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Abstract: Influenced by increasing global extreme weather and the uneven spatiotemporal distribu-
tion of water resources in monsoon climate areas, the balance of agricultural water resources supply
and demand currently faces significant challenges. Conducting research on the spatial allocation
trade-offs and synergistic mechanisms of agricultural water resources in monsoon climate areas is ex-
tremely important. This study takes the spatial layout of reservoir site selection in water conservancy
projects as an example, focusing on Shandong Province as the research area. During the site selection
process, the concept of water resource demand is introduced, and the suitability of reservoir siting is
integrated. It clarifies ten influencing factors for suitability degree and five influencing factors for
demand. A bi-objective optimization model that includes suitability degree and demand degree is
established. Utilizing machine learning methods such as the GA_BP neural network model and the
GA-bi-objective optimization model to balance and coordinate the supply and demand relationship
of agricultural water resources in the monsoon region. The study found that: (1) in the prediction of
suitability degree, the influencing factors are most strongly correlated with the regulatory storage
capacity (regulatory storage capacity > total storage capacity > regulating storage coefficient); (2)
compared with single-objective optimization of suitability degree, the difference between water
supply and demand can be reduced by 74.3% after bi-objective optimization; (3) according to the
spatial layout optimization analysis, the utilization of water resources in the central and western
parts of Shandong Province is not sufficient, and the construction of agricultural reservoirs should be
carried out in a targeted manner. This study provides new ideas for promoting the efficient use of
water resources in monsoon climate zones and the coordinated development of humans and nature,
reflecting the importance of supply and demand balance in the spatial allocation of agricultural water
resources, reducing the risk of agricultural production being affected by droughts and floods.

Keywords: machine learning; trade-off and coordination mechanism; irrigation management strategy;
reservoir siting; monsoon climate zone

1. Introduction

The IPCC AR6 report [1] and the interpretation reports [2–4] point out that the fre-
quency and intensity of extreme weather events will increase significantly due to global
warming. According to data from the United Nations Food and Agriculture Organization,
the number of people suffering from severe food shortages due to climate change has
increased to 345 million worldwide. In monsoon climate zones, changes in the temporal
and spatial distribution of precipitation and the occurrence of extreme weather have made
the temporal and spatial distribution of water resources increasingly uneven. Coping with
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the contradiction between water supply and demand caused by climate change has become
an urgent issue. Due to the different temporal and spatial distribution of water resources in
different climate zones, the spatial allocation and synergy mechanisms of water resources
will be fundamentally different. For example, in arid and semi-arid regions where water
is generally in short supply, the suitability of the site for the project is the main research
topic [5–7]. In the monsoon region of Southeast Asia, the relationship between water supply
and demand is a primary research topic in order to address the risk of flooding [8] and
ensure economic development [9]. In addition, due to the wide distribution of the popu-
lation and the high proportion of agriculture in the monsoon climate region of Southeast
Asia, it is particularly important to ensure a balance between water supply and demand for
agricultural water resources.

The regulation and storage of water resources by reservoirs (dams) in water conser-
vancy projects play a very important role in addressing the problem of uneven spatiotem-
poral distribution of water resources. The influencing factors and supply and demand
relationships in different climatic zones are significantly different, and the purposes and
functions of reservoir construction will also be significantly different [5–7,10]. Although
there are currently only a few studies on reservoir and dam siting in other climate zones [10],
research in other areas of water resources can provide new insights into reservoir siting. For
example, Randle, T. J. [11], Wisser, D. [12], Ran, L. [13], Wu Jianchun [14], Peng Fangxu [15],
Wei Runchu [9], and others have studied the reservoir capacity calculation and irrigation
storage function of reservoirs. The regulatory storage capacity, total storage capacity, and
regulating storage coefficient involved in previous studies provide a reliable basis for select-
ing important research indicators for studying the spatial layout of reservoirs. Therefore,
based on the correlation between the aforementioned three indicators and the influencing
factors of suitability degree, a machine learning approach can be used to screen for the most
correlated suitability prediction model, thereby determining the independent variables and
scoring function for the suitability degree score.

Due to the inevitable spatial heterogeneity of water demand in different climate zones,
the problem of reservoir siting is particularly prominent in monsoon climate zones, where
the spatial and temporal distribution of water resources is uneven. Significant results have
been achieved in the study of agricultural water demand measurement in monsoon climate
zones. Data charts on the potential evapotranspiration of agricultural water in Shandong
Province by Zhao Shen et al. [16] and the calculation method for crop water requirements in
the ecological water storage guarantee of the Yellow River region by Pang Aiping et al. [17]
provide a scientific basis for the prediction of the irrigation capacity of reservoirs and the
calculation of agricultural water requirements, and provide a reference for the collection of
data on the demand degree of reservoir siting research and the calculation of crop water
requirements. However, there is little reporting on how to effectively reflect water demand
in reservoir siting studies. Therefore, we introduce the analysis of demand degree in the
genetic algorithm-based garbage station siting in Pengyang [18] into the field of reservoir
siting, and establish a scoring function for demand degree. At this point, the reservoir siting
bi-objective optimization model that comprehensively considers suitability degree and
demand degree becomes the key to solving the problem. By drawing on the bi-objective
optimization model for the selection of a waste station site, this study attempts to analyze
and optimize the indicators selected by the suitability degree prediction model and the
demand degree as the independent variables of the objective function in the bi-objective
optimization model.

The methods for reservoir and dam site selection can mainly be divided into the
following four categories: traditional specific engineering survey site selection methods,
GIS/RS methods, MCDM/MCDM-GIS methods, and machine learning methods [19]. Tra-
ditional specific engineering survey site selection methods, such as those by Lashkaripour,
G.R. [20], Rajabi, A.M. [21], and Kanik, M. [22], involve methods for site selection surveys
for specific reservoir and dam projects. These site selection methods have comprehensive
on-site environmental data, allowing for the development of specific strategies tailored to
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diverse surrounding environments. The GIS/RS method, with its smaller data volume and
simpler processing, enables rapid and accurate screening and site selection for individual
projects. For instance, IBRAHIM, M.H.J., and others have conducted dam site selection
using remote sensing satellite technology [23]. The first two methods mentioned are suit-
able for site selection of small-scale projects with simple data, but they have limitations
when dealing with complex projects with large volumes of data. The MCDM/MCDM-GIS
methods can handle the weight relationships of various factors affecting the site selection
of reservoirs and dams. For example, studies by Ebrahimi, J., Hamidifar, H., Nzotcha, U.,
and others [24–26] have used MCDM methods for decision-making and application in
reservoir site selection. The MCDM/MCDM-GIS method is currently widely used, but due
to the subjectivity in determining the advantages and disadvantages of various influencing
factors and the evaluation of weights, as well as the lack of objective conditions to correct
the final results, it may lead to significant prediction errors. Machine learning methods can
learn from a large amount of data to accurately simulate the relationship between reservoir
site selection and various influencing factors, and can precisely predict the site positioning.
Compared to the MCDM/MCDM-GIS method, machine learning has a clear optimization
direction, avoids the impact of human factors in the MCDM method, and improves the
accuracy of decision-making.

