How Do Drought, Heat Stress, and Their Combination Impact Stem Reserve Mobilization in Wheat Genotypes?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Trials
2.2. Agro-Physiological Traits
2.3. Statistical Analysis
3. Results
3.1. Effects of Single and Combined Drought and Heat Stresses
3.2. Heritability and Variance Components
3.3. Trait Association Analysis
3.4. Identification of High-Performance Genotypes
3.5. Modeling of the Performance of High-Yielding Genotypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mittler, R. Abiotic Stress, the Field Environment and Stress Combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Mittler, R.; Balfagon, D.; Arbona, V.; Gomez-Cadenas, A. Plant Adaptations to the Combination of Drought and High Temperatures. Physiol. Plant 2018, 162, 2–12. [Google Scholar] [CrossRef]
- Sareen, S.; Budhlakoti, N.; Mishra, K.K.; Bharad, S.; Potdukhe, N.R.; Tyagi, B.S.; Singh, G.P. Resilience to Terminal Drought, Heat, and Their Combination Stress in Wheat Genotypes. Agronomy 2023, 13, 891. [Google Scholar] [CrossRef]
- Grigorova, B.; Vaseva, I.; Demirevska, K.; Feller, U. Combined Drought and Heat Stress in Wheat: Changes in Some Heat Shock Proteins. Biol. Plant 2011, 55, 105–111. [Google Scholar] [CrossRef]
- Tahmasebi, S.; Heidari, B.; Pakniyat, H.; Kamali, J.; Reza, M. Independent and Combined Effects of Heat and Drought Stress in the Seri M82? Babax Bread Wheat Population. Plant Breed. 2014, 133, 702–711. [Google Scholar] [CrossRef]
- Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R. Global Crop Yield Response to Extreme Heat Stress under Multiple Climate Change Futures. Env. Res. Lett. 2014, 9, 034011. [Google Scholar] [CrossRef]
- Killi, D.; Bussotti, F.; Raschi, A.; Haworth, M. Adaptation to High Temperature Mitigates the Impact of Water Deficit during Combined Heat and Drought Stress in C3 Sunflower and C4 Maize Varieties with Contrasting Drought Tolerance. Physiol. Plant 2017, 159, 130–147. [Google Scholar] [CrossRef]
- Mahrookashani, A.; Siebert, S.; Huging, H.; Ewert, F. Independent and Combined Effects of High Temperature and Drought Stress around Anthesis on Wheat. J. Agron. Crop Sci. 2017, 203, 453–463. [Google Scholar] [CrossRef]
- Rollins, J.A.; Habte, E.; Templer, S.E.; Colby, T.; Schmidt, J.; von Korff, M. Leaf Proteome Alterations in the Context of Physiological and Morphological Responses to Drought and Heat Stress in Barley (Hordeum vulgare L.). J. Exp. Bot. 2013, 64, 3201–3212. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Li, F.; Luo, Y.; Wang, W. Overaccumulation of Glycine Betaine Enhances Tolerance to Drought and Heat Stress in Wheat Leaves in the Protection of Photosynthesis. Photosynthetica 2010, 48, 117–126. [Google Scholar] [CrossRef]
