
Citation: Yan, W.; Feng, Q.; Yang, S.;

Zhang, J.; Yang, W. Prune-FSL:

Pruning-Based Lightweight Few-Shot

Learning for Plant Disease

Identification. Agronomy 2024, 14,

1878. https://doi.org/10.3390/

agronomy14091878

Academic Editor: Paul Kwan

Received: 8 June 2024

Revised: 19 August 2024

Accepted: 20 August 2024

Published: 23 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Prune-FSL: Pruning-Based Lightweight Few-Shot Learning for
Plant Disease Identification
Wenbo Yan 1, Quan Feng 1,*, Sen Yang 1,*, Jianhua Zhang 2 and Wanxia Yang 1

1 College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China;
yanwb@st.gsau.edu.cn (W.Y.); yangwanxia@gsau.edu.cn (W.Y.)

2 Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
zhangjianhua@caas.cn

* Correspondence: fquan@gsau.edu.cn (Q.F.); yangsen@gsau.edu.cn (S.Y.)

Abstract: The high performance of deep learning networks relies on large datasets and powerful
computational resources. However, collecting enough diseased training samples is a daunting
challenge. In addition, existing few-shot learning models tend to suffer from large size, which makes
their deployment on edge devices difficult. To address these issues, this study proposes a pruning-
based lightweight few-shot learning (Prune-FSL) approach, which aims to utilize a very small number
of labeled samples to identify unknown classes of crop diseases and achieve lightweighting of the
model. First, the disease few-shot learning model was built through a metric-based meta-learning
framework to address the problem of sample scarcity. Second, a slimming pruning method was
used to trim the network channels by the γ coefficients of the BN layer to achieve efficient network
compression. Finally, a meta-learning pruning strategy was designed to enhance the generalization
ability of the model. The experimental results show that with 80% parameter reduction, the Prune-
FSL method reduces the Macs computation from 3.52 G to 0.14 G, and the model achieved an
accuracy of 77.97% and 90.70% in 5-way 1-shot and 5-way 5-shot, respectively. The performance
of the pruned model was also compared with other representative lightweight models, yielding a
result that outperforms those of five mainstream lightweight networks, such as Shufflenet. It also
achieves 18-year model performance with one-fifth the number of parameters. In addition, this
study demonstrated that pruning after sparse pre-training was superior to the strategy of pruning
after meta-learning, and this advantage becomes more significant as the network parameters are
reduced. In addition, the experiments also showed that the performance of the model decreases as
the number of ways increases and increases as the number of shots increases. Overall, this study
presents a few-shot learning method for crop disease recognition for edge devices. The method not
only has a lower number of parameters and higher performance but also outperforms existing related
studies. It provides a feasible technical route for future small-sample disease recognition under edge
device conditions.

Keywords: meta-learning; metric learning; plant protection; crop disease recognition; deep learning

1. Introduction

With the rapid development of modern agriculture, the impact of plant diseases on
agricultural production has become increasingly serious [1–4]. According to statistics, the
global economic losses caused by plant diseases amount to hundreds of billions of dollars
every year. Consequently, achieving prompt and precise diagnosis of plant diseases is
critically important for enhancing crop yields and minimizing economic losses. Traditional
plant disease diagnosis methods mainly rely on manual observation and expert experi-
ence, and this method has problems such as high subjectivity, low efficiency, and high
misdiagnosis rates. In recent years, the rapid advancement of computer vision and deep
learning technology has led to significant developments. A large number of studies have
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applied computer vision technology to plant disease diagnosis [5–9] and achieved excel-
lent performance. However, plant disease diagnosis models based on deep learning still
have certain limitations. Firstly, deep learning models generally necessitate a substantial
amount of labeled data to ensure effective and robust training, and in the field of plant
disease diagnosis, acquiring a substantial volume of labeled data remains a challenging and
resource-intensive endeavor. Secondly, the high computational overhead of deep learning
models and the high demand for high-performance computing resources at prediction time
limit the application and popularity of the models in some scenarios with tight computing
resources and high real-time performance (e.g., edge devices) [10–13].