At present, in response to the impact of extreme weather and monsoon climate, the
government has formulated a series of policies to strengthen water resources security and
flood and drought control, and to prevent water and drought disasters [27,28]. Shandong
Province is a major agricultural province in China, with agricultural water consumption
accounting for more than 60% of total water consumption. Agricultural water security
is therefore a top priority in water resources construction [29]. This study takes the op-
timization of reservoir siting in Shandong Province as an example, and improves the
existing evaluation system for reservoir siting. (1) The concept of water demand, namely
the degree of demand, and the use of machine learning to test the correlation between the
predictor variables of suitability degree and their influencing factors, aims to identify the
independent variables that have the best correlation with suitability degree. (2) Conducting
bi-objective optimization for suitability degree and demand degree, aiming to promote the
improvement of the spatial allocation balance and coordination mechanism for agricultural
water resources in Shandong Province, and to improve the supply and demand relationship
of water resources and ensure the security of agricultural water use.

2. Materials and Methods
2.1. Study Area

The study area is situated in Shandong Province, located in eastern China (as shown
in Figure 1, encompassing a total area of 157,900 square kilometers. Shandong Province,
surrounded by the sea on three sides, is dominated by plains and traverses five major
river systems, falling under the category of a warm temperate monsoon climate. With
a permanent resident population of approximately 102 million, Shandong Province is
the second most populous and second largest grain-producing province in China, with
agricultural water consumption accounting for more than 60% of the province’s total
water consumption. According to the survey, the entire province has built approximately
6000 large, medium, small, and micro reservoirs, some of which were constructed from
the 1950s to the 1970s. The reinforcement project for dangerous reservoirs within the
provincial jurisdiction has commenced at the present stage, with new construction and
renovation projects gradually being carried out. Research on the trade-off and coordination
mechanisms for reservoir layout has become an important topic.
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Figure 1. Spatial distribution of the study area and existing reservoirs.

2.2. Data Sources and Processing
2.2.1. Determination of Data Coordinate Points

The allocation of agricultural water supply, the division of irrigation areas, and the
optimization of water conservancy facilities in various regions of Shandong Province are
all based on city and county-level units. However, there are fewer samples at the city level,
and the optimization of reservoirs should also aim to meet the water use and irrigation
conditions at the county level to ensure agricultural water security in counties and their
subordinate villages. This study is based on the coordinates of 193 publicly reported
reservoirs in Shandong Province and the geometric centers of 136 counties in Shandong
Province, which together constitute a research system for learning and optimizing reservoir
location planning, involving a total of 329 location coordinates.

2.2.2. Data and Processing of Factors Influencing Suitability Degree

In this study, the factors influencing reservoir siting layout are categorized into two
primary groups: suitability degree and demand degree, with a focused analysis on the
impact of each on the siting decision.

Based on previous studies, by combining the six categories of influencing factors
summarized by Wang Yang et al. [19] with the research scheme of reservoir dam site
selection by scholars such as Al-Ruzouq, R. [30–32], ten suitability influencing factors were
identified, including water resources, precipitation, temperature, evaporation, geological
hazards, stratigraphic lithology, hydrogeology, socio-economic factors, land terrain type,
and ecologically sensitive areas. Due to the large variety of influencing factors on suitability
degree, it is necessary to perform quantitative data assignment for these factors prior to
machine learning (Table 1), in order to facilitate the data learning and prediction processes
of the GA_BP neural network model.



Agronomy 2024, 14, 1902 5 of 23

Table 1. Data sources and processing of influencing factors for suitability degree.

Influencing Factors Data Source Data Processing

water resource
Data comes from the vector map
of the river basin water system
data across China.

Water resources are an important factor influencing the site
selection of reservoirs, and the factors of water sources include the
basin area upstream of the dam site, the average flow over time,
and the peak flow [33,34]. Research has found that the main factor
affecting the storage capacity of large and medium-sized reservoirs
is the flow of the river flowing into the reservoir. In addition, to
facilitate the statistical management of rivers, China has established
a set of river grading standards. The hydrological information such
as the size of the river flow can be reflected through the river grade;
the distance from the river can be used to judge the cost and
necessity of building a reservoir. Therefore, this paper uses the river
grade and the distance from the river to reflect the richness of the
water source.

precipitation
Data comes from the annual
precipitation distribution map of
Shandong Province.

The values are assigned based on the standardized and
transformed rainfall amounts of the coordinate points obtained
from the annual precipitation distribution map of Shandong
Province, with the assignment scores ranging from 1 to 9.

temperature
Data comes from the annual
average temperature distribution
map of Shandong Province.

Based on the annual average temperature distribution map of
Shandong Province, the temperature values obtained for the
coordinate points are standardized and transformed to obtain
transformation scores, with the scoring range being [1,9]. The
scoring method is the same as that for precipitation.

evaporation
Data comes from the
evapotranspiration distribution
map of Shandong Province.

Based on the evapotranspiration distribution map of Shandong
Province, the values of evaporation obtained for the coordinate
points are standardized and converted to obtain transformation
scores, with the scoring range being [1,9]. The scoring method is
the same as that used for precipitation.

geological hazards
Data comes from the seismic
intensity distribution map of
Shandong Province.

Based on the research in engineering hydrogeology by Wang Xue
et al. [34–38], using the grading standards of seismic intensity
[35,36], the intensity of geological disasters is analyzed to assess the
impact of geological disasters on the suitability of reservoir
construction. The coordinate points within Shandong Province are
assigned values, where 0.2 g and 0.3 g represent the seismic
acceleration, and g represents the acceleration due to gravity.

stratigraphic lithology
Data comes from the stratigraphic
lithology distribution map of
Shandong Province.

