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Abstract: Aiming to accurately identify apple targets and achieve segmentation and the extraction of
branch and trunk areas of apple trees, providing visual guidance for a picking robot to actively adjust
its posture to avoid branch trunks for obstacle avoidance fruit picking, the spindle-shaped fruit trees,
which are widely planted in standard modern apple orchards, were focused on, and an algorithm
for apple tree fruit detection and branch segmentation for picking robots was proposed based on
an improved YOLOv8s model design. Firstly, image data of spindle-shaped fruit trees in modern
apple orchards were collected, and annotations of object detection and pixel-level segmentation
were conducted on the data. Training set data were then augmented to improve the generalization
performance of the apple detection and branch segmentation algorithm. Secondly, the original
YOLOv8s network architecture’s design was improved by embedding the SE module visual attention
mechanism after the C2f module of the YOLOv8s Backbone network architecture. Finally, the
dynamic snake convolution module was embedded into the Neck structure of the YOLOv8s network
architecture to better extract feature information of different apple targets and tree branches. The
experimental results showed that the proposed improved algorithm can effectively recognize apple
targets in images and segment tree branches and trunks. For apple recognition, the precision was
99.6%, the recall was 96.8%, and the mAP value was 98.3%. The mAP value for branch and trunk
segmentation was 81.6%. The proposed improved YOLOv8s algorithm design was compared with
the original YOLOv8s, YOLOv8n, and YOLOv5s algorithms for the recognition of apple targets and
segmentation of tree branches and trunks on test set images. The experimental results showed that
compared with the other three algorithms, the proposed algorithm increased the mAP for apple
recognition by 1.5%, 2.3%, and 6%, respectively. The mAP for tree branch and trunk segmentation
was increased by 3.7%, 15.4%, and 24.4%, respectively. The proposed detection and segmentation
algorithm for apple tree fruits, branches, and trunks is of great significance for ensuring the success
rate of robot harvesting, which can provide technical support for the development of an intelligent
apple harvesting robot.

Keywords: agronomy; digital agriculture; picking robot; apple tree; YOLOv8; object detection;
semantic segmentation

1. Introduction

Apple is a short maturity period fruit with seasonal harvesting characteristics. If
ripe apples are not harvested in a timely manner, it will result in fruit decay and affect
the apple yield, directly affecting the subsequent stages of fruit storage, transportation,
processing, and sales. With the increase in apple yields and a shorter maturity period, the
problem of fruit picking gradually becomes more prominent. Apple orchards can mainly be
divided into two categories based on the planting mode of the fruit trees: traditional apple
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orchards and modern apple orchards (also known as standard apple orchards). Traditional
apple orchards have intersecting branches between fruit trees with low and enclosed rows,
indicating poor mechanical passability in the orchard, making them unsuitable for robot
picking operations [1,2]. In the planting modes of fruit trees of modern apple orchards, the
dwarf rootstock dense planting mode is widely utilized. It has multiple advantages, such
as a short tree crown, convenient fruit tree management, early fruit bearing, high apple
yield, good quality, and convenient intelligent operation for robots, for which it is easy
to achieve standardization and scale management, and is widely adopted by advanced
apple production countries in the world. Dwarf rootstock dense planting mode is also
the cultivation choice of modern apple industry developments. Among them, the spindle-
shaped cultivation model has more fruiting branches with more advantages in terms of
fruit yield and is widely used in standard modern orchards. Spindle-shaped apple trees in
modern apple orchards are shown in Figure 1.
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Nowadays, the harvest of apples still mainly relies on manual picking, which is the
most time-consuming and labor-intensive key part of the production process. Robot fruit
picking has become a global hot topic in research and application. However, since the
relatively complex distribution of branches within the crowns of modern apple trees in
orchards, branches will become potential obstacles in the movement path of harvesting
robots. On the other hand, there are also situations where apples are obstructed by branches.
If a harvesting robot directly pick apples without precise perception of the situations the
robot may be faced with in orchards, which are described above, it may cause damage to the
fruits and trees, as well as damage to the picking manipulator or arm of the robot, resulting
in harvesting failure. Therefore, in-depth research on intelligent perception algorithms for
apple tree fruits and branches based on artificial intelligence and deep learning is of great
significance for ensuring the success rate of robot harvesting.

Up until now, many researchers have conducted research on the intelligent perception
of apple and tree branch/trunk targets in complex orchard environments based on artificial
intelligence algorithms. In terms of target perception of apples and fruit trees based on
deep learning algorithms, relevant research from recent years is shown in Table 1.