Currently, for the problem of plant disease recognition with small samples, traditional
technical routes focus on data augmentation and transfer learning. Data augmentation
improves the generalization ability of the model by geometrically transforming existing
samples or expanding the dataset through adversarial generative networks. On the other
hand, transfer learning pre-trains models on large datasets to acquire a priori knowledge. It
is later fine-tuned on downstream tasks to accomplish the target task by transferring the a
priori knowledge. For example, Hu [14] et al. used a method called C-DCGAN to enhance
the disease spot images. This approach resulted in an average accuracy of 90.00% for tea
disease recognition. Chen [15] et al. similarly tackled the challenge of insufficient samples
by utilizing a Cy-cliGAN network to generate synthetic samples, which resulted in a 97.78%
in the task of apple disease classification accuracy. Cap [16] et al. proposed a novel image
transformation system (LeafGAN) for crop disease characterization, which has its own
mechanism and outperforms CycleGAN in image generation. The method, which leverages
transfer learning [17], is initially pre-trained on a source dataset to capture a generic feature
representation that can be effectively transferred to other related tasks and subsequently
uses a small amount of target data for network fine-tuning. For example, Zhang [6]
et al. performed transfer learning on Densenet on the Plantvillage dataset to develop a
model for recognizing lotus leaf-related diseases with an accuracy of 91.34%. Li [18] et al.
initially pre-trained a Densenet model on the Plantvillage dataset to capture a generic
feature representation and then fine-tuned it specifically on the tea dataset, achieving
92.66% accuracy in recognizing tea diseases despite the limited availability of samples.
Yang [19] et al. utilized Mobilenetv2 for transfer learning and achieved 97.23% accuracy in
recognizing corn diseases. These studies show that data augmentation or transfer learning
mitigates the problem of insufficient samples in crop disease recognition to a certain extent
and, at the same time, prompts the model to become more lightweight. However, there
are still some limitations to these methods: (1) Although the models perform well on
disease categories in the training samples, they often fail to extend their predictive power
to untrained disease categories; (2) data augmentation and transfer learning can still face
challenges in achieving a reliable level of performance when the number of available
samples is extremely limited, as very sparse samples do not provide sufficient information
to meet the model’s training requirements.

In recent years, small-sample recognition methods based on metric meta-learning have
become a new approach to solving the sample scarcity problem. The meta-learning method
avoids parameter learning within a linear layer while it can be directly generalized to
downstream tasks under the condition of very few samples. Currently, the meta-learning-
based recognition method has good application prospects in the field of crop disease
recognition. For example, Pan [17] et al. proposed a few-shot learning (FSL) method
specifically for crop leaf disease recognition. On monocotyledonous crops, the method
achieved 68.57% and 76.95% accuracy in 5-way 5-shot and 10-way 10-shot, respectively.
Xiao [20] et al. compared the performance of different feature encoders in prototypical,
matching, and relational networks, and the average accuracies of the three models on
the Plantvillage dataset were 77.60%, 73.01%, and 73.13% under the 5-way 1-shot setting,
respectively. These findings provide an important reference for evaluating the feasibility
of FSL in the field of crop disease identification. Lin [21] et al. proposed a network
architecture that combines multi-scale features with channel attention mechanisms to
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enhance feature representation. This method achieved excellent performance on both
5-way 1-shot and 5-way 5-shot tasks on the Plantvillage dataset. In summary, these studies
demonstrate the great potential of few-shot learning (FSL) in the field of crop disease
recognition. Our research also achieved high-precision identification of plant diseases by
combining three few-shot learning networks. However, the large number of parameters
and the computational complexity of the FSL model based on the backbone network
Resnet12 [22] in the above studies limit the application of the model in resource-constrained
environments, especially on mobile devices and embedded systems. This does not leverage
the advantage that FSL can be deployed directly without fine-tuning. Therefore, designing
a lightweight backbone for FSL that aims to significantly reduce the number of parameters
and computational overhead of the model while seeking to maintain or approach the
superior performance of existing models has increasingly become an important topic of
research in this area.

In this study, we propose a lightweight fast-learning (FSL) method called Prune-
FSL, which combines the DeepEMD [23] meta-learning framework and the slimming [24]
pruning technique. Specifically, we leverage DeepEMD to deal with data scarcity and use
the γ coefficient to identify and prune redundant channels in the network from the bulk
normalization (BN) layer, thereby effectively reducing the network parameters.

The aim of this study is to achieve efficient lightweighting of FSL with the follow-
ing contributions:

(1) Combining meta-learning and model pruning algorithms, a lightweight few-shot
learning method based on pruning is proposed and used for disease recognition.

(2) A pruning strategy is designed specifically to serve meta-learning to provide better
generalization performance for the pruned model.

(3) The number of parameters of the method and its accuracy were compared with
lightweight models such as Densenet40 [25], Shufflenetv2 [26], EfficientNet [27], Mo-
bilenetv2 [28], and Mobilenetv3, which proved the superiority of the method. The influence
of various factors affecting FSL is also analyzed through extensive experiments and com-
pared with related work.

2. Materials
2.1. Materials

The Plantvillage [29] dataset was selected as the experimental material for this study.
The Plantvillage (PV) dataset is a publicly available large-scale plant leaf image dataset
containing 50,403 images covering 14 plant species with a total of 38 disease types, as shown
in Table 1. In addition, the selected hardware environment for this study carries an Intel
i7-12700 processor (Manufacturer: Intel Corporation; Santa Clara, CA, USA), an Nvidia RTX
3090 graphics card (Manufacturer: Nvidia Corporation; Santa Clara, CA, USA), and 32 GB
of memory. The PyTorch version is 1.3.1, and the system environment is Ubuntu 23.04.