Based on the types of rock layers and the intensity of water richness
displayed in the spatial distribution map of water-rich rock types in
Shandong Province, the valuation of rock lithology is evenly
divided.

hydrogeology

Data comes from the distribution
map of groundwater resources in
Shandong Province and the
“Surface Water Quality Standards”
[37].

Based on the distribution map of groundwater resources in
Shandong Province, the richness of groundwater sources is divided
into five grades according to the classification standards in the map,
with reference to the grading standards of groundwater water
richness and the depth of groundwater burial for valuation.
According to the degree of pollution of groundwater sources in
Shandong Province, the water quality is divided into five categories
following the water environmental quality grades defined in the
“Surface Water Quality Standards” [37].

socio-economic

Data comes from the GDP data of
various counties in Shandong
Province that were publicly
disclosed in the 2021 Shandong
Provincial Government Report.

Based on the GDP data of various counties in Shandong Province
from the Shandong Provincial Government Report, standardized
valuation is conducted for 329 points, with a valuation range of
[1,9]. The valuation method is the same as that for precipitation.
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Table 1. Cont.

Influencing Factors Data Source Data Processing

Land terrain type
Data comes from the land use
map and topographic map of
Shandong Province.

To reduce the potential flood risks of reservoir construction on land
use, relocation, farmland, and urban and rural settlements,
minimize the destruction to the natural environment and ecology,
ensure agricultural irrigation, and reduce the impact on economic
development, this study assigns values to the types of land and
terrain based on the land use map and topographic map of
Shandong Province.

ecologically sensitive
area

Data comes from the “Shandong
Province Ecological Protection
Red Line Planning” [38].

In accordance with the “Shandong Province Ecological Protection
Red Line Planning” [38], the spatial distribution locations of
ecological protection areas are determined, and the distance
between the planned reservoir sites and ecologically sensitive areas
is planned to reduce the impact of reservoir construction on
ecologically sensitive areas. This study assigns values to the
research coordinate points based on their distance from ecologically
sensitive areas.

See Appendix A for data assignment process.

This paper brings the data processing results of the 10 influencing factors of the
suitability degree of 329 site selection points into ArcGIS 10.8 software. It uses Kriging
interpolation to interpolate and visualize the data. The spatial distribution map of the
resulting assignment is shown in Figure 2. The colors of the legend in the figure represent
the assignment from low to high from left to right, so that the spatial distribution of the
assignment of each influencing factor can be more intuitively seen, which is convenient for
data selection and solving of the model.
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2.2.3. Data and Processing of Influencing Factors of Demand Degree

In terms of demand degree, five influencing factors of demand degree were identified
based on studies of evapotranspiration in the agricultural water sector [16,17], including
the original regulating storage capacity, the area of the irrigation area, the average annual
precipitation at the coordinate point, the potential evapotranspiration, and the distribution
coefficient (Table 2). Based on existing studies [16–18], the regulating storage capacity
can be used to calculate the specific water supply capacity of the reservoir, fully tap the
potential of the reservoir water supply, and solve the problem of high water loss and low
water supply guarantee rate in the operation of existing reservoir water supply projects. In
contrast, calculating the water supply capacity based on the total storage capacity will lead
to a mismatch between the theoretical value of the water supply capacity and the actual
water supply capacity, and it is not possible to consider the value of total reservoir capacity
as the amount of irrigation water that can be supplied. Although the regulating storage
coefficient of the reservoir is related to the regulatory storage capacity of the net flow of the
river, the regulating storage coefficient has no direct relationship with the irrigation water
requirement, and its correlation with the influencing factors is not significant. Therefore,
based on existing research, we selected the regulatory storage capacity as the independent
variable of the scoring function for demand degree, combined the water supply capacity
of the reservoir with the water demand of the irrigation area, and processed the data on
the existing reservoir water supply and agricultural water demand to obtain the scoring
function for demand degree for reservoir siting.

1. Source of data

Table 2. Data sources for factors influencing the degree of demand.

Influencing Factors Data Source

original regulating storage capacity

For the regulating storage capacity of the existing reservoirs adjacent to the coordinate
points within the irrigation area, the geographical information data of the reservoirs
comes from the team’s statistical collection, and the data on the regulating storage

capacity comes from the introduction reports of the reservoirs.

irrigation area For the area of the irrigation district where the coordinate point is located, the data
comes from the Shandong Province Irrigation District Directory.

annual average precipitation at the
coordinate point P Data comes from the spatial distribution map of precipitation in Shandong Province.

Potential evapotranspiration Data sources refer to Zhao Shen’s study on the spatiotemporal variation of
evapotranspiration and potential evapotranspiration in Shandong Province [16].

distribution coefficient α Data comes from the proportion of agricultural water allocation to total water demand
in various cities of Shandong Province.

2. Data processing

Demand for Reservoir Site Selection: In the existing reservoir layout system, the
demand for agricultural irrigation water and the availability of existing reservoirs can meet
the supply–demand imbalance of water resources.

WD
i = Wi − α · VR

oi (1)

Wi = Wai −
Pei × A

1000
(2)

Wai =
PETi × A

1000
(3)

WD
i —Difference between supply and demand for irrigation (m3), i = 1, 2, 3, . . ., 329;

VR
oi —Original regulation storage capacity: Regulating storage capacity of existing

reservoirs adjacent to coordinate points within the irrigation area (m3), (The value of the
original regulating capacity at the coordinates of the unbuilt reservoirs is 0);
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α—Distribution coefficient;
Wi—Water demand for agricultural irrigation (m3);
Wai—Crop water requirements (m3);
A—Irrigation area (m2), is the area of the irrigation area where the coordinate point

is located;
PETi—Potential evapotranspiration, is the amount of water evaporated and trans-

ported by the crop under conditions of water availability;
Pei—Average annual effective rainfall (mm): Amount of rainfall that is utilized directly

or indirectly by crops, and for other essential uses on agricultural land [17,39], is the average
annual effective rainfall at the coordinates.