Throughout the current research status of apple and fruit tree target perception based
on deep learning algorithms, most existing algorithms only recognize and detect fruit
targets on apple trees without integrating segmentation perception for apple tree branches
and trunks. Therefore, directly applying these algorithms to the visual perception system
of apple harvesting robots may lead to significant security risks. Thus, the spindle-shaped
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fruit trees widely planted in standard modern apple orchards were utilized as the research
object, and an intelligent perception algorithm design for apple tree fruit detection and
branch segmentation for picking robots was improved based on the YOLOv8s detection and
segmentation algorithm. The study provides theoretical guidance and technical reference
for improving the success rate of apple harvesting robots, which is of great significance for
intelligent harvesting in the apple industry.

Table 1. Target perception of apple tree fruits and branches based on deep learning.

Perception Model Year
Achieve Apple Detection and
Branch/Trunk Segmentation

Simultaneously
Reference

Improved YOLOv7-RSES 2024 N [3]
Improved YOLOv5s 2024 N [4]
Improved YOLOv7 2024 N [5]
Improved YOLOv3 2020 N [6]
Improved YOLOv3 2021 N [7]

CA-YOLOv4 2022 N [8]
Improved YOLOv5s 2021 N [2]

DaSNet 2019 Y [9]
DaSNet-v2 2020 Y [10]

Faster R-CNN (VGG16) 2020 N [11]
Faster R-CNN (VGG16) 2020 N [12]

Improved FCOS 2021 N [13]
YOLOv4-tiny 2021 N [14]

Improved FCOS 2022 N [15]
Improved RetinaNet 2022 N [16]
Improved YOLOv4 2022 N [17]

Lad-YXNet 2022 N [18]
Improved Centernet 2022 N [19]
Improved YOLOv5m 2022 N [1]

YOLOv4-SENL 2021 N [20]
YOLOv7-CEA 2023 N [21]

Y: yes. N: no.

2. Materials and Methods
2.1. Acquisition and Preprocessing of Image Data
2.1.1. Image Acquisition Method

In the study, fruits on Fuji apple trees of dwarf rootstock dense planting mode in a
standard modern orchard were used as the research object, and original images of the apple
trees in the standardized orchard at the Agricultural Science and Technology Experimental
Demonstration Base of Qian County in Shaanxi Province and the Apple Experimental
Station of Northwest A&F University in Baishui County of Shaanxi Province were collected.
In the dwarf rootstock dense planting cultivation mode, the row spacing of apple trees
is about 4 m. The plant spacing is about 1.2 m, and the tree height is about 3.5 m, which
is suitable for an apple picking robot to operate in the orchard. The images of the apple
trees were obtained on sunny and cloudy days. The images were captured using a Canon
Powershot G16 camera (Canon, Tokyo, Japan), with a variety of angles selected for image
acquisition at different shooting distances (0.5–1.5 m), and in total, 436 apple images
were obtained, including those with the following conditions: apples occluded by leaves,
apples occluded by branches, mixed occlusion, overlap between apples, natural light angle,
backlight angle, sidelight angle, etc. (Figure 2). Example images of the branches and trunks
of spindle-shaped fruit trees are shown in Figure 3. The resolution of the captured images
is 4000 × 3000 pixels, and the format is JPEG.
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2.1.2. Preprocessing of Image Data

The main task of preparing a model training dataset is to annotate images. Based on
an in-depth analysis of the apple tree fruit and branch perception algorithm for an apple
picking robot, as apple fruits are the ultimate target of the picking robot’s operation, the
apple targets were labeled. On the other hand, since the branches of the fruit tree may
block the apples to be picked, and a picking robot needs to avoid branch obstacles to
ensure the safety of the picking process, otherwise, it is highly likely to damage the fruit,
branch structure, robot’s picking hand, etc., leading to robot picking failure, pixel-level
segmentation and the labeling of apple tree branches and trunks are necessary.

In the study, Labelme software (version: 5.0.0) was used to annotate images. Labelme
is an image annotation tool developed by MIT’s (Massachusetts Institute of Technology,
MIT) Computer Science and Artificial Intelligence Laboratory (CSAIL). People can use this
tool to create customized annotation tasks or perform image annotation. The project source
code is already open source (official website: https://github.com/wkentaro/labelme,
accessed on 27 July 2024). In the study, Labelme software was used for image annotation.
This software can annotate not only fruits but also perform pixel-level image segmentation.
For apple targets, the ‘Create Rectangle’ function in the Labelme annotation interface
was utilized. When annotating apples, it is important to note that the four edges of the
annotated detection box must be tangent to the edges of apple to ensure that there is not

https://github.com/wkentaro/labelme
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too much background information in the detection box, thereby ensuring the quality of the
dataset and the detection accuracy of the perception model.