- Rizhsky, L.; Liang, H.; Mittler, R. The Combined Effect of Drought Stress and Heat Shock on Gene Expression in Tobacco. Plant Physiol. 2002, 130, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Rizhsky, L.; Liang, H.; Shuman, J.; Shulaev, V.; Davletova, S.; Mittler, R. When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress. Plant Physiol. 2004, 134, 1683–1696. [Google Scholar] [CrossRef] [PubMed]
- Balla, K.; Rakszegi, M.; Li, Z.; Bekes, F.; Bencze, S.; Veisz, O. Quality of Winter Wheat in Relation to Heat and Drought Shock after Anthesis. Czech J. Food Sci. 2011, 29, 117–128. [Google Scholar] [CrossRef]
- Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H. Heat Stress in Wheat during Reproductive and Grain-Filling Phases. CRC Crit. Rev. Plant Sci. 2011, 30, 491–507. [Google Scholar] [CrossRef]
- Pradhan, G.P.; Prasad, P.V.; Fritz, A.K.; Kirkham, M.B.; Gill, B.S. Effects of Drought and High Temperature Stress on Synthetic Hexaploid Wheat. Funct. Plant Biol. 2012, 39, 190–198. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Grain Filling of Cereals under Soil Drying. New Phytol. 2006, 169, 223–236. [Google Scholar] [CrossRef]
- Barnabas, B.; Jager, K.; Fehar, A. The Effect of Drought and Heat Stress on Reproductive Processes in Cereals. Plant Cell Env. 2008, 31, 11–38. [Google Scholar] [CrossRef]
- Ehdaie, B.; Alloush, G.; Madore, M.; Waines, J. Genotypic Variation for Stem Reserves and Mobilization in Wheat. Crop Sci. 2006, 46, 2093–2103. [Google Scholar] [CrossRef]
- Balla, K.; Bedo, Z.; Veisz, O. Effect of Heat and Drought Stress on the Photosynthetic Processes of Wheat. Cereal Res. Commun. 2006, 34, 381–384. [Google Scholar] [CrossRef]
- Blum, A. Improving Wheat Grain Filling under Stress by Stem Reserve Mobilisation. Euphytica 1998, 100, 77–83. [Google Scholar] [CrossRef]
- Austin, R.B.; Edrich, J.A.; Ford, M.A.; Blackwell, R.D. The Fate of the Dry Matter, Carbohydrates and 14C Lost from the Leaves and Stems of Wheat during Grain Filling. Ann. Bot. 1977, 41, 1309–1321. [Google Scholar] [CrossRef]
- Gurumurthy, S.; Arora, A.; Krishna, H.; Chinnusamy, V.; Hazra, K.K. Genotypic Capacity of Post-Anthesis Stem Reserve Mobilization in Wheat for Yield Sustainability under Drought and Heat Stress in the Subtropical Region. Front. Genet. 2023, 14, 1180941. [Google Scholar] [CrossRef] [PubMed]
- Ram, K.; Kumar, R.; Ta, S.; Munjal, R. Stem Reserve Mobilization in Relation to Yield under Different Drought and High Temperature Stress Conditions in Wheat (Triticum aestivum L.) Genotypes. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3695–3704. [Google Scholar] [CrossRef]