Table 1. The 14 species and 38 categories in PV and Field-PV.

Species Class Numbers Class Name Number in PV

Apple 4 Apple scab, Black rot, Cedar apple rust, Healthy 3174
Blueberry 1 Healthy 1502

Cherry 2 Healthy, Powdery mildew 1905

Corn 4 Cercospora leaf spot, Gray leaf spot, Common rust, Northern leaf
blight, Healthy 3852

Grape 4 Black rot, Black measles, Healthy, Leaf blight 3862
Orange 1 Haunglongbing 5507
Peach 2 Bacterial spot, Healthy 2657

Pepper 2 Bell bacterial spot, Bell healthy 2473
Potato 3 Early blight, Healthy, Late blight 2152

Raspberry 1 Healthy 371
Soybean 1 Healthy 5089
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Table 1. Cont.

Species Class Numbers Class Name Number in PV

Squash 1 Powdert mildew 1835
Strawberry 2 Healthy, Leaf scorch 1565

Tomato 10
Bacterial spot, Early blight, Healthy, Late blight, Leaf mold,

Septoria leaf spot, Spider mite, Two-spotted spider mite, Target
spot, Tomato mosaic virus (TMOV), Yellow leaf curl virus (YLCV)

18,159

2.2. Problem Formulation

In the field of few-shot learning (FSL), datasets are typically divided into base classes
and novel classes. Base classes [30], with a large number of samples, are mainly used
in the meta-training phase of the model, which is designed to allow the model to learn
how to generalize the relationships between different classes. Comparatively, novel class
data, with a very small number of samples, are reserved for the meta-testing phase to
evaluate how well the model learns on novel classes that have not been seen before. This
setup ensures complete separation of training and testing data, i.e., there is no intersection
between the base class and the novel class (Cbase∩Cnovel = Ø). At the same time, the fact that
the novel class is not involved in training makes the testing scenario of the model quite
extensive. In the framework of few-shot learning, the learning tasks are organized in the
form of N-way K-shots. In each task, the model needs to learn from N novel classes with
only K samples. The task consists of a support set S and a query set Q. The support set is
the feature benchmark for each category, and the query set consists of labeled supervised
samples in training and unlabeled test samples in the final testing phase. The respective
definitions are as follows:

S = {(x1, y1), . . . , (xm, ym)} (1)

Q = {(x1, y1), . . . , (xn, yn)} (2)

where (xs, ys) denotes the image and its corresponding label, and m and n are the number
of samples contained in the query set and the support set, respectively. During training, the
model utilizes these samples for learning and calculates the supervised loss by predicting
the labels of the query set.

N-way K-shot means that there are N categories in the support set and only K support
samples in each category. Simply put, the parameter K indicates exactly how many samples
are in each category in a recognition task with N categories.

2.3. Methods
2.3.1. Baseline Framework for Meta-Learning

As shown in Figure 1, the meta-framework used in this study consists of two parts: the
CNN encoder F(θ) and the metric module. In the pre-training phase, a traditional linear
classifier is mounted on the tail of the encoder F(θ), which is trained using the segmented
base class images, and the loss of cross-entropy after classification is computed to supervise
the model and to gain some prior knowledge to avoid the model starting from random
initialization in the meta-learning phase. The learning objective in the meta-training phase
is to learn the ability to transform between tasks. First, the pre-trained model is loaded,
and the one-stage linear classifier is removed. Second, after organizing the data into an
N-way K-shot task, the loss is computed from the query set, thereby fine-tuning the encoder.
Specifically, under the K-shot task, the method extracts the K samples contained in category
c in the support set into K high-dimensional feature vectors by the encoder. Subsequently,
their average value is computed as the prototype center WC for representing category c,
which can be expressed as follows:

WC =
1

|Sc| ∑
xs∈SC

Fθ(xs) (3)
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where Sc denotes the number of samples contained in the support set for category c
(K). Meanwhile, the samples in the query set Q are processed by the feature extraction
function F(θ), which generates q high-dimensional feature vectors (xq). Based on this
information, the probability that a sample q belongs to category c can be computed with
the following expression:

p
(
y = c

∣∣xq
)
=

exp
(
−D

(
Fθ

(
xq
)
, WC

)
∑C′ −D

(
Fθ

(
xq
)
, WC′

) (4)
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The metric function selected for this study is EMD (Earth Mover’s Distance) [23],
which is an image similarity measure. The specific calculation is as follows:

Aij = 1 −
Si

T Dj

||Si||
∣∣∣∣Dj

∣∣∣∣ (5)

Minimize : Dij =
m

∑
i=1

k

∑
j=1

Xij Aij (6)