The ‘Create Linegrip’ function in Labelme software was used to label apple tree
branches and trunks by attaching label lines along the direction of branches within the
area of fruit tree branches and trunks. The annotation process is shown in Figure 4. The
branches and trunks are marked with deep red line segments, and apple targets are marked
with green rectangular boxes.
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The JSON files typically contain the following information: the name of the image
data, the label name (category name) of the target object in the image, the bounding box
coordinates of the target object, the semantic segmentation label name, and the annotation
style of the target object.

A total of 400 images with stable shooting quality were randomly selected from the
collected images for annotation, and corresponding JSON files were generated. Then, the
JSON files were converted into TXT files. Due to uncertain factors such as lighting and
weather, the visual perception environment of the robots during recognition and picking
operations in orchards is very complex. In order to enrich the image data of the training set,
improve the generalization ability of the apple recognition and branch/trunk segmentation
model, and better extract the characteristics of apples and tree branches/trunks, data
augmentation processing was performed on the images of the training set.

Before expanding the data, the dataset was partitioned. Based on the existing 400 sam-
ples with stable shooting quality, 340 images were divided into the training set, 30 images
were used as the validation set, and the other 30 images were used as the test set. The
training data include a total of 8218 apple fruit target labels and 7160 branch/trunk labels.

The training set images were amplified using data augmentation techniques such as
image rotation technology, brightness enhancement and reduction technology, contrast
enhancement and reduction technology, and adding Gaussian noise in the image technology.
A total of 4760 images obtained after data augmentation were utilized as training set data
for the subsequent training of the apple recognition and branch/trunk segmentation model.
On the other hand, in the process of data augmentation of images, it is also necessary to
process the label files containing labeled information corresponding to the image to ensure
that the position information of the labeled target object is correct.
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2.2. Network Architecture and the Improved Design of YOLOv8s
2.2.1. YOLOv8s Network Architecture

The YOLOv8 network architecture has the advantages of high detection and segmen-
tation accuracy and fast running speed [22–32]. On the other hand, the weight of this
network model is relatively small, making the YOLOv8 model suitable for deployment on
embedded devices to achieve real-time detection and segmentation of targets. YOLOv8
model was built on the historical version of the YOLO series, introducing new features and
improvement points to further enhance the performance and flexibility, making it a priority
choice for achieving a series of tasks such as object detection and image segmentation.
The YOLOv8 network contains five submodels based on differences in the model size:
YOLOv8n, v8s, v8m, v8l, and v8x (detailed parameters are shown in Table 2). Due to the
fact that the detection and segmentation accuracy, real-time performance, and lightweight-
ing of the model are directly related to the accuracy and efficiency of robotic recognition of
fruits and the segmentation of branches and trunks, factors such as the perception accuracy,
model volume, and detection speed were comprehensively considered in the study. An
intelligent perception network that integrates fruit detection and branch segmentation for
apple picking robots was improved and designed based on the YOLOv8s architecture.

Table 2. Model parameters of the five YOLOv8 architectures.

Model Depth Width Layer Parameters Size (MB)

YOLOv8n 0.33 0.25 225 3.16 × 106 6.23
YOLOv8s 0.33 0.5 225 1.12 × 107 21.54
YOLOv8m 0.67 0.75 295 2.59 × 107 49.7
YOLOv8l 1 1 365 4.37 × 107 83.73
YOLOv8x 1 1.25 365 6.82 × 107 130.5

The YOLOv8 network architecture includes object detection networks of different
resolutions and instance segmentation networks based on YOLACT. The specific YOLOv8
structure is shown in Figure 5:
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The YOLOv8 network structure mainly consists of three parts: Backbone, Neck,
and Head architectures. The Backbone is the main component of the model and draws
inspiration from the CSP module and extracts features separately. The input data are sent to
part 1 and part 2, where part 2 performs convolution operations and the C layer is obtained.
Then, part 1 and the C layers are connected. In YOLOv8, the C3 module is replaced with
the C2f module on the basis of YOLOv5, further achieving a lightweight model architecture,
while continuing to use the SPPF module of YOLOv5. The schematic diagrams of the C3
module and C2f module are shown in Figure 6:
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The resolution of the input Backbone structure image is 640 × 640. After passing
through Backbone layers, including Layer 5, Layer 7, and Layer 10, the resolutions of the
output feature maps are 80 × 80, 40 × 40, and 20 × 20, respectively. Furthermore, three
types of feature maps are input into the Neck structure, which is a bidirectional network
that introduces a bottom–up feature extraction method, making it easier for low-level
information to be transmitted to the top layer. After the feature maps of Layer 5, Layer
7, and Layer 10 are inputted into the Neck structure, feature maps are upsampled and
processed through channel fusion. Finally, the output feature maps of three branches
in the Neck structure are sent to the Head layer for apple detection and branch/trunk
segmentation.