- Srivastava, A.; Srivastava, P.; Sharma, A.; Sarlach, R.S.; Bains, N.S. Effect of Stem Reserve Mobilization on Grain Filling under Drought Stress Conditions in Recombinant Inbred Population of Wheat. J. Appl. Nat. Sci. 2017, 9, 1–5. [Google Scholar] [CrossRef]
- Gurumurthy, S.; Arora, A.; Sarkar, B.; Harikrishna, H.; Singh, V.; Yadav, R.; Chinnusamy, V. Phenotyping for Stem Reserve Mobilization Efficiency under Heat, Drought and Combined Stress along with Defoliation in Wheat (Triticum aestivum). Indian J. Agric. Sci. 2019, 89, 757–762. [Google Scholar] [CrossRef]
- Taria, S.; Arora, A.; Krishna, H.; Manjunath, K.K.; Meena, S.; Kumar, S.; Singh, B.; Krishna, P.; Malakondaiah, A.C.; Das, R.; et al. Multivariate Analysis and Genetic Dissection of Staygreen and Stem Reserve Mobilisation under Combined Drought and Heat Stress in Wheat (Triticum aestivum L.). Front. Genet. 2023, 14, 1242048. [Google Scholar] [CrossRef]
- Alsamadany, H.; Alzahrani, Y.; Shah, Z.H. Physiomorphic and Molecular-Based Evaluation of Wheat Germplasm under Drought and Heat Stress. Front. Plant Sci. 2023, 14, 1107945. [Google Scholar] [CrossRef]
- Statkeviciute, G.; Liatukas, Z.; Ceseviciene, J.; Jaskune, K.; Armoniene, R.; Kuktaite, R.; Brazauskas, G. Impact of Combined Drought and Heat Stress and Nitrogen on Winter Wheat Productivity and End-Use Quality. Agronomy 2022, 12, 1452. [Google Scholar] [CrossRef]
- Mahdavi, S.; Arzani, A.; Maibody, S.A.M.; Mehrabi, A.A. Photosynthetic and Yield Performance of Wheat (Triticum aestivum L.) under Sowing in Hot Environment. Acta Physiol. Plant 2021, 43, 106. [Google Scholar] [CrossRef]
- Bapela, T.; Shimelis, H.; Tsilo, T.J.; Mathew, I. Genetic Improvement of Wheat for Drought Tolerance: Progress, Challenges and Opportunities. Plants 2022, 11, 1331. [Google Scholar] [CrossRef]
- Peeters, K.M.U.; Vanlaere, A.J. Amino Acid Metabolism Associated with N-mobilization from the Flag Leaf of Wheat (Triticum aestivum L.) during Grain Development. Plant Cell Env. 1994, 17, 131–141. [Google Scholar] [CrossRef]
- Holland, J.B. Estimating Genotypic Correlations and Their Standard Errors Using Multivariate Restricted Maximum Likelihood Estimation with SAS Proc MIXED. Crop Sci. 2006, 46, 642–654. [Google Scholar] [CrossRef]
- Smith, A.; Cullis, B.; Thompson, R. Analyzing Variety by Environment Data Using Multiplicative Mixed Models and Adjustments for Spatial Field Trend. Biometrics 2001, 57, 1138–1147. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists and Agronomists; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Rokach, L.; Maimon, O. Data Mining with Decision Trees: Theory and Applications; World Scientific: Singapore, 2014. [Google Scholar]
