decreased as compared to the wild type, which exhibited a smaller reduction in the
leaf size than that of the nld1 mutant [14]. The bipnld1 double mutants showed more
severe phenotypes than those of either single mutant, indicating that HvWOX3 and NLD1
exert a conserved function to regulate leaf size [15]. Barely broad leaf1 (blf1) was identified
with wider leaf blades due to increased longitudinal cell numbers and cells along the
leaf length; positional cloning showed that BLF1 encodes a deductive INDETERMINATE
DOMAIN family transcriptional regulator [16]. Genome-wide association studies have
been employed to further analyze the natural genetic variation in plant leaf size. Digel
et al. [17] detected PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene regulating the major
QTL for leaf size and flowering time in the barley population; further analysis revealed that
differences in the duration of leaf growth and consequent variation in leaf cell number may
contribute to the leaf size difference among the Ppd-H1 variants. Although recent studies
have revealed that leaf founder cells greatly affect the final leaf shape, the genetic basis of
leaf size is not well characterized in barley.

The validation and cloning of plant-type-related genes are the foundation for improv-
ing crop yield. However, only a few genes have been cloned in barley, which limits the
application of the barley molecular design in breeding. The present study was aimed
at (1) identifying and cloning the gene controlling plant height and narrow leaves and
(2) exploring the changes in the transcriptomics between the wild type and the mutants
and investigating the role of differentially expressed genes in the regulation of barley
plant development.

2. Materials and Methods
2.1. Plant Materials

Yangnongpi 5 (wild type, WT) is a variety of two-row malting barley. In the autumn
of 2017, Yangnongpi 5 and 1200 M3 families derived from its ethylmethanesulfonate (EMS)
mutagenesis were planted in the experimental field at Yangzhou University. The barley
m-876 mutant with narrow-leaf and dwarf phenotypes was obtained from the M3 families,
which were inherited stably after continuous cultivation. Two mapping populations of
50 F2 and 1114 F3 mutant plants were generated from a cross between m-876 and the cultivar
Morex with two-row malting barley. The parents and genetic populations were planted
in Yangzhou City (32◦15′ N, 119◦01′ E); the annual average temperature is approximately
15 ◦C and the average sunshine duration throughout the year is 2140 h. All barley materials
were sown in October, and phenotypic investigations were carried out in May of the next
year before harvest. The F2 and F3 individuals with narrow-leaf and dwarf phenotypes
were collected and used for gene mapping. The wild-type and mutant-type lines were
recorded in the segregated F2 generations, and the segregation ratio was calculated using
the chi-square test.

2.2. Phenotypic Analysis

The leaf length and width were measured at the heading stage. The plant height,
internode number, and the length, spike length, seed set rate, and grain number per
spike were determined at maturity using the data from three independent replications
with 10 randomly selected individuals in each replication. To evaluate the thousand-grain
weight, grain length, and grain width, 10 independent barley plants were collected for
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phenotypic analysis via an automatic seed size analysis system (SC-G, Wanshen, Hangzhou,
China). In total, three replicates were evaluated for statistical analysis.

2.3. Molecular Marker Development

The reference genome sequence for Morex was downloaded from the IPK database
(https://galaxy-web.ipk-gatersleben.de/, accessed on 13 October 2020). The genetic poly-
morphism between Morex and Yangnongpi 5 was obtained using the SnpHub database
model (http://wheat.cau.edu.cn/Wheat_SnpHub_Portal/collaboration_GBJ_210711/, ac-
cessed on 13 October 2020). Primers were designed to scan the InDels, with a flanking
region length of 200 bp. The amplified fragment size ranged from 100 to 350 bp. InDel
markers on the barley genome between Yangnongpi 5 and Morex were employed for
mapping (Table S1).