In the Head structure of YOLOv8, the regression branch and prediction branch are
separated, which effectively reduces the number of parameters and computational com-
plexity while enhancing the model’s generalization ability and robustness. YOLOv8 adopts
an object detection method that does not require anchor-free nodes [33], which mainly
represents objects through multiple key points or center points and boundary information,
making it more suitable for the detection of small targets. YOLOv8 has achieved significant
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performance improvements in the field of object detection while maintaining an efficient
balance between speed and accuracy.

In the YOLOv8 network, image segmentation is implemented based on the YOLACT
segmentation network. A mask prototype image of the entire image will be outputted
by the segmentation branch of the YOLACT-based network. The process of generating a
mask prototype image is as follows: Firstly, the feature map is inputted, which has a high
resolution and can better preserve spatial detail information while fusing certain semantic
information. Then, the feature map is upsampled, and the number of channels in the feature
map is adjusted to k through a convolutional layer with a 1 × 1 kernel, forming a prototype
image of k masks. For each target object, the confidence levels of the k masks are multiplied
by the prototype graph of the k masks; then, all the results are added up, and a sigmoid
nonlinear function is applied to generate the final mask, obtaining the segmentation result
of the target object. The mathematical expression for segmentation result M is as follows:

M = σ(PCT) (1)

Among them, P is k prototype masks with a dimension of h × w × k, C is k mask
coefficients with a dimension of n × k (n is the predicted target object number in the
detection branch), and σ is the sigmoid function.

2.2.2. Inserted Design of SE Module in Backbone Network

Due to the uneven thickness of apple tree branches and trunks, accurate segmentation
of apple tree branches requires an improved design of the original YOLOv8 network. Firstly,
the SE (sequence and networks, SEnet) attention mechanism module was embedded [10,34]
in the Backbone network.

The SE module is a kind of visual attention mechanism architecture wherein a novel
feature recalibration strategy, illustrating the significance of each feature channel, is au-
tomatically obtained through learning, and then useful features are promoted, while
unessential features are suppressed accordingly. Since the computation of the SE module
is small, and it can effectively improve the expression ability of the model and optimize
the content learned, it was inserted in the Backbone of the improved YOLOv8s network
design in the study to improve the detection accuracy of the model. The schematic diagram
of the SE module structure is shown in Figure 7 to provide a clearer understanding of the
mechanism and the process of feature extraction from images using this module.
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2.2.3. Inserted Design of Dynamic Snake Convolution Module

The dynamic snake convolution module [32,35,36] can better perceive small local
structures and complex global shapes (such as blood vessels). This structure has a good
performance in tubular segmentation tasks. The shape of the convolution kernel can be
modified based on input features, allowing the network to adapt to the shape of an object
rather than being limited to a fixed kernel shape. The dynamic snake convolution module
has a good performance in accurate recognition and adaptability for various complex target
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shapes, thereby enhancing the detection performance of the network. Therefore, dynamic
snake convolution modules were embedded in the improved network to promote the
segmentation effect of tree branches and trunks.

Dynamic snake convolution adopts an iterative strategy (as shown in Figure 8) to
sequentially select the next position of each target to be processed for observation, ensuring
continuity of the focus and avoiding excessive diffusion of the perception range due to
large deformation offsets.
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According to Figure 8, it can be seen that the design of the snake convolution kernel
linearizes the standard convolution kernel on the x- and y-axes. Taking x-axis direction as
an example, the specific position of each grid can be represented as follows:

Ki ± c = (Xi ± c, Yi ± c) (2)

where c can be set as 0, 1, 2, 3, and 4, respectively, representing the horizontal distance from
the center position of the network. The selection of each grid position Ki ± c in convolutional
kernel K is a cumulative process. Starting from central position Ki, the position away from
the central grid depends on the position of the previous grid, which is Ki+1, and increases
the offset ∆ = {δ|δ ∈ [−1, 1]} relative to Ki. Therefore, the offset needs to be accumulated
to ensure that the convolution kernel conforms to a linear morphological structure.