Subjectto :
k

∑
j

Xij = Si (7)

m

∑
i

Xij = Qj (8)

where the product of the number of feature maps and the size of the feature maps of the
support set images is denoted as k, and the query set is denoted as m. m and k can be
considered as the number of locations on the supply and demand sides, respectively. The
unit transportation cost Aij between vectors (as shown in Equation (5)) is represented by
the cosine distance. Therefore, a linear programming problem with Equations (7) and (8)
constraints for EMD is constructed for images between the support and query sets. The
optimal matching cost between images (as shown in Equation (6)) can be obtained by
controlling the amount of transportation from each supplier i to each demander j. EMD
constructs a spatial nearest-neighbor problem under the local feature space of the images by
computing the minimum matching cost, as defined in Equation (6), and uses this cost as the
distance metric in the prototypical network. Also, for the purpose of distancing different
categories from each other, the model is updated using a cross-entropy loss function.

2.3.2. Slimming Network Pruning Algorithm

In this paper, network slimming, an efficient pruning method based on BN layers, is
used. During the training of neural networks, the distribution of input data in each layer
changes due to parameter updates, which can make training extremely difficult [31]. To
solve this problem, Santurkar [32] reduced the internal covariate bias by introducing a BN
layer to normalize each small batch of data so that the distribution of the input data in each
layer is between 0 and 1, thus reducing this bias. Specifically, the mean (µB) and variance
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(δ2
B) of this feature map in the mini-batch are first computed, as well as the normalized

value x̂i of the input samples:

x̂i =
xi − µB√

δ2 + ϵ
(9)

µB =
1
m

m

∑
i=1

xi (10)

δ2
B =

1
m

m

∑
i=1

(xi − µB)
2 (11)

where m is the number of samples in a small batch and xi is the feature map data of the
ith sample. In addition, in order to enhance the generalization ability of the network, two
learnable parameters, γ (gamma) and β (beta), are introduced in the BN layer to restore the
original distribution of the data. The final output yi of the network is as follows:

yi = γx̂i + β =
γ√

σ2
B + ϵ

x̂i +

β − γµB√
σ2

B + ϵ

 (12)

where γ is the weight coefficient, β is the bias sparsity, and ε is a very small constant
to avoid the numerator being zero. In convolutional neural networks, the BN layer is
generally followed by the activation function and the convolutional layer; then, for a new
convolutional layer, the output size of the BN layer determines whether the current channel
is important or not. In turn, the output size is determined by the value of γ. Therefore, in
this study, the size of γ is regarded as an indicator to judge the importance of the channel,
and the redundant parameters in the network are reduced by removing the channel with
a small value of γ. Figure 2 shows a schematic diagram of the pruning algorithm, which
prunes the channels in the network by evaluating them based on the importance evaluation
factor γ. This process centers on removing input and output connections that are associated
with a particular channel. As shown in Figure 2, channels with smaller scale factors (marked
in red) are cropped out. Meanwhile, channels with larger scale factors (indicated in blue)
are retained. With this cropping operation, a more compact and efficient neural network
structure is finally obtained (in green).

Agronomy 2024, 14, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 2. Schematic diagram of the slimming pruning algorithm. 

In any network architecture, the scaling factor γ for batch normalization (BN) has a 
certain weight (the value cannot be exactly 0), which indicates that each channel is crucial 
for the functioning of the network. In order to deal with this characteristic, this study in-
troduces the sparse training technique, i.e., reducing the value of the γ parameter for a 
portion of the channels by introducing a regularization term, making the network more 
concise. This process can be formulated as a loss function: 𝐿 = ෍  𝑙(𝑓(𝑥, 𝑊), 𝑦) + 𝜆 ෍  𝑔(𝛾)  (13)

where x denotes the input; y is the true label; 𝑊 is the trainable parameter in the network; 
and L1 regularization, as a sparse penalty function, is 𝑔(𝛾). 

In addition, unlike traditional learning where direct pruning can be performed after 
sparsifying pre-training, Prune-FSL’s framework is divided into two stages: pre-training 
and meta-learning. Therefore, two pruning strategies were designed in this study. They 
are used to explore at which stage pruning can be performed to obtain better pruning 
results. As shown in the blue part of Figure 3, in the strategy of pruning after pre-training, 
first, the regular pre-training of the network with sparsification is carried out so that a 
large part of the network γ in the original network is close to 0. Additionally, the channels 
are pruned. Eventually, the pruned network is meta-trained to obtain a compact network. 
In the strategy of pruning after meta-training, first, a regular pre-training of the network 
is performed to obtain a complete model. Subsequently, sparsifying meta-training and 
pruning the channels are carried out to obtain a sparsified meta-trained model. 

 

Figure 2. Schematic diagram of the slimming pruning algorithm.