2.4. Fine Mapping and Cloning of the Candidate Gene

A total of 50 F2 and 1114 F3 individuals with narrow-leaf and dwarf phenotypes were
used for gene mapping. The genomic DNA of the parents and of each F2 and F2:3 plant
was extracted using the CTAB method [18]. PCR was performed in a final reaction volume
of 20 µL containing 50 ng of DNA template, 2.0 µL of primer pairs (10 µM), and 10 µL
of 2×Taq Master Mix (Vazyme Biotech Co., Ltd., Nanjing, China). The PCR reaction was
carried out with an initial cycle of 3 min at 94 ◦C, 34 cycles of 15 s at 94 ◦C, 15 s at 55–58 ◦C,
60 s at 72 ◦C, and a final 5 min cycle at 72 ◦C. Finally, the PCR products were separated on
8% polyacrylamide gel.

According to the reference genome of the Barley V3.0 (Morex) [19], the genomic DNA
sequences of the candidate gene were amplified from the WT and m-876 mutants using the
primer pairs shown in Table S1. The PCR products were separated via 1.0% agarose gel
electrophoresis. The DNA fragments were cut from the gel and purified with the GeneJET
Gel Extraction kit (Thermo Scientific, Waltham, MA, USA). The fragments were connected
to the pEASY-T1 cloning vector and sequenced. Sequence analysis was performed using
DNAMAN software version 10 (https://www.lynnon.com/dnaman.html, accessed on 13
October 2020).

2.5. Transcriptome Sequencing and Data Analysis

The seedlings of WT and m-876 mutants aged about two weeks old were collected for
RNA extraction and library construction. Three replicates were set up for each experiment.
The sequencing library construction was carried out using the NEBNext® UltraTM RNA
Library Prep Kit for Illumina® (NEW ENGLAND BioLabs inc., Massachusetts, USA) accord-
ing to the kit’s instruction manual. The library quality was detected using the Qubit 2.0 and
the Agilent Bioanalyzer 2100 systems (Agilent Technologies, Inc., Santa Clara, CA, USA).
The quality control library was collected based on pre-designed target data volume and
then deep-sequenced with the Illumina Solexa sequencing platform. Clean data with high
quality were obtained by filtering raw data, then removing the adapter oligonucleotides
and low-coverage population sequence reads. These clean data were then aligned to the
pre-defined reference version Barley v3.0 (Morex), generating mapped data. Read count
statistics for each gene were calculated using Feature Counts v1.5.0-p3. The fragments
per kilobase of the transcript per million fragments mapped (FPKM) was carried out to
measure the relative expression level of each gene by StringTie v2.2.3 software using the
maximum-flow algorithm. The differentially expressed genes (DEGs) were identified via
edgeR, and the cutoff value for filtering was established as |log2(Fold change)|≥ 1 and
FDR < 0.05 for a normalized expression level.

3. Results
3.1. Phenotypic Characterization of the Barley Mutant m-876

The EMS-mutagenized strategy provides novel, valuable genetic resources for gene
clones and for creating breeding materials with high yield, high quality, and high resistance.