Due to the variation in the two-dimensional directions (x-axis and y-axis), the dynamic
snake convolution kernel covers a selectable range of 9 × 9 receptive fields during the
deformation process, as shown in Figure 9.

According to Figure 9, it can be seen that each convolution position of dynamic
snake convolution is based on its previous position, and the swing direction is freely
selected, thereby ensuring the continuity of the model’s perception while freely selecting
the next position.

In summary, the differences between the improved YOLOv8s network architecture and
the original network are as follows: firstly, the SE attention mechanism module was added
to the original Backbone network; secondly, dynamic snake convolution was embedded
into the C2f module of the original YOLOv8s network Head architecture. The schematic
diagram of the improved YOLOv8 network architecture is shown in Figure 10, where the
image to be perceived is input from the first Conv module in upper left corner of the figure.
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3. Training and Evaluation of Model
3.1. Network Training
3.1.1. Training Platform

The training environment for intelligent perception models was established under
the Windows 10 control system, with Intel (R) Core (TM) i5-10300H CPU utilized as the
processor for model training, and the graphics card configuration Nvidia GeForce RTX
1650 used as the deep learning framework. Python (version 3.8) language was used to write
the program code and call Cudnn, CUDA, OpenCV, and other required libraries (pytorch
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1.13.0, cuda116, and ultralytics) to realize the training and testing of the fruit and branch
perception model.

The logic of running the model mainly includes the following parts: configuring the
environment for network operation, installing Anaconda (Anaconda is an open-source
package and environment manager that can be used to install different versions of software
packages and their dependencies on the same machine and can switch between different
environments), installing an integrated development environment, creating a virtual en-
vironment, downloading the source code and weight files, installing basic dependencies,
loading projects, setting up a virtual environment, and running model testing.

On the other hand, the AdamW algorithm was used as the optimizer, and the cosine
learning rate scheduler was utilized to adjust the learning rate for model training. The
cosine learning rate scheduler can help the model adjust its learning rate according to the
shape of the cosine function during the training process, thereby using a higher learning
rate in the early stages of training, which helps with fast convergence, and gradually
reducing the learning rate in the later stages of training, which helps to finely adjust the
model parameters.

The default hyperparameter settings in the original YOLOv8 project were as follows:
The initial learning rate of model was 0.01, the weight attenuation coefficient was 0.0005,
and the momentum was 0.937. Due to the features of the apple and branch targets being
complex, the perception difficulty is relatively high; therefore, in the early stages of training,
in order to ensure the feature extraction effect of the model, avoid oscillation during the
gradient descent process of model training, make the convergence of the model more
stable, and ultimately achieve higher accuracy, the initial learning rate was set lower than
the default value to 0.002. On the other hand, in order to balance the efficiency of model
training, the weight attention coefficient and momentum of training were appropriately
increased, and the values were set to 0.05 and 0.9406, respectively. The input size of the
image was 640 × 640. The number of training epochs was 300. After training, the weight
file of the perception model obtained was saved, and the test set was used to evaluate the
performance of the model.

3.1.2. Training Results

After training was completed, the loss value for each training iteration was obtained
from the log file of model training and plotted as a curve graph. The loss curves of the
YOLOv8s model and proposed model are shown in Figure 11. After 300 epochs of training,
the loss value of the model reached a relatively low level. The output model after 300 rounds
of training was utilized as the detection and segmentation model.
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From the figure, it can be seen that although the training loss value of the proposed
model is relatively high in the initial stage of training, the training loss value shows a
decreasing trend with the increase in training rounds, and the decrease rate of the loss value
is slightly faster than that of the YOLOv8s model. On the other hand, when the model
training reached 300 epochs, both the YOLOv8s model and the proposed model achieved
low training loss values.

3.2. Evaluation of Detection and Segmentation Model
3.2.1. Evaluation Indicators for Apple Target Detection

In this study, objective evaluation indicators such as precision (3), recall (4), mAP (mean
average precision) (5), and F1 score were used to evaluate the performance of the trained
apple target identification model. The calculation equations are as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

mAP =
1
C

N

∑
K=i

P(k)∆R(k) (5)

F1 =
2

1
Precision + 1

Recall
(6)

where TP means the number of correctly identified apple targets; FP means the number of
misidentified background items as apple targets; FN represents the number of unidentified
apple targets; C represents the number of target categories, which was set to 1 in the study;
N represents the number of IoU thresholds; K is the IoU threshold; P(k) is the precision; and
R(k) is the recall.