Pei =

{
Pi

(
4.17− 0.2Pi

365

)
4.17 Pi < 3029.5

4.17 × 365 + 0.1Pi Pi ≥ 3029.5
(4)

pi—Average annual rainfall at coordinates.
The scoring function for demand degree shows the irrigation water requirement

for agriculture and the irrigation supply–demand gap for reservoirs (demand degree for
reservoir siting) in Figure 3.
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2.2.4. Predictor Variables Data and Processing

The predictor variables to be selected in this study are those that need to be determined
after screening by the GA_BP neural network model. The establishment of scoring functions
requires the determination of predictor variables. In this study, the regulatory storage
capacity, total storage capacity, and regulating storage coefficient, which are commonly
used in water conservancy research, are selected as the predictor variables for suitability
degree. In terms of demand degree, the water supply for agricultural irrigation, power
generation, and shipping provided by reservoirs is all studied in terms of regulatory
storage capacity [13,40,41]. Therefore, the demand degree can be used as the independent
variable for regulatory storage capacity, while there is no unified standard for the selection
of independent variables for suitability degree. Machine learning is needed to screen
the selected candidate variables. In addition, the two objective functions in bi-objective
optimization also need to have the same independent variable as a common measure.
Therefore, the predictor variables need to meet the requirements of the three scoring
functions for suitability degree, scoring functions for demand degree, and bi-objective
optimization functions for the independence of the independent variables.

1. Data Sources

Because machine learning is needed to find the relationship between the predictor
variables and the influencing factors, this study collected information on 193 large and
medium-sized reservoirs in Shandong Province that have been made public. The data
sources are shown in Table 3.
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Table 3. Data sources for independent variables to be selected.

Independent Variable to
be Selected Interpretation Source of Data

Adjustment of storage
capacity

Adjustment of storage capacity (also known as
regulating storage capacity) is the volume of the
reservoir between the normal storage level and the dead
level. Used to regulate runoff and provide water supply
to reservoirs. Natural runoff is redistributed for use by
regulating the capacity of the regulating reservoir in
accordance with water demand requirements.

Reservoir regulation capacity data for
the study coordinate points were
obtained from local reservoir reports.

Total capacity

Total reservoir capacity is the volume of the reservoir
below the calibrated flood level. It is the sum of dead
storage capacity, regulating storage capacity and flood
control storage capacity, and is called total storage
capacity. It is the total size of the reservoir construction.

Total reservoir capacity data for the
study coordinate points were
obtained from local reservoir reports.

Reservoir capacity factor (β)

Reservoir capacity factor (also known as regulating
storage coefficient) is a measure of the ability of an
artificially constructed water storage project (reservoir)
to regulate the amount of water coming from the rain
catchment area above the dam site, which is the ratio of
the regulating capacity to the average amount of water
coming from the reservoir over a number of years.

Reservoir capacity coefficient data for
the study coordinate points were
obtained from local reservoir reports.

2. Data Processing

Scoring function for the to-be-selected independent variable of suitability: the scor-
ing formulae for regulating capacity, total capacity, and capacity coefficients of the 193
constructed reservoir coordinate points were processed through data conversion.

Sq
oj =

(
zq

o,max − zq
o,min

Smax − Smin

)
Iq
oj − µo

σo
+

[
zo,max −

(
zq

o,max − zq
o,min

Smax − Smin

)
Smax

]
(5)

Iq
oj =


lnVT

oj q = 1
lnVR

oj q = 2
βoj q = 3

(6)

Sq
oj—Raw scores of the independent variables to be selected. q = 1, 2, 3; j = 1, 2, 3, . . .,

193; Smax, Smin are the maximum and minimum. The values of the scoring interval is [1,9];
zq

o,max, zq
o,min—Maximum and minimum values of standard scores for original con-

structed reservoirs; zq
oj =

(
Iq
oj−µo

)
σo

is the standardized score of the original independent
variable to be selected;

µo—Mean value of the index of the original independent variable to be selected;
σo—Standard deviation of the index of the original independent variable to be selected;
Iq
oj—Original dependent variable index to be selected, q = 1, 2, 3; When q = 1 the

independent variable to be selected is taken to be lnVT
oj , When q = 2 the independent

variable to be selected is taken to be lnVR
oj , When q = 3 the independent variable to be

selected is taken to be βoj; VT
oj is the total capacity of the constructed reservoir (m3), VR

oj is

the regulating capacity of the constructed reservoir (m3), βoj is the capacity factor of the
constructed reservoir.
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2.3. Research Methods
2.3.1. Research Process

First, in order to solve the problems of the diverse influencing factors, complex relation-
ships, and different evaluation criteria in the current reservoir (dam) siting study, this study
classifies, collects, and processes the data on the influencing factors. Second, a GA_BP neural
network model is used to find the relationship between the influencing factors and suitabil-
ity degree and to determine the independent variables and scoring functions for suitability
degree. Referring to academic research on agricultural irrigation and evaporation [9,11–15],
the relationship between demand degree and influencing factors and the independent
variables are determined. Furthermore, by employing the GA_dual-objective optimization
model to balance and coordinate the spatial layout of reservoirs, a set of solutions for
the spatial layout score of reservoirs is derived when the spatial allocation mechanism
for water resources is optimized (i.e., when both objective functions are at their optimal).
Finally, the top 15% of the spatial positions and scores of the reservoir’s regulation reservoir
capacity values in this set of solutions are visualized. The spatial distribution map of the
trade-offs and synergies in reservoir layout is then output using the Kriging interpolation
method, thereby completing the optimization of the spatial allocation mechanism for water
resources in Shandong Province. The research process is shown in Figure 4.
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2.3.2. GA_BP Neural Network Model

The GA_BP neural network model is a hybrid model of genetic algorithm (GA) and
backpropagation neural network (BP). The BP neural network in the figure has a three-
layer topology, and the BP network training process is divided into three steps. First, the
10 influencing factors of the suitability degree are used as the input layer. Then, the output
data are compared with the measured data (regulatory storage capacity, total storage capacity,
regulating storage coefficient), and the error is calculated using the loss function (also known
as the cost function). Finally, the errors are backpropagated to update each weight coefficient
in the network. After repeating the above three steps multiple times and learning the weights,
the model is applied to new data to predict multiple target values simultaneously. Assuming
there is a set of sample data, with the input layer, hidden layer, output layer, and the weight
matrices between them as shown in Figure 5a. Genetic algorithms are heuristic search
algorithms that mimic the principles of natural selection and genetics to solve optimization
and search problems. The process of optimizing the weights and thresholds of neural
networks using genetic algorithms is shown in Figure 5b. In summary, the neural network
model optimized by the GA algorithm in this study to predict the relationship between
suitability degree and its influencing factors is illustrated in Figure 5.
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In this study, the neural network model optimized by the GA algorithm predicts
the relationship between suitability degree and influencing factors and determines the
candidate independent variables, with model parameters shown in Table 4 (See Appendix B
for fitness function codes, codes for selection, crossover, and variation).