In any network architecture, the scaling factor γ for batch normalization (BN) has a
certain weight (the value cannot be exactly 0), which indicates that each channel is crucial
for the functioning of the network. In order to deal with this characteristic, this study
introduces the sparse training technique, i.e., reducing the value of the γ parameter for a
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portion of the channels by introducing a regularization term, making the network more
concise. This process can be formulated as a loss function:

L = ∑ l( f (x, W), y) + λ ∑ g(γ) (13)

where x denotes the input; y is the true label; W is the trainable parameter in the network;
and L1 regularization, as a sparse penalty function, is g(γ).

In addition, unlike traditional learning where direct pruning can be performed after
sparsifying pre-training, Prune-FSL’s framework is divided into two stages: pre-training
and meta-learning. Therefore, two pruning strategies were designed in this study. They are
used to explore at which stage pruning can be performed to obtain better pruning results.
As shown in the blue part of Figure 3, in the strategy of pruning after pre-training, first,
the regular pre-training of the network with sparsification is carried out so that a large
part of the network γ in the original network is close to 0. Additionally, the channels are
pruned. Eventually, the pruned network is meta-trained to obtain a compact network.
In the strategy of pruning after meta-training, first, a regular pre-training of the network
is performed to obtain a complete model. Subsequently, sparsifying meta-training and
pruning the channels are carried out to obtain a sparsified meta-trained model.
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2.3.3. Indicators for Model Evaluation

The method proposed in this study is a lightweight small-sample classification model
that can be used for small computing devices, such as edge devices. Therefore, the model
needs to take into account accuracy while having smaller parameters and smaller com-
putation. In this study, three metrics—accuracy, parameter, and Macs—are chosen to
comprehensively evaluate the performance of the model.

Accuracy is a basic metric for evaluating the performance of a classification model. It
indicates the number of samples correctly predicted by the model as a proportion of the
total number of samples. In a multicategorization problem, the formula for calculating
accuracy is as follows:

Accuracy =
∑n

h=1 TPh

∑n
h=1(TPh + FNh + FPh)

× 100% (14)

where TPh (True Positive) is the number of samples correctly predicted by the model as the
h-th positive category, FPh (False Positive) is the number of samples incorrectly predicted
by the model as the h-th positive category, and FNh (False Negative) is the number of
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samples incorrectly predicted by the model as the h-th negative category. N denotes the
total number of categories.

In order to accurately quantify the network parameters, this study introduces the
metric “Parameter”. Specifically, it refers to the total number of weights and biases to be
learned in the model. The number of parameters directly affects the complexity and size of
the model and usually also affects the training time and performance of the model. The
calculation of the parameters is usually based on the number of layers in the model and
the type of operations in each layer. Since the model used has only convolutional and BN
layers, the number of parameters for a BN layer plus a convolutional layer can be expressed
as follows:

Parameter = Cout × (KW × Kh × Cin + 1) + 2 × C (15)

where Cout denotes the number of output channels and Cin expresses the number of input
channels. Kh, KW are the height and width of the convolution kernel.

Macs (Multiply–Accumulate operations) is a metric used in deep learning to measure
the computational complexity of a model. A Multiply–Accumulate operation means
that a multiplication operation is immediately followed by an addition operation. In
deep learning, models such as convolutional neural networks (CNNs) and Recurrent
Neural Networks (RNNs) rely heavily on a large number of matrix multiplication and
accumulation operations to process and analyze complex data patterns, and thus Macs
are used to estimate the computational resources required by the model for inference or
training. Their computation is usually based on the number of layers of the model and the
type of operations in each layer. Since in Prune-FSL only the convolutional layers in the
backbone network are used, the Macs metric is calculated as follows:

Macs = H × W × CIn × Cout × KW × Kh (16)

where H represents the height of the feature map and W represents the convolution ker-
nel width.

3. Results
3.1. Data Setting

In order to fulfill the requirement of mutual exclusivity of categories in the training and
test sets of FSL, this study slices Plantvillage into three parts according to the distribution
of categories in Figure 4: the training set, the validation set, and the test set. The training
set contains 19 categories that are directly involved in the gradient update of the model.
The validation set contains ten categories that are used to monitor the model’s performance
during training and keep the best weights. The remaining nine categories serve as the test
set to examine the final performance criteria of the model.