https://galaxy-web.ipk-gatersleben.de/
http://wheat.cau.edu.cn/Wheat_SnpHub_Portal/collaboration_GBJ_210711/
https://www.lynnon.com/dnaman.html
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In the present study, a m-876 mutant was obtained from a mutant library of cultivar
Yangnongpi 5 via EMS mutagenesis, which displayed a severe dwarf phenotype with a
significantly reduced plant height (Figure 1A,E). The statistical analysis confirmed that
the reduction in plant height of the m-876 mutant was due to the decreasing length of
all internodes (Figure 1B,F). However, no significant differences were observed in the
internode numbers and spike lengths, while the spike and the first and second internode
below the spike exhibited bending phenotypes (Figure 1B,G,H). It is worth noting that
the seed setting rate decreased slightly (about 13.3%), and the grain number per spike
reduced by about 6.3 (Figure 1I,J). In addition to the dwarf phenotype, the m-876 mutation
affected the length and width of the leaf blade (Figure 1C). Each leaf length of the m-876
was about 56.9% to 77.5% that of the WT for each leaf blade, while each leaf width of the
m-876 mutant plants was significantly reduced to a range of 39.5% to 60.1% that of the WT
plants (Figure 1K,L). We also tested the grain shape of WT and m-876, and m-876 produced
a lower weight due to reduced grain length and width (Figure 1D,M–O). These results
indicate that the m-876 mutant caused pleiotropic effects in the development of vegetative
and reproductive organs.
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Figure 1. The morphology of Yangnongpi 5 (WT) and the m-876 mutant. (A) Plant morphology of
the WT and m-876 at the heading stage. Scale bar = 10 cm. (B) The 1st–5th internodes of the WT
and the m-876 mutant at the heading stage. Bars = 10 cm. (C) The 1st–5th leaves of the WT and the
m-876 mutant at the heading stage. Scale bar = 5 cm. (D) The morphology of mature grains from WT
and m-876 plants. Scale bar = 1 cm. (E) Plant height. (F) Internode length. (G) Internode number.
(H) Spike length. (I) Seed set rate. (J) Grain number per spike. (K) Leaf length. (L) Leaf width.
(M) Thousand-grain weight. (N) Grain length. (O) Grain width. ** Significant difference at p < 0.01
as compared to WT using Student’s t-test, NS indicates no significant difference.
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3.2. Genetic Analysis and Map-Based Cloning of HvWOX3A

To analyze the inheritance of the m-876 mutant, the m-876 mutant in the genetic back-
ground of Yangnongpi5 was crossed with Morex. The F1 plants showed a similar phenotype
to Morex. The phenotypic observation of the F2 population (162 normal phenotype plants
and 50 mutant plants; χ2 = 0.05 < χ2(0.05, 1) = 3.84) revealed that the abnormal phenotype
of the m-876 mutant was controlled by a single recessive gene. Using 50 F2-mutant pheno-
type individuals, we mapped the m-876 gene between the markers 5H-79 and 5H-94 on
chromosome 3 (Figure 2A). We then developed 10 molecular markers, distributed on the
primary mapping region, to test polymorphisms between Morex and the m-876 mutant.
Five of them showed that polymorphism was used for genotyping the F3 population (to
1114 mutant phenotype plants), which allowed us to further narrow down the mapping
location of the candidate gene to the 11.4 Mb physical region between markers 5H-81 and
5H-86 (Figure 2B).
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Figure 2. The map-based cloning and mutation-site analysis of the m-876 mutant. (A,B) The physical
positions of the DNA markers used for the primary mapping of the mutant using 50 F2 and 11,114 F3

plants homozygous for the m-876 mutant phenotype. (C) The schematic of the candidate gene. The
yellow and blue boxes represent the coding sequence and untranslated region, respectively, and the
black line represents the intron sequence. (D) The amino acid sequence alignment of the candidate
between the WT and the dnl mutant. The red boxes represent the homeodomain, the green box
represents the WUS-box motif, and the red star indicates the mutant positions.

When the genome annotation derived from the Morex V3 database was analyzed,
66 annotated genes with high confidence were found in the mapping interval
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(https://apex.ipk-gatersleben.de/apex/f?p=284:10:::NO:::, accessed on 13 October 2020).
When analyzing the gene annotation information and nucleotide sequences in the WT
and the m-876 mutant, we found that HvWOX3A (HORVU.MOREX.r3.5HG0467090) had a
G-to-A (at position 600 from translation start site) substitution at the second exon in the
m-876 (Figure 2C), resulting in a change of the coding amino acid from Tryptophan to a
premature stop codon at the 200th amino acid position (Figure 2D). The sequence analysis
revealed that HvWOX3A contains a 717-bp coding sequence and encodes a 238-amino acid
(aa) protein containing a WUS homeodomain at the N-terminus (5-66 aa) and a WUS-box
motif at the C-terminus (208-215 aa). A blast analysis showed that the HvWOX3A protein
was an orthologous gene of rice NAL2/3 and maize NS1/2. We further analyzed the
HvWOX3A coding sequences of the pan-genome, comprising landraces, cultivars, and a
wild barley. We found that all 20 varieties had identical nucleotide sequences as compared
to the Yangnongpi 5 variety at the mutation site (Table S2), implying that the HvWOX3A
gene may be a candidate gene for the m-876 mutant.