Table 4. GA_BP neural network model parameters.

Parameter Value

Number of input neurons 10
Number of neurons in hidden layer 8

Number of output neurons 1
Total number of evolutionary iterations 1000

Population size 100
Crossover probability 0.5
Variation probability 0.1

Train set 80%
Test set 20%

2.3.3. GA_Bi-Objective Optimization Model

There are many current multi-objective optimization algorithms, Kalyanmoy Deb’s
fast non-dominated sorting genetic algorithm II, NSGA- II with elitist strategies is one of
the most widely used of these [42]. This study is based on the NSGA-II multi-objective
optimization algorithm in MATLAB R2021b version for the content of this paper. GA_Bi-
objective optimization model, i.e., dual-objective optimization model based on genetic
algorithm, is a kind of optimization model that can comprehensively analyze two dif-
ferent objectives and carry out directional optimization in accordance with the desired
optimization direction for the two objectives. GA_Bi-objective optimization model flow is
shown in Figure 6. First, data processing and function modeling were performed. Second,
100 random initial populations were generated by coding (Table 5). Again, non-dominated
sorting of populations, race selection of elite strategies, gene manipulation, replacement of
the first generation of chromosomes, and entering the next iteration are performed. Finally,
the optimization results are derived after the termination conditions are satisfied.

In this study, we carried out the bi-objective optimization of reservoir siting layout
through the analysis of the Synergy Mechanism of reservoir water supply and agricultural
water irrigation (the parameters of the bi-objective optimization model based on genetic
algorithm are shown in Table 5, and the code is shown in Appendix C).
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Table 5. Bi-objective optimization parameter values.

Parameters Value

Number of independent variables 329
Constraints on independent variables (0, V oi,max

)
Population size 100

Maximum number of iterations 200
Pareto set proportion 0.45

Crossover ratio 0.75
Crossover function crossoverheuristic
Variation function mutationadaptfeasible

Voi,max refers to the maximum value of the original reservoir capacity.

2.3.4. Error Analysis

In order to quantitatively assess the effectiveness and accuracy of GA_BP neural
network model and GA_Bi-Objective Optimization model, the BA_BP neural network
model was analyzed using the metrics Root Mean Square Error RMSE and regression value
R. The best individual selected after optimization in the GA_Bi-objective optimization
model was analyzed using the indicator root mean square error. The smaller the RMSE, the
better the fitting result; the closer R is to 1, the greater the correlation.

RMSE =

√√√√ 1
N

N

∑
i=1

[ŷ(t)− y(t)]2 (7)

R =

[
N

∑
i=1

(xi − x) · (yi − y)

]/√√√√ N

∑
i=1

(xi − x)2 ·
N

∑
i=1

(yi − y)2 (8)

ŷ(t)—Projected value;
y(t)—Real value;
xi, xi—Target value and average of target values;
yi, y—Output values and average of output values.
Both GA_BP neural network model and GA_Bi-objective optimization model in this

study are implemented based on MATLAB 2021b software, the data processing map of the



Agronomy 2024, 14, 1902 13 of 23

model output is from MATLAB, and the spatial distribution map of the scores is obtained by
GIS kriging interpolation of the output data. In addition, the screening of the independent
variables to be selected and the construction of the bi-objective optimization function are in
the results section and will not be repeated here.

3. Results
3.1. GA_BP Analysis of Neural Network Model Results
3.1.1. Prediction Results for the Independent Variable to Be Selected

The scoring data of the three independent variables to be selected, namely, regulated
storage capacity, total storage capacity, and storage coefficient, respectively, and the scoring
data of the 10 influencing factors of the reservoirs of 193 reservoirs in Shandong Province
after data processing were imported into the GA_BP neural network model for learning.
The three sets of prediction models of regulated reservoir capacity, total reservoir capacity,
and reservoir coefficient learned by the machine are used to predict the 329 coordinate
points, i.e., the prediction scores of the independent variables to be selected, i.e., the scores
of the regulated reservoir capacity, total reservoir capacity, and reservoir coefficient, which
are scored in the interval of [1,9]. The spatial distribution of the ratings of the independent
variables to be selected after learning is shown in Figure 5.

Figure 7 shows the spatial distribution of three fitness scores predicted by the GA-BP
neural network model. The legend from left to right represents the scores from low to
high, assuming that the higher the score, the better the fitness. From Figure 7a, it can be
seen that the regions with high suitability scores when using regulated storage capacity as
the evaluation index are in the southern and southwestern parts of Shandong Province,
while the lower regions are in the central and northern parts of Shandong Province. From
Figure 7b, it can be seen that when using the total storage capacity as the evaluation
index, the distribution of suitability scores is relatively scattered, and the areas with high
scores are mainly concentrated in the western and central northern parts of Shandong.
From Figure 7c, it can be seen that the high scoring areas for suitability when using the
storage capacity coefficient as the evaluation index are mainly located in the northwest of
Shandong Province. By comparing the three graphs in Figure 7, it is found that although
the influencing factors are the same, there is basically no similarity between their suitability
scores. Therefore, it can be seen that the selection of the independent variables has a
significant impact on the suitability scoring function.
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3.1.2. Correlation Analysis of Independent Variables to Be Selected

Use the root mean square error (RMSE) and regression value (R) output by the GA-BP
neural network model to conduct a correlation test on the scoring model of the three
selected independent variables. The following table shows the range of RMSE and R values
for the three candidate independent variables recorded (Table 6).

Table 6. Data Obtained from Machine Learning.