- Wardlaw, I.; Willenbrink, J. Mobilization of Fructan Reserves and Changes in Enzyme Activities in Wheat Stems Correlate with Water Stress during Kernel Filling. New Phytol. 2000, 148, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gao, Y.; Zhang, Y.; Fischer, T.; Zhao, Z.; Zhou, X.; Wang, Z.; Wang, E. The Contribution of Spike Photosynthesis to Wheat Yield Needs to Be Considered in Process-Based Crop Models. Field Crops Res. 2020, 257, 107931. [Google Scholar] [CrossRef]
- Lopes, M.S.; Reynolds, M.P.; Manes, Y.; Singh, R.P.; Crossa, J.; Braun, H.J. Genetic Yield Gains and Changes in Associated Traits of CIMMYT Spring Bread Wheat in a “Historic” Set Representing 30 Years of Breeding. Crop Sci. 2012, 52, 1123–1131. [Google Scholar] [CrossRef]
- Reynolds, M.; Manes, Y.; Izanloo, A.; Langridge, P. Phenotyping Approaches for Physiological Breeding and Gene Discovery in Wheat. Ann. Appl. Biol. 2009, 155, 309–320. [Google Scholar] [CrossRef]
- Lopes, M.S.; Reynolds, M.P. Partitioning of Assimilates to Deeper Roots Is Associated with Cooler Canopies and Increased Yield under Drought in Wheat. Funct. Plant Biol. 2010, 37, 147. [Google Scholar] [CrossRef]
- Hoseini, M.; Arzani, A. Epigenetic Adaptation to Drought and Salinity in Crop Plants. J. Plant Mol. Breed. 2023, 11, 1–16. [Google Scholar] [CrossRef]
- Ehdaie, B.; Alloush, G.; Waines, J. Genotypic Variation in Linear Rate of Grain Growth and Contribution of Stem Reserves to Grain Yield in Wheat. Field Crops Res. 2008, 106, 34–43. [Google Scholar] [CrossRef]
- Madani, A.; Rad, A.S.; Pazoki, A.; Nourmohammadi, G.; Zarghami, R. Wheat (Triticum aestivum L.) Grain Filling and Dry Matter Partitioning Responses to Source: Sink Modifications under Postanthesis Water and Nitrogen Deficiency. Acta Sci. Agron. 2010, 32, 145–151. [Google Scholar] [CrossRef]
- Anjum, S.A.; Xie, X.Y.; Wang, L.C.; Saleem, M.F.; Man, C.; Lei, W. Morphological, Physiological and Biochemical Responses of Plants to Drought Stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar]
- Ashraf, M.; Harris, P. Photosynthesis under Stressful Environments: An Overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Fischer, R.; Rees, D.; Sayre, K.; Lu, Z.-M.; Condon, A.; Saavedra, A.L. Wheat Yield Progress Associated with Higher Stomatal Conductance and Photosynthetic Rate, and Cooler Canopies. Crop Sci. 1998, 38, 1467–1475. [Google Scholar] [CrossRef]
- Golabadi, M.; Golkar, P.; Bahar, B. Remobilization Assay of Dry Matter from Different Shoot Organs under Drought Stress in Wheat (Triticum aestivum L.). Agron. Res. 2015, 13, 1202–1214. [Google Scholar]