3.3. Transcriptome Analysis of m-876 Mutant

According to the transcriptome profiling analysis, 434 (346 upregulated and 88 down-
regulated) differentially expressed genes were detected between the WT and the m-876
mutant (Figure 3A). GO and KEGG enrichment analyses were performed on the DEGs,
which showed that the GO was mainly enriched in the integral component of the mem-
brane, the ATP binding, the plasma membrane, the protein kinase activity, etc. Moreover,
KEGG was enriched in the plant hormone signal transduction, the starch and sucrose
metabolism, the phenylpropanoid biosynthesis pathway, the MAPK signaling pathway, etc.
(Figure 3B,C).
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Currently, OsWOX3A is a GA-responsive gene and directly interacts with the ent-
kaurenoic acid oxidase (KAO) promoter involved in the negative feedback regulation of
the GA biosynthetic pathway. In the present study, the HORVU.MOREX.r3.2HG0105210
(HvKAO) gene encoded a cytochrome P450 family protein, which was the homologous
gene of OsKAO. HvKAO was upregulated in the m-876 mutant. Similarly, the expres-
sion levels of genes involved in protein kinase activity, HORVU.MOREX.r3.6HG0543150,
HORVU.MOREX.r3.2HG0214050, HORVU.MOREX.r3.5HG0488230,
HORVU.MOREX.r3.5HG0490230, HORVU.MOREX.r3.6HG0541910,
HORVU.MOREX.r3.6HG0542370, HORVU.MOREX.r3.6HG0542380,
HORVU.MOREX.r3.6HG0542390, HORVU.MOREX.r3.6HG0542400,
HORVU.MOREX.r3.6HG0542410, HORVU.MOREX.r3.6HG0542490,
HORVU.MOREX.r3.6HG0542550, and HORVU.MOREX.r3.6HG0543150, encoding wall-
associated kinases (WAKs), were also upregulated in the m-876 mutant (Figure 3D).

4. Discussion

WOX has been identified as a family of transcription factors that regulates various
development processes of plants, including embryogenesis; somatic embryogenesis; flower,
leaf, and root development; stem cell maintenance, etc. [20]. In plants, the WUSCHEL
gene and WOX1-14 genes of Arabidopsis have been identified; meanwhile, 13 WOX family
members have been extensively elucidated in rice [21]. In plants, WOX proteins are divided
into three clades, including the WUS, ancient, and intermediate clades [22]. Rice OsWOX3A
and OsWOX4 belong to the WUS clade. OsWOX3A is a typical gene and controls plant
development, such as leaves, lemma, and palea morphogenesis, even tiller and lateral root,
although OsWOX4 has been employed in maintaining the shoot apical meristem [13,22,23].
The OsWOX9A and OsWOX11 genes belonging to the intermediate clade lead to narrow
adaxially rolled leaves and shoot development, respectively [24]. In the present study,
phylogenetic analysis revealed that HvWOX3A belongs to the WUS clade [14,22]. It is
worth noting that duplicated NS and NAL genes in maize and rice are clearly paralogs,
NS1 and NS2 are products of ancient allopolyploidization in maize, and the overexpression
of NAL in rice results in a wide-leaf phenotype, suggesting that dosages of NAL and NS
control leaf width in rice and maize, respectively [25]. However, only one copy of the
HvWOX3A gene was identified based on the barley genome assembly, indicating that the
function of WOX3A is conserved in maize, rice, and barley genomes undergoing different
evolutionary histories after their divergence.