Category\Standard RMSE R

Adjustment of storage capacity 0.10~0.14 0.65~0.94
Total capacity 0.19~0.25 0.23~0.61

Reservoir capacity factor 0.58~0.65 0.18~0.51

The optimal case of RMSE and R reached in machine learning after many machine
learning sessions is shown in Figure 8. The horizontal coordinate in the RMSE plot indicates
the sample ordinal number, the vertical coordinate indicates the score value of the data of
the independent variable to be selected, the green dots are the predicted data, and the blue
line is the real data. The R-graph represents correlation, which refers to the degree of fit of
the prediction model. It includes the data correlation of all sets of results from the training
set, validation set, and prediction set. The horizontal axis represents the target output, and
the vertical axis represents the predicted output and the fitted rating function. The solid
line in the graph represents the fitted prediction function, and the stronger the correlation,
the closer the slope of the solid line.
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According to the analysis of data, the root mean square error of the three groups of
prediction models, regulating storage capacity < total storage capacity < storage capacity
coefficient, in the fitting degree R of the prediction model, regulating storage capacity > total
storage capacity > storage capacity coefficient, indicating that regulating storage capacity
has the greatest correlation with the 10 influencing factors. Therefore, the regulating
storage capacity was selected as the independent variable for the suitability rating function.
Specifically, the independent variable with q = 2 was chosen from the data processed in
Section 2.2.4 to construct a suitability rating function based on regulating storage capacity.
The spatial distribution of the predicted suitability is illustrated in Figure 8a, and the
scoring function is presented in Formula (11).

3.2. GA-Bi-Objective Optimization Model and Result Analysis
3.2.1. Construction of Bi-Objective Optimization Function

1. Suitability Objective Function F1:

Using the total suitability deviation as the objective function F1, calculate the sum
of the squared differences between the regulating capacity of the proposed reservoir and
the suitability vacancy index for all coordinate points. The overall suitability deviation
can reflect the matching situation between the suitability of the proposed reservoir and
the actual suitability. When the overall suitability deviation is small, the suitability of the
proposed reservoir site is better, and vice versa.

minF1 =
n

∑
i=1

(
∆SR

i − SR
i

)2
(9)

∆SR
i = SR

ni − SR
oi (10)

Si
R =

(
zR

o,max − zR
o,min

Smax − Smin

)
lnVR

i − µR
o

σR
o

+

[
zR

o,max −
(

zR
o,max − zR

o,min

Smax − Smin

)
· Smax

]
(11)

F1—Total suitability deviation (n = 329);
∆SR

i —Suitability gap indicator; The difference in coordinate evaluation scores before
and after prediction optimization for machine learning, i = 1, 2, 3, . . ., 329;

SR
i —Suitability score; means the suitability score of the regulating capacity (of the

proposed reservoir), i = 1, 2, 3, . . ., 329;
SR

oi—Scoring of suitability before optimization, is the suitability score for regulating
reservoir capacity through data processing, (Only 193 coordinates of existing reservoirs
were involved in the pre-optimization data processing. For the 136 coordinate points not
covered, the suitability score is taken as 0);

SR
ni—Scoring of optimized predicted regulating reservoir capacity, is the predicted

score after machine learning.
VR

i —Independent variables for bi-objective optimization, which is the regulating
capacity of the proposed reservoir (m3), refers to the regulating capacity of a reservoir that
has not been constructed or will be constructed at the coordinates.

2. Demand Degree Objective Function F2:

Taking the total deviation of reservoir irrigation coverage as the objective function
F2, the smaller the total deviation of reservoir irrigation coverage is, the easier it is to
achieve a balance between supply and demand between water supply in the reservoirs
and agricultural water demand. The logarithmic value of the difference between irrigation
supply and demand was chosen for the calculation, and keeping the same data distribution
pattern as the total suitability deviation reduces the skewness and tail thickness of the
dataset. Considering the influence of the existing reservoirs adjacent to the coordinate
points in the same irrigation area on the irrigation demand, this paper considers the water
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supply of the proposed reservoirs and the existing reservoirs together with the water
demand, and calculates the value that best suits the size of the reservoir.

minF2 =
n

∑
i=1

ln
(

WD
i − α · VR

i

)2
(12)

F2—Total deviation in irrigation coverage of reservoirs (n = 329).
VR

i —Independent variables for bi-objective optimization; regulating capacity of the
proposed reservoir (m3).

WD
i —Irrigation supply–demand gap (See Equation (1) for details);

3.2.2. Analysis of Bi-Objective Optimization Results

Figure 9 shows the two-objective optimization Pareto frontiers for the 1st, 100th, and
200th generations of the two-objective function. The horizontal coordinate represents
the value of the objective function F1, the vertical coordinate represents the value of the
objective function F2, and the arrow is the direction of population optimization. As can be
seen from the figure, the progression trajectory of the population systematically converges
to the lower left quadrant of the graph. After 200 iterations, a superior subset of the
population is selected among the Pareto frontiers of the screened populations to represent
the optimal reservoir siting layout.
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3.2.3. Testing the Effectiveness of the Dual-Objective Optimization Model

By using the method of controlling variables to test the dual-objective optimization
model, the root mean square error of irrigation supply and demand difference was veri-
fied by comparing the use of suitability single-objective optimization and dual-objective
optimization to determine whether the impact of demand on water resources supply and
demand relationship was considered. Upon verification, it was found that the root mean
square error of the irrigation supply–demand difference (demand degree) data for the top
15% of the optimized reservoir site selection and layout decreased from 87.76782298 million
cubic meters to 22.56676997 million cubic meters. Compared to using only suitability as
a single-objective optimization, the supply–demand difference of water resources can be
reduced by 74.3%, significantly improving the utilization efficiency of water resources.
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3.3. Optimization Analysis of Spatial Layout for Reservoir Site Selection

Extract the solution set for optimizing the spatial layout of the reservoir selected from
the dual-objective optimization model for reservoir site selection. Visualize the regulation
capacity score and spatial position of the solution set, and take the top 15% of the data in
the solution set as the final site selection point for the proposed reservoir. Finally, this study
compares and analyzes the suitability of reservoir site selection, the demand for reservoir
site selection, and the site selection results after dual-objective optimization (Figure 10).
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Figure 10a shows the spatial distribution of suitability scores for reservoir site selection
in Shandong Province. The legend indicates from left to right that the suitability score
for reservoir construction ranges from low to high, and the environmental conditions
range from poor to good. The suitability of reservoir site selection is relatively high
in the southern part of Shandong Province (35◦00′00′′ N, 115◦00′00′′ E)~(35◦00′00′′ N,
119◦30′00′′ E) and the eastern Shandong Peninsula (37◦00′00′′ N, 121◦30′00′′ E). Comparing
the spatial distribution map of factors affecting site selection, it can be found that the
region has more precipitation, better terrain and geological conditions, and abundant water
sources. However, the northern and central parts of the Shandong Peninsula (37◦00′00′′ N,
119◦00′00′′ E) have poor suitability due to low precipitation, high evaporation, and water
scarcity in the region.