- Morgun, V.V.; Stasik, O.O.; Kiriziy, D.A.; Sokolovska-Sergiienko, O.G. Effect of Drought on Photosynthetic Apparatus, Activity of Antioxidant Enzymes, and Productivity of Modern Winter Wheat Varieties. Regul. Mech. Biosyst. 2019, 10, 16–25. [Google Scholar] [CrossRef]
- Blum, A.; Sinmena, B.; Mayer, J.; Golan, G.; Shpiler, L. Stem Reserve Mobilisation Supports Wheat-Grain Filling under Heat Stress. Funct. Plant Biol. 1994, 21, 771–781. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop Sci. 2007, 47, 643–653. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L. Interpretation of Genotype? Environment Interaction for Winter Wheat Yield in Ontario. Crop Sci. 2001, 41, 19–25. [Google Scholar] [CrossRef]
- Abdolshahi, R.; Nazari, M.; Safarian, A.; Sadathossini, T.; Salarpour, M.; Amiri, H. Integrated Selection Criteria for Drought Tolerance in Wheat (Triticum aestivum L.) Breeding Programs Using Discriminant Analysis. Field Crops Res. 2015, 174, 20–29. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Siddique, K.H. Drought Stress in Wheat during Flowering and Grain-Filling Periods. CRC Crit. Rev. Plant Sci. 2014, 33, 331–349. [Google Scholar] [CrossRef]
- Alqudah, A.M.; Samarah, N.H.; Mullen, R.E. Drought Stress Effect on Crop Pollination, Seed Set, Yield and Quality. In Systems, Biotechnology, Drought Stress and Ecological Fertilisation; Farming, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 193–213. [Google Scholar]
- Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K. Effect of Drought and Heat Stresses on Plant Growth and Yield: A Review. Int. Agrophys. 2013, 27, 463–477. [Google Scholar] [CrossRef]
Source of Variation | df | Mean Square | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GY | GFP | PLH | TGW | CT(B) | CT(A) | PRM | CPRM | SRM | CSRM | CP | CCP | ||
Year (Y) | 1 | 28.20 ** | 30,550.83 ** | 1368.92 * | 39.33 ns | 17.93 * | 4963.50 ** | 54.47 ** | 125.6 | 16.53 ns | 82.75 | 0.04 | 131.55 |
Environ (E) | 1 | 128.32 ** | 260.21 * | 1860.54 ** | 2349.12 ** | 21.92 * | 934.61 * | 58.05 * | 3597.59 ** | 6.04 ns | 6291.33 ** | 1416.28 ** | 20,847.93 ** |
Y × E | 1 | 25.61 ** | 229.78 * | 20.44 ns | 390.08 ns | 37.37 * | 438.28 ns | 71.55 ** | 104.23 | 2.08 ns | 1029.33 | 79.34 | 238.62 |
R (Y × E) | 4 | 1.02 | 16.4 | 162.07 | 77.27 | 2.02 | 84.14 | 0.4 | 2.47 | 1.89 | 3.41 | 0.24 | 1.09 |
BL (Y × E × R) | 56 | 0.71 | 5.86 | 106.34 | 12.22 | 0.45 | 7.05 | 0.07 | 4.51 | 0.62 | 3.81 | 0.4 | 7.09 |
Genotype (G) | 63 | 0.50 ns | 15.65 * | 285.23 ** | 53.84 ** | 0.26 ns | 1.70 ns | 6.64 ns | 200.01 ns | 18.82 ** | 398.64 ns | 34.27 ns | 682.99 ns |
G × Y | 63 | 0.44 ns | 6.99 * | 45.85 ** | 7.2 | 0.20 * | 0.95 | 0 | 0.01 | 0.002 * | 0.01 | 0 | 0.02 |