3.2. Effect of Pruning Coefficients on Model Performance

Prune-FSL employs a γ-value-based channel pruning strategy, i.e., all the γ-values
in the network are first sorted, and then the pruning threshold is determined based on
the preset pruning ratio coefficients, and those channels with γ-values lower than this
threshold are pruned [24,33]. In this experiment, four pruning scale coefficients, 0.2, 0.4,
0.6, and 0.8 [34], are carefully designed to explore the effects of different compression levels
on the model performance. After the pruning process, four lightweight network models
were obtained: Resnet12—20%, Resnet12—40%, Resnet12—60%, and Resnet12—80%. The
performance of these models on the 5-way 1-shot and 5-way 5-shot tasks is detailed in
Table 2. The experimental results show that with a pruning ratio of 20%, i.e., the Resnet12—
20% model, the number of parameters is reduced to a minimum of 0.49 M, which is as much
as a 25-fold reduction compared to the original network; at the same time, the amount
of computation is also reduced significantly from 3.52 G to 0.14 G. Especially noteworthy
is that the performance loss of the model is only 1.57% under 5-way 5-shot conditions,
which fully demonstrates the great potential of the pruning-based lightweight FSL method
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in achieving efficient small-sample recognition. In addition, this study also provides an
in-depth analysis of the trend of the model performance with respect to the parameters.
The relevant results are displayed in Figure 5. From the figure, it can be clearly observed
that the performance loss is almost negligible when the model pruning coefficient is above
0.6, regardless of the 5-way 1-shot (blue curve) or 5-way 5-shot (red curve) conditions, even
though the number of model parameters is reduced by nearly three times. This provides a
practical solution for deploying high-performance FSL models on small computing devices
with relatively generous computational resources. However, when the pruning ratio is
further increased, the model performance shows a more obvious drop, but even in this case,
its performance under 5-way 5-shot conditions remains at an applicable level, showing that
the method is still robust under extreme compression conditions.
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Table 2. Effect of pruning coefficient on performance.

Network Training Stage Paramars (M)
Macs
(G)

5-way 1-shot 5-way 5-shot

Acc (%) 95% MSE Acc (%) 95% MSE

Resnet12—80% A 0.49 0.14 77.97 1.46 90.70 1.02
Resnet12—60% A 1.99 0.56 80.87 1.32 91.37 0.98
Resnet12—40% A 4.47 1.27 82.07 1.30 92.30 0.90
Resnet12—20% A 7.95 2.25 82.10 1.31 92.10 0.93
Resnet12—0% A 12.42 3.52 82.47 1.30 92.27 0.91

3.3. Effect of Pruning Strategy on Performance

The baseline approach is composed of pre-training and meta-training [35]. To inves-
tigate the effectiveness of different pruning strategies in lensless learning, two pruning
strategies were designed in this study [36]: (A) pruning after meta-training and (B) pruning
after sparse pre-training (Figure 6). By controlling the change in pruning strategy, a compar-
ison test was conducted for the four post-pruning models. The specific results are shown in
Table 3. The experimental results show that the accuracy of both training strategies A and
B increases as the percentage of pruning is reduced from 80% to 20%. This indicates that
the performance of the model benefits from a higher pruning percentage. At the same time,
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the models in strategy B generally do not perform as well as in strategy A, and this gap
becomes more pronounced the smaller the parameters are. In conclusion, training strategy
A generally outperforms strategy B, especially when a larger pruning ratio is used.
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Table 3. Impact of pruning strategy on performance.

Network Training Stage
5-way 1-shot 5-way 5-shot

Acc (%) 95% MSE Acc (%) 95% MSE

Resnet12—80% A 77.97 1.46 90.70 1.02
Resnet12—60% A 80.87 1.32 91.37 0.98
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Table 3. Cont.

Network Training Stage
5-way 1-shot 5-way 5-shot

Acc (%) 95% MSE Acc (%) 95% MSE

Resnet12—40% A 82.07 1.30 92.30 0.90
Resnet12—20% A 82.10 1.31 92.10 0.93
Resnet12—80% B 55.53 1.72 65.77 1.65
Resnet12—60% B 60.70 1.69 69.13 1.55
Resnet12—40% B 71.00 1.53 81.73 1.37
Resnet12—20% B 79.33 1.42 88.60 1.12

3.4. Visualization of Loss Curves

The model training process is divided into two phases (pre-training and meta-training),
and Resnet12—20% is chosen as the main research object of this section. To visualize the
training process more clearly [37], the loss function and accuracy are visualized in this
study. The specific loss function trends are revealed in Figure 7. In Figure 7A,B, the loss
function change curves of the model during the pre-training and meta-training phases [38]
are shown, respectively. It is worth noting that the training loss exhibited by the model at
the beginning of meta-training is still significant despite the completion of the pre-training
phase. This phenomenon reflects that the main role of pre-training is to provide a priori
knowledge for the model, and the feature space differences that have not been tuned by
the N-way K-shot meta-learning are not yet fully revealed. However, as the meta-training
proceeds further, the differentiation of different samples in the feature space gradually
increases, and meta-training loss shows a steadily decreasing trend, eventually converging
to a level of about 0.4. This process is usually completed within 40 rounds of iterations, thus
confirming that the model possesses good generalization ability. In addition, Figure 7C,D
depict the accuracy change curves of the validation set in the pre-training and meta-training
phases, respectively. From the figures, it can be clearly observed that the highest accuracy
of the validation set reaches 86.00% and 82.50%, respectively. This result demonstrates a
rapid improvement in the performance of the model on the validation set.