Plant type is one of the key factors that determine crop yield. Plant height and leaf size
are important aspects of plant type, which are closely related to the lodging resistance and
photosynthetic efficiency of crops. Through map-based cloning, we identified a single G-to-
A point mutant in HvWOX3A that causes a truncated protein in the deduced HvWOX3A
protein and results in dwarf and narrow-leaf phenotypes (Figure 1A,C). The truncated
protein with 199 amino acids only contains a homeodomain. Still, it lacks a WUS-box motif,
which was defined in a strict sense with T-L-[DEQP]-L-F-P-[GITVL]-[GSKNTCV] and
belongs to the highly conserved WUSCHEL-related homeobox protein family [22]. Studies
of maize and rice also confirmed that mutations in WOX3A genes may potentially cause
plant development defects. For example, the maize genes NS1 and NS2 are redundant;
duplicated WOX3 genes and ns1ns2 double mutants display a narrow-leaf sheath and a
margin-deleted phenotype in the lower portion of the leaf blades [12]. NAL2 and NAL3
genes are orthologous to maize NS1/2, which is consistent with the narrow-leaf phenotype
in rice [13,25]. Remarkably, the barley nld1 and bip mutants exhibit narrow leaves as
compared to those of the wild types and the dwarf phenotype, with only two internodes
from the nld1 of the top showing a decrease in length. Map-based cloning revealed that
both NLD1 and BIP genes encode a WOX3 [14,15]. In the present study, m-876 exhibited
an extremely severe defective phenotype as compared to the nld1 mutant in the leaf width
and plant height, which may contribute to varied genetic backgrounds. These results
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are consistent with our finding that mutation in HvWOX3A triggers the developmental
deficiency of m-876 via a dominant negative effect.

The WOX3 gene belongs to the WUSCHEL-RELATED HOMEOBOX3 gene family and
regulates lateral organ development differentially in plants. In rice, OsWOX3A acts as a
transcriptional repressor and specifically recognizes the TTAATCG motif in the promoter
of OsKAO. OsKAO encodes ent-kaurenoic acid oxidase, a GA biosynthetic enzyme. Os-
WOX3A is a blocker of GA biosynthesis, whose expression is drastically and temporarily
upregulated by GA3 and downregulated by paclobutrazol [26]. NAL21 is another gene
regulating the leaf width and plant height and encodes a ribosomal small subunit protein
RPS3A in rice; transformation with modified OsWOX3A genomic DNA with lacking uORFs
can better rescue the narrow-leaf phenotype of the nal21 mutant than the native genomic
DNA, implying that the protein expression level of OsWOX3A is subject to the translational
regulation of RPS3A [27]. It is worth noting that HvKAO expression is upregulated in
mutant lines, indicating that the WOX3 gene may be involved in a conserved regulatory
network in plants. In addition, WAK members demonstrated that they are involved in
pathogen resistance, heavy metal tolerance, and plant development [28]. OsWAK11 is
defined as a cell-length suppressor and determines rice plant morphology and grain traits
that are critical for yield; overexpressing OsWAK11 exhibited a semi-dwarf phenotype,
displayed erect leaves with smaller inclination angles, and produced smaller seeds than
the wild-type plants [29]. In the present study, 11 WAK members were upregulated in the
mutant lines as compared to the WT. The elucidation of the relationship between WOX3A
and WAKs is required for further genetic analysis in the future.

5. Conclusions

In summary, we identified a mutant, m-876, with dwarf and narrow-leaf phenotypes.
Our genetic analysis revealed that the m-876 mutant was controlled by a single recessive
gene. The candidate gene was narrowed down to an 11.4 Mb genomic interval on the
long arm of chromosome 5 using map-based cloning. By analyzing the gene annotation
information and nucleotide sequences, we found that HvWOX3A had a G-to-A single
nucleotide substitution at the second exon in the m-876 mutant, resulting in a change of
the coding amino acid from Tryptophan to a premature stop codon at the 200th amino
acid position. Remarkably, the mutation of the HvWOX3A gene leads to changes in
gene expression in the m-876 mutant. This research improves our understanding of the
mechanisms of HvWOX3A in plant development.
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