G × E | 63 | 0.22 | 5.19 | 27.81 | 6.76 | 0.13 | 2.04 | 8.04 ** | 234.41 ** | 9.76 ** | 411.30 ** | 30.60 ** | 722.06 ** |
G × Y × E | 63 | 0.33 ** | 4.20 ** | 23.72 | 7.55 ** | 0.12 | 2.29 ** | 0 | 0.01 | 0.001 | 0.01 | 0 | 0.02 |
Residual | 196 | 0.15 | 2.38 | 20.77 | 4.37 | 0.11 | 0.87 | 0.07 | 5.01 | 0.65 | 3.89 | 0.54 | 7.08 |
CV (%) | 11/4 | 4.74 | 5 | 6.2 | 1.68 | 3.02 | 9.81 | 16.88 | 10.8 | 4.45 | 9.46 | 6.26 |
Source of Variation | df | Mean Square | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GY | GFP | PLH | TGW | CT(B) | CT(A) | PRM | CPRM | SRM | CSRM | CP | CCP | ||
Year (Y) | 1 | 11.24 * | 10,621.5 ** | 294.36 | 4572.07 ** | 5564.99 ** | 3228.61 ** | 315.79 | 3.87 | 1996.73 | 175.31 * | 49.07 | 196.96 |
Environ (E) | 1 | 220.61 ** | 0.95 ns | 36,364.3 ** | 2163.18 ** | 89.58 ** | 4333.98 ** | 5239.68 ** | 627.69 ** | 16,695.35 ** | 92.82 ns | 4514.28 * | 4981.39 ** |
Y × E | 1 | 12.98 * | 3200.0 ** | 3443.0 * | 1730.19 ** | 4.64 ns | 1041.93 ** | 13.29 ns | 0.43 ns | 12.28 ns | 20.64 ns | 9.16 ns | 7.68 ns |
R (Y × E) | 4 | 0.97 | 12.85 | 387.3 | 15.14 | 2.09 | 10.49 | 2.61 | 1.3 | 0.02 | 7.57 | 154.69 | 172.27 |
BL (Y × E × R) | 56 | 0.74 | 7.41 | 89.37 | 9.13 | 2.38 | 2.8 | 4.98 | 0.6 | 1.73 | 2.11 | 63.35 | 47.8 |
Genotype (G) | 63 | 0.52 ns | 16.02 * | 230.00 ** | 53.06 ** | 0.82 ns | 17.32 ** | 157.23 ns | 13.54 * | 268.14 ns | 33.99 ns | 544.55 ns | 41.79 ns |
G × Y | 63 | 0.38 ns | 8.55 ** | 28.14 ns | 9.83 ns | 0.74 ns | 2.53 * | 0 ns | 0 ns | 0.01 ns | 0 ns | 0.01 ns | 33.34 ns |
G × E | 63 | 0.41 ns | 5.29 ns | 26.25 ns | 8.79 ns | 0.79 * | 2.87 * | 212.94 ** | 8.64 ** | 273.27 ** | 45.60 ** | 733.63 ** | 33.99 |
G × Y × E | 63 | 0.46 ** | 4.02 ns | 27.85 ns | 9.09 ** | 0.50 * | 1.63 ns | 0.01 ns | 0 ns | 0.01 ns | 0 ns | 0.02 ns | 31.81 ns |
Residual | 196 | 0.15 | 3.16 | 23.11 | 5.05 | 0.35 | 1.63 | 5.55 | 0.62 | 2.19 | 1.92 | 37.02 | 38.5 |
CV (%) | 12.3 | 5.33 | 5.68 | 33.78 | 2.16 | 2.74 | 17.05 | 12.18 | 4.22 | 14.17 | 11.74 | 8.25 |
Source of Variation | df | Mean Square | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GY | GFP | PLH | TGW | CT(B) | CT(A) | PRM | CPRM | SRM | CSRM | CP | CCP | ||
Year (Y) | 1 | 12.18 | 16,256.3 ** | 17.81 | 5704.46 ** | 60.8 | 6109.96 ** | 773.72 ns | 620.84 ns | 36.13 ns | 3.51 ns | 22.32 ns | 294.49 ns |
Environ (E) | 1 | 389.96 ** | 156.4 ns | 34,735.7 ** | 4754.34 ** | 941.0 ** | 752.6 ** | 2935.70 ** | 4870.85 ** | 3323.16 ** | 20,414.6 ** | 383.8 ** | 2950.6 * |
Y × E | 1 | 13.99 ns | 1032.28 ** | 2092.20 * | 2450.88 ** | 37.6 ns | 2 ns | 59.68 ns | 12.25 ns | 716.78 ns | 1545 ns | 180.1 ns | 446.8 ns |