3.5. K-Fold Cross-Validation

In order to more rigorously verify the robustness and generalization ability of the
model, this study adopts the K-Fold cross-validation method to systematically evaluate the
pruned 80% model. In this process, the training dataset was uniformly divided into five
subsets (labeled as 1, 2, 3, 4, and 5) [39], each of which was regarded as an independent
fold. In this study, each fold was trained separately, and five sets of accuracy data were
collected. In order to obtain more reliable evaluation results, this study averaged these
five sets of accuracy data, and the average value obtained was used as the accuracy rate of
K-Fold cross-validation. The specific experimental results are detailed in Table 4. After five
cross-validations, the model achieved 77.17% and 88.86% accuracy on the 5-way 1-shot and
5-way 5-shot tasks, respectively. The 95% mean square error [40] of the cross-validation
results was also calculated in this study, which was 1.42% and 1.11%, respectively. This
result indicates that the model is able to maintain relatively stable performance under
different data partitioning and training conditions, thus confirming its strong robustness
and generalization ability. This is crucial for the reliability and stability of the model in
practical applications and provides strong support for further promotion and application
of the model.
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Table 4. K-Fold cross-validation table.

Network Fold
5-way 1-shot 5-way 5-shot

Acc (%) 95% MSE Acc (%) 95% MSE

Resnet12—20% 1st fold 73.00 1.54 89.40 1.07
Resnet12—20% 2nd fold 76.70 1.32 90.37 1.07
Resnet12—20% 3th fold 79.77 1.41 87.47 1.19
Resnet12—20% 4th fold 77.77 1.42 87.43 1.15
Resnet12—20% 5th fold 78.60 1.39 89.63 1.06
Resnet12—20% AVG 77.17 1.42 88.86 1.11

3.6. Comparison with Lightweight Networks

In order to deeply explore the utility of pruning-based approaches in the field of few-
shot learning (FSL) and to compare them with approaches that only lighten the backbone
network by replacement, this paper conducts a series of studies under the same experimen-
tal conditions. Specifically, this paper replaces different backbone networks in the baseline
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model and conducts a total of seven sets of experiments under two task settings: 5-way
1-shot and 5-way 5-shot. The experimental results are detailed in Table 5. Analyzing the
data, it can be seen that EfficientNet performs well in terms of computational efficiency,
with a computational volume of only 0.03 G, and also achieves 73.60% and 85.70% in terms
of accuracy. Shufflenetv2, on the other hand, achieves considerable performance while
maintaining a low number of parameters. Notably, Densenet40 stands out with its 0.61 M
parameter count in the 1-shot task, achieving the best performance except for the baseline
model, and even surpassing the baseline model in the 5-shot task. However, its 0.82 G
computation is still high compared to the pruning model. On the other hand, Mobilenetv2
and Mobilenetv3 perform relatively poorly in this experiment, not only in terms of poor
performance but also in terms of a larger number of parameters. In contrast, Resnet12—
80% shows excellent comprehensive performance, which can still significantly outperform
other lightweight network models while significantly reducing the network volume, and
its performance is only second to that of Densenet40. To summarize, the experimental
results in this paper fully demonstrate the superiority of the pruning-based lightweight FSL
method in terms of performance. Through a well-designed pruning strategy, the model
in this paper can effectively reduce the computational and parametric quantities while
guaranteeing the model performance, which provides new ideas and directions for the
development of the FSL field.

Table 5. Comparison test with lightweight networks.

Network Paramars (M) Macs (G)
5-way 1-shot 5-way 1-shot

Acc(%) 95% MSE Acc(%) 95% MSE

Shufflenetv2 1.99 0.03 73.60 1.55 87.70 1.18
Mobilenetv2 3.50 0.05 72.67 1.45 85.90 1.27
Mobilenetv3 5.76 0.05 67.60 1.62 82.30 1.37
EfficientNet 2.82 0.03 73.60 1.50 85.70 1.25
Densenet40 0.61 0.82 79.63 1.41 94.40 0.80

Resnet12 12.42 3.52 82.47 1.30 92.27 0.91
Resnet12—80% 0.49 0.14 77.97 1.46 90.70 1.02

3.7. Comparison with Related Work

In order to fully verify the validity of the methodology of this study, we refer to the
typical representative works in the field of “few-shot learning” from 2017 to 2023, using the
timeline as a variable. Prototypical networks [41], matching networks [42], DeepEMD [23],
FEAT [43], and FewTURE [44] were carefully selected to conduct systematic comparative
experiments in this study. All experiments were conducted under strictly uniform data
conditions to ensure the fairness and comparability of the results. The experimental results
are shown in Table 6 and Figure 8. After 80% network pruning, the method still achieves
77.97% accuracy under 1-shot conditions, a result that is comparable to the prototypical
network model in 2018. More notably, the method further improved the accuracy to
90.7% under 5-shot conditions, a remarkable result that not only rivals the performance of
traditional FSL models but also signifies that it has reached the practical level in relevant
applications such as crop disease identification. In summary, the algorithms in this study
have initially achieved the goal of lightweighting in the field of few-shot learning, especially
in crop disease recognition. This important progress not only provides new ideas for the
optimization of related algorithms but also lays a solid foundation for future promotion
and deployment in practical applications.
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Table 6. Comparison of related work.