3.2.2. Evaluation Indicators for Apple Tree Trunk Segmentation

The Dice coefficient and IoU are evaluation indicators used to evaluate the segmenta-
tion effect for tree branches and trunks in images. The Dice coefficient is a set similarity
measurement function commonly utilized to calculate the similarity between two samples,
and its mathematical expression is as follows:

Dice =
2 × TP

2 × TP + FP + FN
(7)

Among them, TP (True Positive) represents the number of pixels predicted as positive
samples (tree branch pixels) and perceived as positive samples (tree branch pixels), FP (False
Positive) represents the number of pixels predicted as positive samples (tree branch pixels)
but perceived as negative samples (background pixels), and FN (False Negative) represents
the number of pixels predicted as negative samples (background pixels) but perceived as
positive samples (fruit tree branch pixels). In addition, the mathematical expressions for the
precision, recall, and mAP indicators in the evaluation of tree branch/trunk segmentation
are shown in Equations (3), (4), and (5). The range of Dice coefficient values is between 0
and 1. The closer its value is to 1, the higher the overlap between the predicted results and
true labels. The higher the similarity, the better the segmentation performance of the model.

IoU is a widely used metric in object detection and semantic segmentation and rep-
resents the ratio of the intersection and union of the predicted results and real labels. Its
calculation formula is as follows:

IoU =
TP

TP + FP + FN
=

Dice
2 − Dice

(8)
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The calculation methods of the Dice coefficient and IoU are slightly different, with the
main difference being that the Dice coefficient contributes equally to the intersection and
union of the predicted results and real labels, while IoU focuses more on the intersection
of the predicted results and real labels. Therefore, the Dice coefficient is more sensitive to
smaller targets, while IoU focuses more on the segmentation of larger targets. Due to the
varying sizes of apple tree branches/trunks that need to be segmented in the study, these
two image segmentation evaluation indicators are introduced to comprehensively evaluate
the segmentation performance of the model. Similar to the Dice coefficient, the value range
of IoU is also between 0 and 1. The closer its value is to 1, the higher the overlap between
the predicted results and real labels. The higher the similarity, the better the segmentation
effect of the model.

4. Results and Discussion
4.1. Results and Analysis of Apple Detection and Branch/Trunk Segmentation Based on Improved
YOLOv8s

In order to verify the performance of the designed apple target detection and branch/
trunk segmentation model, further analysis was conducted on the recognition and seg-
mentation results of the model on test set images. The experimental results of apple target
detection and branch/trunk segmentation using the model are shown in Table 3. It can be
seen that for apple targets, the precision, recall, and mAP values of the proposed model in
the study are 99.6%, 96.8%, and 98.3%, respectively.

Table 3. Apple recognition and branch/trunk segmentation results using improved YOLOv8s
network.

Improved
YOLOv8s

Apple detection
Precision (%) Recall (%) mAP (%)

99.6 96.8 98.3

Branch/trunk
segmentation

mAP (%) Dice (%) IoU (%)

81.6 77.8 63.7

For the segmentation of apple tree branches and trunks, the mAP, Dice, and IoU values
of the proposed model are 81.6%, 77.8%, and 63.7%, respectively.

Examples of the recognition and segmentation results of the proposed model for fruits
and tree branches in different weather and lighting conditions are shown in Figure 12. Red
boxes were used for the labeling of apple fruits. Blue masks were used for the labeling
of branches. As can be seen in Figure 12, the proposed recognition and segmentation
model is not only suitable to perceive the images captured under uniform illumination on
cloudy days but also applicable to perceive the images captured under sunny conditions.
Moreover, fruit targets could also be well recognized under frontlight, backlight, and
sidelight conditions on a sunny day utilizing the proposed model.

Due to the fact that although the data used for verification and testing consist of
60 images, there are many target objects (fruits and tree branches/trunks) contained in
a single image. On the other hand, the data analysis of the model performance testing
results also demonstrates the objectivity of the model performance evaluation. Therefore,
the amount of data used for validation and testing in this study meets the requirements for
the evaluation of model performance.
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4.2. Comparison of Apple Detection and Branch/Trunk Segmentation Performance of
Different Models

In order to further analyze the performance of the proposed apple detection and
branch segmentation algorithm, the recognition and segmentation results of the improved
YOLOv8s network were compared with the original YOLOv8s, YOLOv5s, and YOLOv8n
networks on test set images. The experimental results of apple target detection using
four models are shown in Table 4. It can be seen that for apple targets, the precision,
recall, and mAP values determined using the proposed model were 99.6%, 96.8%, and
98.3%, respectively. Compared with the original YOLOv8s model, it has improved by 0.1%,
2.9%, and 1.5%, respectively. Compared with the detection performance of YOLOv8n and
YOLOv5s model architectures, the mAP values increased by 2.3% and 6%, respectively,
indicating the better apple detection performance of the proposed improved model. On
the other hand, calculations were also made for the mAP 0.5–0.95 indicator, as shown in
Table 4.