R (Y × E) | 4 | 2.18 | 33.62 | 238.89 | 78.37 | 9.06 | 7.41 | 0.6 | 1.87 | 0.98 | 0.74 | 0.43 | 2.94 |
BL (Y × E × R) | 56 | 1.07 | 7.73 | 92.78 | 8.12 | 2.05 | 2.21 | 1.51 | 4.51 | 1.12 | 0.57 | 0.81 | 8.08 |
Genotype (G) | 63 | 0.64 ns | 19.44 * | 223.40 ** | 56.56 ** | 0.42 ns | 0.66 ns | 76.97 ns | 194.91 ns | 70.49 ns | 244.15 ns | 31.26 ns | 578.40 ns |
G × Y | 63 | 0.64 ** | 8.58 ns | 30.08 ns | 7.25 ns | 0.41 ** | 0.64 ns | 0 ns | 0.01 ns | 0 ns | 0.01 ns | 0 ns | 0.02 ns |
G × E | 63 | 0.32 ** | 5.9 ns | 18.74 ns | 6.41 ns | 0.51 ** | 0.59 ns | 60.24 ** | 155.48 ** | 71.05 ** | 274.81 ** | 36.74 ** | 619.51 ** |
G × Y × E | 63 | 0.12 ns | 8.72 ** | 22.12 ns | 9.27 ** | 0.22 ns | 0.49 ns | 0 ns | 0.01 ns | 0 ns | 0.01 ns | 0 ns | 0.02 ns |
Residual | 196 | 0.15 | 2.68 | 18.62 | 4.98 | 0.37 | 0.36 | 1.65 | 4.95 | 0.88 | 0.49 | 0.66 | 8.01 |
CV (%) | 12.7 | 5.01 | 5.09 | 6.81 | 2.82 | 2.15 | 14.14 | 16.24 | 4.09 | 2.04 | 7.92 | 5.52 |
Trait | Normal | Drought | Heat | Drought + Heat | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Season 1 | Season 2 | Season 1 | Season 2 | Season 1 | Season 2 | Season 1 | Season 2 | ||||||||||||||||||||||||
VG | Mean | h2 | VG | Mean | h2 | VG | Mean | h2 | VG | Mean | h2 | VG | Mean | h2 | VG | Mean | h2 | VG | Mean | h2 | VG | Mean | h2 | ||||||||
GY | 0.20 | 3.89 | 0.71 | 0.02 | 3.91 | 0.14 | 0.05 | 2.44 | 0.41 | 0.15 | 3.36 | 0.64 | 0.03 | 2.90 | 0.12 | 0.23 | 2.28 | 0.81 | 0.32 | 2.47 | 0.74 | 0.05 | 1.83 | 0.52 | |||||||
GFP | 7.32 | 40.32 | 0.83 | 1.64 | 26.21 | 0.61 | 3.87 | 40.23 | 0.76 | 1.63 | 23.45 | 0.66 | 2.83 | 35.40 | 0.50 | 0.98 | 31.29 | 0.46 | 9.32 | 36.37 | 0.83 | 1.7 | 27.94 | 0.66 | |||||||
PLH | 15.99 | 91.24 | 0.46 | 47.65 | 94.91 | 0.87 | 42.53 | 87.83 | 0.80 | 53.6 | 90.7 | 0.85 | 34.28 | 79.57 | 0.81 | 14.77 | 72.87 | 0.46 | 23.37 | 78.8 | 0.8 | 26.89 | 74.40 | 0.74 | |||||||
TGW | 4.34 | 36.98 | 0.79 | 9.78 | 34.69 | 0.78 | 6.87 | 30.96 | 0.82 | 8.67 | 32.15 | 0.76 | 12.21 | 36.55 | 0.82 | 2.08 | 26.9 | 0.37 | 11.61 | 35.27 | 0.85 | 4.48 | 24.21 | 0.59 | |||||||
CT(B) | 0.00 | 19.5 | 0.02 | 0.00 | 20.4 | 0.01 | 0.00 | 20.44 | 0 | 0.06 | 20.28 | 0.51 | 0.18 | 15.60 | 0.40 | 0.15 | 24.32 | 0.58 | 0.00 | 14.87 | 0 | 0.06 | 27.76 | 0.58 | |||||||
CT(A) | 0.46 | 23.42 | 0.79 | 0.22 | 30.21 | 0.42 | 0.00 | 25.19 | 0 | 0.06 | 30.55 | 0.2 | 0.00 | 24.45 | 0 | 0.1 | 30.86 | 0.29 | 0.00 | 25.72 | 0 | 0.00 | 32.76 | 0 | |||||||
PRM | 2.62 | 2.38 | 0.98 | 2.64 | 3.79 | 0.98 | 1.5 | 2.45 | 0.93 | 1.53 | 2.37 | 0.97 | 2.17 | 3.47 | 0.94 | 2.17 | 3.15 | 0.95 | 2.18 | 3.59 | 0.96 | 2.18 | 2.66 | 0.95 | |||||||