Figure 10b shows the spatial distribution of irrigation water demand in Shandong
Province. By analyzing the supply–demand gap between existing reservoir water supply
and agricultural water demand, the current demand for reservoir site selection has been
determined. As shown in the figure, the high water demand in Shandong Province is
mainly concentrated along the southeast coast.
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Figure 10c shows the spatial distribution of demand for reservoir site selection in
Shandong Province. The demand degree refers to the current difference between the supply
and demand of water resources for reservoir water supply and agricultural irrigation. The
higher the demand, the greater the water supply gap of the reservoir in that area. From the
graph, it can be seen that the water demand in Shandong Province is mainly concentrated
in the southeast coast and the northwest of Shandong Province.

Figure 10d shows the optimized layout of reservoir site selection in Shandong Province.
The depth of colors in the figure indicates the potential for reservoir construction in various
regions of Shandong Province. The darker the color, the larger the scale of potential
reservoirs to be built. The selected locations in the figure represent the spatial distribution
of optimized existing and planned reservoirs. As shown in the figure, the areas with larger
and more concentrated reservoirs are mainly located within the geographical coordinate
range (36◦0′0′′ N, 117◦0′0′′ E)~(36◦0′0′′ N, 120◦0′0′′ E). Due to the fact that the northern
region of Shandong Province is located in the northwest plain of Shandong and has
relatively scarce water resources, the distribution of reservoir points is limited. The large
and medium-sized reservoirs that have been built in Shandong are mainly distributed
in the southern part of Shandong (35◦0′0′′ N, 117◦0′0′′ E)~(36◦45′0′′ N, 122◦30′0′′ E). The
demand for reservoir construction is high in the eastern Shandong Peninsula area, but there
are already many reservoirs built, which reduces the demand for reservoir construction.

As shown in Figure 10, by comparing a, b, and d, it can be seen that in the eastern
region of Shandong (119◦0′0′′ E) to (122◦30′0′′ E), the environmental suitability scores for
the site selection of most existing reservoirs are not the highest. By analyzing the planning
of reservoir site selection in Shandong Province based on the comprehensive figures a and
b, it can be seen that the reservoir site selection in Shandong Province considers both the
suitability of reservoir site selection and the demand for reservoir water resources. As a
result, 98.04% of the selected locations in the optimized spatial layout of the reservoir based
on suitability and demand are located above the yellow area of the suitability or demand
rating chart, and 62.82% of the optimized locations are located above the yellow area of
suitability and demand.

4. Discussion

Through research results, it was found that the suitability and demand evaluation
models established after introducing demand can establish a good relationship with influ-
encing factors after machine learning optimization, and solve the current water resource
supply–demand contradiction between reservoir water supply and agricultural water de-
mand. It also reduces the risk of drought and flood disasters in vacant areas, providing a
guarantee for the safety of agricultural water use.

In the process of improving the suitability scoring model, the correlation test method
was used to select the optimal model by comparing RMSE and R values. The R of the
regulated storage capacity was more than 30% higher than the total storage capacity and
storage coefficient, which reduced the impact of the evaluation model on the experimental
results, providing evidence for the current research method of using regulated storage
capacity to analyze the role of reservoirs in the fields of reservoir irrigation, regulation and
storage, power generation [13,40,41], which is consistent with the research results of [9] the
relationship between regulated storage capacity and water demand in the study of spatial
matching relationship between reservoirs and drought in Hunan Province. In addition, the
analysis results of the already built reservoirs in a, b, and d of Figure 10 further confirm that
the suitability of reservoir site selection in monsoon regions cannot determine the direct
location of the reservoir site. Comparing and analyzing the layout points of the reservoir in
Figure 10d with Figure 10a,c, we can also see that 98.04% of the combined reservoir layout
points correspond to the height of the areas with higher suitability and demand scores in
both figures. This spatial consistency indicates that the mountainous areas in central and
southern Shandong have good natural conditions and agricultural irrigation needs, and
building reservoirs in these areas can effectively reduce agricultural water pressure and
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cope with flood disasters in the region. Although the location conditions for reservoirs in
the northwest of Shandong are harsh, a small number of reservoirs also need to be built
due to the agricultural demand for water resources. For more additions, in the Yellow
River Basin area in the northwest of Shandong Province, although the demand is high, the
suitability is low, resulting in a limited distribution of optimized reservoirs. This is also the
main reason why there are fewer reservoirs distributed in this area in Shandong Province,
and provides evidence for the high irrigation water pressure in the Yellow River Basin in
western Shandong Province proposed by Pang Aiping et al. [17].

The GA_BP neural network model we adopt has a clear optimization direction com-
pared to traditional evaluation methods (such as the Analytic Hierarchy Process) [43,44],
which reduces the interference of subjective factors on the results. In addition, although
we only confine the water demand to the field of agricultural irrigation, this method can
carefully examine the relationship between agricultural water demand and reservoir water
supply, without being affected by other water demand situations, ensuring the authenticity
of the data and results. Current research mainly focuses on the site selection of reservoirs in
arid and semi-arid areas [5–7]. The conclusions of this paper may need further exploration
in the application of reservoir siting in some arid climate areas, but they can supplement
and improve the current research mechanism of trade-offs and coordination of water re-
source spatial allocation in the monsoon climate area [8], providing new ideas for reservoirs
siting in the monsoon climate area.