From Table 4, it can be seen that the perception times (ms/pic) of the four models
for fruits and branches are 73.1 ms (YOLOv5s), 9.8 ms (YOLOv8n), 16.1 ms (YOLOv8s),
and 17.7 ms (improved YOLOv8s), respectively. Although the improved YOLOv8s model
increases the perception time for each image by 1.6 ms compared to the original model, it
already satisfies the real-time recognition requirements of the picking robot vision system
for targets.

The experimental results of the four models for apple tree branch/trunk segmentation
are shown in Table 4. It can be seen that the mAP value of the proposed model for pixel-level
segmentation of the branch/trunk was 81.6%, which was 3.7%, 15.4%, and 24.4% higher
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than the original YOLOv8s, YOLOv8n, and YOLOv5s models, respectively, indicating the
better branch/trunk segmentation performance of the improved model.

Table 4. Performance comparison of four perception networks for apple recognition and branch/trunk
segmentation.

Perception
Model

Apple Recognition Branch/Trunk
Segmentation Average

Perception Speed
(ms/pic)mAP (%)

(mAP 0.5)
mAP 0.5–0.95

(%) F1(%) Precision
(%)

Recall
(%) mAP (%)

YOLOv5s 92.3 83.3 91.6 98.1 86.4 57.2 73.1
YOLOv8n 96 86.3 95.6 97.3 93.9 66.2 9.8
YOLOv8s 96.8 90.8 96.6 99.5 93.9 77.9 16.1
Improved
YOLOv8s 98.3 94.8 98.2 99.6 96.8 81.6 17.7

The results of the four detection and segmentation models for identifying and seg-
menting spindle-shaped apple tree fruits and branches/trunks in modern apple orchards
are shown in Figure 13. It can be seen that the perception results for target objects were
more accurate utilizing the improved YOLOv8s network proposed in the study.
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From the segmentation performances of several models on tree branches in the same
image, it can be seen that the improved YOLOv8 model embedded with the dynamic
snake convolution module can achieve segmentation of finer tree branches, which is more
delicate than the original v8 model. This also reflects the characteristic of the dynamic
snake convolution module in finely extracting small local structures and complex global
shape (such as blood vessels) features from images.

In order to effectively monitor apple fruits throughout the entire growth process of
the smart orchard, a lightweight model called YOLOv8-ShuffleNetv2-Ghost-SE has been
proposed [37]. This method achieves smaller models and a faster detection speed and
can serve as a reference for the development of smart devices in apple orchards. Another
study [38] proposed an improved detection method based on the YOLOv8 deep learning
model that can effectively detect flowers, fruits, and nodes in tomato plants. The proposed
model integrates the Squeeze and Excitation (SE) block attention module into its Head
architecture, enhancing the model’s recognition ability by focusing more on the classes
being studied, thereby improving the overall detection performance. Compared with our
study, other studies [37,38] also applied SE modules in their improved model, but they
did not extend the functionality of the YOLOv8 network and, therefore, did not achieve
segmentation of the target object; that is, pixel-level segmentation of the target object could
not be achieved. On the other hand, another study [37] focused on the detection of fruit
targets. Due to the inability of the designed network to perform semantic segmentation,
it cannot perceive apple tree branches that may become obstacles during the picking
process. Therefore, this model cannot be applied to apple picking robots to perform fruit
obstacle avoidance during picking operations. The discussion above also indicates the
potential contributions of the proposed algorithm in our study to the precision and smart
agriculture field.

5. Conclusions

(1) Considering the fact that most existing algorithms only recognize and detect fruit
targets on apple trees without integrating segmentation perception for apple tree
branches and trunks, the spindle-shaped fruit trees, which are widely planted in
standard modern apple orchards, were focused on, and an intelligent perception
algorithm for apple tree fruit detection and branch segmentation for picking robots
was proposed based on an improved YOLOv8s model design, providing technical
support for intelligent obstacle avoidance picking of apples using harvesting robots.