CPRM | 48.95 | 11.57 | 0.91 | 49.97 | 9.66 | 0.91 | 68.72 | 15.96 | 0.99 | 7.11 | 15.89 | 0.97 | 51.11 | 17.63 | 0.98 | 52.12 | 16.38 | 0.99 | 47.98 | 18.03 | 0.99 | 48.99 | 15.52 | 0.98 | |||||||
SRM | 3.05 | 7.67 | 0.96 | 3.18 | 7.42 | 0.97 | 4.03 | 7.58 | 0.89 | 4.11 | 7.10 | 0.88 | 2.33 | 5.39 | 0.83 | 2.14 | 5.26 | 0.83 | 3.58 | 5.90 | 0.97 | 3.65 | 4.92 | 0.97 | |||||||
CSRM | 84.82 | 38.98 | 0.99 | 86.43 | 42.62 | 0.99 | 147.2 | 48.82 | 0.98 | 151.35 | 46.79 | 0.98 | 51.11 | 27.24 | 0.97 | 52.12 | 31.50 | 0.97 | 60.48 | 29.82 | 0.99 | 61.75 | 15.52 | 0.92 | |||||||
CP | 11.23 | 9.81 | 0.96 | 11.5 | 9.04 | 0.97 | 7.68 | 5.96 | 0.98 | 7.74 | 6.50 | 0.98 | 9.25 | 11.06 | 0.86 | 9.43 | 9.49 | 0.86 | 7.96 | 10.36 | 0.97 | 8.3 | 11.96 | 0.97 | |||||||
CCP | 7.37 | 168.99 | 0.96 | 172.2 | 48.69 | 0.95 | 242.09 | 34.92 | 0.99 | 247.05 | 37.3 | 0.96 | 146.75 | 55.25 | 0.82 | 149.83 | 54.36 | 0.82 | 175.42 | 51.97 | 0.98 | 178.93 | 55.36 | 0.99 |
Genotype | Normal | Genotype | Drought (D) | Genotype | Heat (H) | Genotype | D and H | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Yield * | Rank | Yield | Rank | Yield | Rank | Yield | Rank | ||||
6 | 4.935 | 1 | 33 | 3.622 | 1 | 63 | 3.737 | 1 | 46 | 2.998 | 1 |
3 | 4.575 | 2 | 8 | 3.547 | 2 | 62 | 3.478 | 2 | 31 | 2.873 | 2 |
36 | 4.520 | 3 | 6 | 3.518 | 3 | 24 | 3.245 | 3 | 54 | 2.853 | 3 |
5 | 4.425 | 4 | 3 | 3.498 | 4 | 31 | 3.212 | 4 | 47 | 2.83 | 4 |
28 | 4.363 | 5 | 1 | 3.433 | 5 | 46 | 3.200 | 5 | 38 | 2.822 | 5 |
46 | 4.350 | 6 | 34 | 3.422 | 6 | 39 | 3.197 | 6 | 32 | 2.752 | 6 |
48 | 4.327 | 7 | 64 | 3.418 | 7 | 54 | 3.190 | 7 | 48 | 2.643 | 7 |
22 | 4.247 | 8 | 59 | 3.382 | 8 | 6 | 3.177 | 8 | 50 | 2.640 | 8 |
59 | 4.210 | 9 | 46 | 3.368 | 9 | 55 | 3.127 | 9 | 36 | 2.615 | 9 |
37 | 4.188 | 10 | 49 | 3.300 | 10 | 22 | 3.103 | 10 | 52 | 2.613 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaezi, B.; Arzani, A.; Roberts, T.H. How Do Drought, Heat Stress, and Their Combination Impact Stem Reserve Mobilization in Wheat Genotypes? Agronomy 2024, 14, 1867. https://doi.org/10.3390/agronomy14081867
Vaezi B, Arzani A, Roberts TH. How Do Drought, Heat Stress, and Their Combination Impact Stem Reserve Mobilization in Wheat Genotypes? Agronomy. 2024; 14(8):1867. https://doi.org/10.3390/agronomy14081867
Chicago/Turabian StyleVaezi, Behrouz, Ahmad Arzani, and Thomas H. Roberts. 2024. "How Do Drought, Heat Stress, and Their Combination Impact Stem Reserve Mobilization in Wheat Genotypes?" Agronomy 14, no. 8: 1867. https://doi.org/10.3390/agronomy14081867
APA StyleVaezi, B., Arzani, A., & Roberts, T. H. (2024). How Do Drought, Heat Stress, and Their Combination Impact Stem Reserve Mobilization in Wheat Genotypes? Agronomy, 14(8), 1867. https://doi.org/10.3390/agronomy14081867