Method
5-way 1-shot 5-way 5-shot

Acc (%) 95% MSE Acc (%) 95% MSE

Matching net (2017) 81.52 0.01 91.14 0.01
Prototypical net (2018) 78.21 1.56 89.47 1.06
FEAT (2021) 81.38 1.35 91.29 0.96
DeepEMD (2023) 82.47 1.30 92.27 0.91
FewTURE (2023) 84.20 1.21 95.53 0.74
Resnet12—20% 77.97 1.46 90.70 1.02
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4. Discussion
4.1. Limitations of the Model and Future Work

First, a single crop may suffer from multiple diseases. Although each image of the
Plantvillage dataset used in this study depicts only one disease, in reality, once a crop is
infected with one disease, its immune system is weakened, making it more susceptible to
other diseases [45,46]. This is especially common in field environments where the same
plant may suffer from multiple diseases at the same time. From a classification point of
view, the feature information of the image may become blurred [47]. To solve this problem,
we choose to utilize multimodal information [48], such as text (e.g., “image of potato with
early blight”) or audio, in order to correctly instruct the image encoder to learn this part
of the knowledge and to prune it after learning is complete. Second, the importance of
the cross-domain problem in small-sample learning cannot be ignored. It is a common
scenario that when unpredictable external factors are present during the testing phase, such
as disease category, disease severity, weather, and lighting, the performance of the model
may experience an unexpected degradation [49,50]. However, the dataset used in this study
did not contain this information. Therefore, future work will focus on constructing a more
complex dataset in order to test the model’s ability to generalize in complex disturbance
environments and make further improvements [51].

4.2. Effect of Way and Shot

The parameters N-way and K-shot significantly influence model performance, with
N-way denoting the number of classes and K-shot specifying the size of the support set
per class. To explore the impact of these parameters on model performance [30,52], we
systematically varied their values and conducted a comprehensive statistical analysis of
the accuracy of the Resnet12—20% model. As illustrated in Figure 9, the model’s accuracy
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exhibits a marked improvement as the K-shot value increases from 1 to 25, rising from
77.97% to 94.04%. Notably, the increase in accuracy stabilizes once the K-shot value
surpasses 10, indicating an effective enhancement of model performance through the
augmentation of prior information.
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Conversely, an increase in N-way introduces greater diversity and, consequently,
higher information entropy, which negatively affects model accuracy. Therefore, we ad-
vocate for a strategy that balances model lightness with an increase in the support set
size, particularly in scenarios characterized by a broad range of categories. This approach
ensures the maintenance of or improvement in model accuracy while managing computa-
tional complexity [53].

5. Conclusions

To address edge computing device limitations and the generalization issues of few-
shot learning for crop disease recognition, we propose Prune-FSL. This network reduces
parameters and enhances recognition accuracy. Using the Plantvillage dataset, we evalu-
ated the model through ablation studies, cross-validation, and comparative experiments,
yielding the following conclusions:

(1) Feasibility analysis of FSL pruning: The experiments show that incorporating the
pruning method into the feature extraction network of the meta-learner can reduce the
computation of the model by up to 25 times, and the performance of the model is still
maintained at a high level. This shows that the method can still maintain good performance
under extreme compression conditions, and the performance of the model varies with the
compression ratio—the higher the compression rate, the lower the performance.

(2) In the comparison of the two pruning strategies, this study found that when the
pruning ratios were kept the same, strategies that were pruned after sparse pre-training
consistently showed better performance. In addition, the difference in performance between
the two strategies became more significant as the pruning ratio increased. In addition, this
study conducted five-fold cross-validation experiments with loss function visualization
for networks with pruning ratios up to 80%, which not only verified the robustness of the
model but also further enhanced its persuasiveness.

(3) In the final comparison experiment, this study compares this paper’s model with
several lightweight networks, and the results show that the Resnet12—80% model, which
is significantly better than other lightweight models, still exhibits excellent overall perfor-
mance while reducing the network size. In addition, this study also compares our model
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with several representative few-shot learning (FSL) methods proposed in recent years.
With highly compressed models, Prune-FSL achieves performance comparable to that of
Resnet12-based matching networks and prototypical networks.

In conclusion, the method proposed in this study provides an effective solution for
lensless crop disease recognition under computational resource constraints and provides
techniques and references for subsequent lensless crop disease recognition on field plant-
protection robots.
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