(2) The Backbone and Neck architectures of the original YOLOv8s network were im-
proved by embedding the SE module visual attention mechanism behind the C2f
module of the Backbone structure, and then, the dynamic snake convolution module
was embedded into the Neck structure, achieving the enhancement of the ability
to extract deep detail features from images and better extracting the features of dif-
ferent apple targets and detailed information of tree branches and trunks, with the
perceptual performance of the deep learning models being optimized.

(3) The proposed improved network model can effectively recognize apple targets in
images and segment tree branches and trunks. The experimental results of the test set
showed that the recall for apple recognition was 96.8%, the precision was 99.6%, and
the mAP value was 98.3%. The Dice value for branch and trunk segmentation was
77.8%, the IoU was 63.7%, and the mAP value was 81.6%.

(4) The proposed improved YOLOv8s algorithm was compared with the original YOLOv8s,
YOLOv8n, and YOLOv5s algorithms in the recognition of apple targets and segmenta-
tion of tree branches and trunks on the test set. The results showed that compared with
the other three algorithms, the improved YOLOv8s algorithm increased the mAP val-
ues for apple recognition by 1.5%, 2.3%, and 6%, respectively, and increased the mAP
values for branch and trunk segmentation by 3.7%, 15.4%, and 24.4%, respectively.



Agronomy 2024, 14, 1895 17 of 19

6. Future Work

Although the fusion perception algorithm proposed in the study has important value
for apple picking robots to achieve intelligent perception of fruit and branch information
in apple trees, there are still some limitations in the algorithm. The proposed perception
algorithm may not have a good performance in the perception of fruits and branches at
night. In addition, there are many green apple trees in modern apple orchards besides
red apple trees, but the proposed algorithm cannot be directly applied to perceive green
apple fruits.

In order to improve the application scope of our algorithm and apple picking robot, a
large amount of green apple image data will be captured. In addition, images of red and
green apples and branches/trunks will also be captured at night using artificial lighting.
All the above image samples will be added to the training set used to train the perception
model in order to achieve automatic recognition of red or green apple targets and segment
branches/trunks in daytime and night-time images.

YOLOv10 (official website: https://github.com/THU-MIG/yolov10, accessed on
27 July 2024) is the latest network architecture of the YOLO series and is designed for
object detection tasks. The highlight of this network design lies in the use of dual-label
allocation and consistent metric matching for free NMS, proposing a consistent dual al-
location strategy to solve the redundant prediction problem in post-processing. It allows
the model to enjoy rich and harmonious supervision during the training process while
eliminating the need for NMS in the inference process, thereby achieving efficient, competi-
tive performance. Secondly, by conducting a comprehensive inspection of each component
in YOLO, a model design strategy driven by the overall efficiency accuracy of the model
architecture is proposed. In order to improve the efficiency, a lightweight classification
Head, spatial channel decoupled downsampling, and sorting guidance block design are
proposed to reduce significant computational redundancy and achieve a more efficient
architecture. In order to improve the accuracy, they explored large kernel convolution,
proposed effective partial self-attention modules to enhance the model capability, and
explored the potential for performance improvement at a low cost. According to the official
model comparison test, YOLOv10 outperforms the YOLOv8 network architecture used
in this paper in both accuracy and speed for object detection tasks. Therefore, the apple
detection and branch/trunk segmentation based on the YOLOv10 network will have better
performance. However, due to the fact that the officially released YOLOv10 project is only
for object detection tasks, further programming operations are needed to achieve the fusion
perception effect of fruits and branches in this article in order to expand the semantic seg-
mentation function of the YOLOv10 network. On the other hand, the improved YOLOv8
algorithm proposed in this article can already meet the real-time operational requirements
of apple picking robots in terms of its perception accuracy and speed in detecting fruits
and branches. Therefore, in the future, we will conduct research on the fruit and branch
perception algorithm of apple trees based on YOLOv10 while overcoming the limitations
of the algorithm proposed in this paper in order to achieve all-weather fruit recognition
and branch segmentation with multiple color schemes of apples based on YOLOv10.

On the other hand, as the proposed algorithm can achieve real-time perception of
apple targets, branches and trunks, it can be combined with the motion control strategy of
the grasping end effector in the future to achieve the picking of apples that are obstructed
by branches or fruits by adjusting the picking angle and end effector position. Future
work also includes identifying other apple tree varieties or horticultural fruits based on the
proposed detection and segmentation algorithm.
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