This study focuses on the environmental context of uneven spatiotemporal distribu-
tion of precipitation in the monsoon climate zone, innovatively introducing the concept
of “demand degree” into the evaluation system for the optimization of reservoir siting. It
uses both “suitability degree” and “demand degree” as two optimization directions for
the spatial layout of reservoirs, thereby supplementing the research methods for reservoir
site selection in monsoon climate areas. Additionally, after analyzing the suitability degree
and demand degree, we did not simply superimpose the data of the two scoring functions.
Instead, we used a genetic algorithm to perform a bi-objective optimization on the reservoir
site coordinates. Furthermore, in Amanuel Kumsa Bojer’s “Water Collection Site Selection”:
Geographical space and multi-criteria decision analysis [45], as well as Maria Macchiarol’s
multi-criteria decision-making and water infrastructure [46], have all adopted multi-criteria
optimization methods. This study opts for bi-objective optimization within multi-criteria
optimization, which can make the forecast results more precise and practical, better en-
suring agricultural water security. Through the verification of the optimization results, it
was found that considering the demand degree can significantly improve the efficiency of
water resource utilization and the irrigation function of reservoirs while ensuring suitability.
This also provides a new solution for the spatial layout optimization of water conservancy
facilities in other water demand areas.

5. Conclusions

The research results indicate that the optimized reservoir water supply model can
effectively alleviate the contradictions in the allocation of agricultural water resources
in the monsoon climate zone, while also reducing the risk of drought and flood disas-
ters. Through correlation testing and error analysis, this study has selected the optimal
model with high accuracy, providing empirical support for the functions of reservoirs in
irrigation, regulation, and power generation. This study found that the R value of the
regulated reservoir capacity increased by about 30% compared to traditional indicators,
and the RMSE was also the smallest in the model, confirming the key role of regulated
reservoir capacity in water resource allocation. In addition, the application of bi-objective
optimization based on the genetic algorithm further enhanced the model’s optimization
capability, reducing the supply–demand gap by 74.3%, ensuring the maximization of water
resource utilization efficiency. The images processed through visualization also reflect
that the proportion of site selection points in areas with high suitability degree or demand
degree scores is as high as 98.04%, and the proportion in areas with high scores for both
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suitability and demand degree is 62.82%, demonstrating the accuracy of the water resource
allocation model. Although the study mainly focuses on the allocation of agricultural
water resources, the methods and models used have broad applicability, providing a new
optimization direction for the trade-off and coordination mechanisms in water resource
allocation for other fields such as industrial and domestic water use. Future research will
continue to explore water resource optimization strategies under different water demand
scenarios, thereby achieving sustainable development in agriculture and other fields on
the basis of harmonious coexistence between humans and nature. In summary, this study
provides an innovative optimization method for reservoir site selection and water resource
management in the monsoon climate zone, which has important theoretical and practical
value for addressing climate change, ensuring agricultural water security, and promoting
the collaborative development of humans and nature.
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Appendix A

Table A1. Grading table of influencing factors of suitability degree.

1 water resources

Distance\River Level Level 5 Level 4 Level 3 Level 2 Level 1

>2000 1 1 1 1 1
1500~2000 1 2 3 4 5
1000~1500 2 3 4 5 6
500~1000 3 4 5 6 7

0~500 5 6 7 8 9

2 Precipitation

Srain
i =

(
zrain
max−zrain

min
Smax−Smin

)
zrain
i +

[
zo,max −

(
zrain
max−zrain

min
Smax−Smin

)
Smax

]
(A1)

zrain
i =

f rain
i −µ

σ
(A2)

Srain
i —Conversion fraction of precipitation; i = 1, 2, 3, . . ., 329

Smax, Smin—Are the maximum and minimum values of the assignment interval for the conversion score, and the assignment interval is [1,9];
µ—Averages; this is the average precipitation in Shandong Province;
σ—Standard deviation; this is the standard deviation of precipitation in Shandong Province;

zrain
i —The standard score of precipitation is the score obtained after data accuracy, zmax − zmin is the maximum and minimum values of the standard score. Here are the maximum and minimum values of the standard score of precipitation in Shandong Province;

f rain
i —Precipitation at coordinate points.

3 Temperature The method of assigning values is the same as that for precipitation.

4 Evaporation The method of assigning values is the same as that for precipitation.

5 Geological hazards

Seismic Intensity Score

Six-degree 9
Seven-degree 7

Eight-degree (0.2 g) 5
Eight-degree (0.3 g) 3

Nine-degree 1

6 Stratigraphic lithology

Rock Type\Water-Richness Extremely Low Water
Richness Very Low Water Richness Moderate Water Richness High Water Richness Extremely High Water

Richness

unconsolidated porous rocks 1.0~1.4 1.4~1.8 1.8~2.2 2.2~2.6 2.6~3.0
Fractured and porous fine-grained rocks 3.0~3.4 3.4~3.8 3.8~4.2 4.2~4.6 4.6~5.0
Fractured and karstified carbonate rocks 5.0~5.4 5.4~5.8 5.8~6.2 6.2~6.6 6.6~7.0

Fracture-hosted igneous rocks 7.0~7.4 7.4~7.8 7.8~8.2 8.2~8.6 8.6~9.0

7 Hydrogeology

Water quality\Abundance of underground water
resources V VI III II I

Class I 9 8 7 6 5
Class II 8 7 6 5 4
Class III 7 6 5 4 3
Class IV 6 5 4 3 2
Class V 5 4 3 2 1

8 Socio-economic The method of assigning values is the same as that for precipitation.

9 Land terrain type

Land/Terrain Mountainous Hilly Plain

Water areas 9 7 5
Grassland and woodland 7 5 3

Agricultural land 5 3 1
Tideland, Gobi, etc. 3 1 1

Urban land 1 1 1

10 Ecologically sensitive areas

Distance from ecologically sensitive areas Score

≥2000 9
1501~2000 7
1001~1500 5
501~1000 3

0~500 1
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Appendix B

The GA_BP neural network model code is as follows:

(1) GA_BP algorithm main function: (xunhuan_GA_BP_other1)
https://kdocs.cn/l/cftWYHbiB8Uw (accessed on 22 August 2024)

(2) Fitness function: (fitness1)
https://kdocs.cn/l/ceoeK7BVtS9V (accessed on 22 August 2024)

(3) The select function (select)
https://kdocs.cn/l/chEyjic8T8Sa (accessed on 22 August 2024)

(4) The crossover function: (Cross)
https://kdocs.cn/l/cbpOA5vZUPAO (accessed on 22 August 2024)

(5) The variational function: (Mutation)
https://kdocs.cn/l/cfBjNq2Q9jL1 (accessed on 22 August 2024)

Appendix C

GA_Bi-objective optimization model code is as follows:

(1) GA_Bi-objective optimization function: (GA_Bi_objective)
https://kdocs.cn/l/ccquscpr04GC (accessed on 22 August 2024)
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