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Abstract: Within the Earth’s terrestrial environment, evapotranspiration significantly contributes
to the hydrological cycle, accounting for around 80% of the precipitation on landmasses to be
reintroduced into the atmosphere. This mechanism profoundly affects the distribution and availability
of surface water resources throughout the ecosystem. Gaining insight into the factors influencing
local evapotranspiration fluctuations in response to varying climatic and vegetative scenarios is
crucial for effective water management strategies and rehabilitating ecosystem resilience. To this end,
our study focuses on the Jing River Basin in the Loess Plateau, utilizing multi-source remote sensing
data and climatic information to investigate the spatiotemporal dynamics of evapotranspiration
from 1984 to 2018 through the application of the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL)
model. Our research results indicate a general ascending tendency in evapotranspiration across
the investigated region, demonstrating a notably discernible escalation at a pace of approximately
3.11 mm/year (p < 0.01), with an annual vegetation ET volume reaching 533.88 mm. Across different
vegetation types in the Jing River Basin between 1984 and 2018, the mean yearly ET was observed to
be highest in forests (572.88 mm), followed by croplands (564.74 mm), shrublands (536.43 mm), and
grasslands (503.42 mm). The leaf area index (LAI) demonstrated the strongest partial correlation with
ET (r = 0.35) and contributed the most significantly to the variation in ET within the Jing River Basin
(0.41 mm/year). Additionally, LAI indirectly influences ET through its impact on vapor pressure
deficit (VPD), precipitation (Pre), and temperature (Temp). Radiation is found to govern most ET
changes across the region, while radiation and precipitation notably affected ET by modulating air
temperature. In summary, these radiant energy changes directly affect the evaporation rate and
total evapotranspiration of surface water. It provides important support for understanding how
evapotranspiration in the Jing River Basin is adjusting to climate change and increased vegetation
cover. These findings serve as a theoretical foundation for devising sustainable vegetation restoration
strategies to optimize water resource utilization within the region.

Keywords: Jing River Basin; evapotranspiration; vegetation greening; climate change

1. Introduction

The fluctuations within the global climate system have exerted profound impacts on
the overall functioning of our planet. Remarkably, over the past few decades, significant
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climatic variations have affected the hydrological mechanisms of numerous river basins,
encompassing critical meteorological elements. Water, as a vital natural resource, holds
an irreplaceable position in sustaining life forms and fostering societal progress [1–3].
However, some scholars found that due to the limited water supply, the global trend of
land evapotranspiration has recently decreased [4]. In response, China has formulated the
technical code for the comprehensive control of soil and water loss in small watersheds,
converting farmland to forest and grassland, and the ecological compensation system,
including soil and water conservation farming techniques. The aim is to improve soil
anti-erodibility, increase soil water content, reduce soil erosion, and increase crop yields
by changing topography, increasing vegetation coverage, enhancing soil infiltration, and
reducing soil evaporation [1]. On the Earth’s surface, water resources are constantly
exchanged with the atmosphere through precipitation, runoff, evapotranspiration, and
infiltration. Evapotranspiration, in particular, is crucial to the global water cycle, influencing
water availability. Evaporation is not only the physical transfer of water, it is the pulse of
our Earth’s hydrological system, maintaining the balance of the ecosystem [2,3]. It is very
important to accurately assess the influence of meteorological conditions and plant life on
water evaporation and movement to fully understand the changing law of water resource
balance [4,5]. The spatiotemporal patterns of evapotranspiration (ET) have long been
a focal point of scientific investigation, with extensive research conducted at both global
and regional scales. Accurately quantifying the process of ET and examining its response
to climate change and shifts in vegetation cover is not only of profound significance in
scientific research but also indispensable in addressing real-world challenges. In essence,
understanding the dynamics of ET is crucial for predicting the impacts of environmental
alterations and formulating adaptive strategies [5–7]. The study aims to deepen our
understanding of the water cycle within ecosystems and shed light on how these complex
processes are affected by changes in external environmental conditions. This approach
provides a solid basis for the formulation of locally appropriate policies for water resources
management and ecosystem protection [8–10].

In traditional evapotranspiration calculations, point-scale measurements are usually
used. This approach has limitations when obtaining large-scale regional data [11]. As
remote sensing technology has advanced, it has proven to be a valuable tool for tracking
and assessing extended trends in evapotranspiration over expansive regions. This progress
is due to its extensive monitoring capabilities, regular monitoring functions, and the collec-
tion of real-time data [3,12–15]. In arid or semi-arid regions, investigating the quantitative
relationship between evapotranspiration (ET) and its drivers is crucial. Researchers like
Jin et al. [16] have employed ET models to isolate the effects of vegetation restoration and
climate change on ET by controlling variables, finding that vegetation recovery is the critical
factor increasing ET. In their study, Fu and colleagues examined the typical effects of rainfall,
potential evapotranspiration, and reforestation efforts on alterations in evapotranspiration
rates. Their findings suggest that precipitation plays a pivotal role in shaping these fluctua-
tions in evapotranspiration. These studies have effectively separated the effects of climate
change and vegetation shifts on evapotranspiration through their models and simulations.
However, the parameters of these models can be impacted by various factors such as plant
type, climatic conditions, and soil properties, which introduces some uncertainty when
identifying the causes behind evapotranspiration variations [17–21]. Wang et al., through
stepwise regression analysis, identified vegetation change as the primary cause of increased
ET [22]. In comparison, regression analysis, as a more straightforward statistical approach,
is often used for quantifying analysis of the driving factors of evapotranspiration [23].
However, this method is not sufficient to quantify the specific contributions of individual
influencing factors, thus presenting certain limitations when it comes to objectively eval-
uating the eco-hydrological effects in the particular region of the JRB. This indicates that,
while regression analysis is straightforward to operate, more refined research and technical
support are needed to deeply explore the complex mechanisms behind evapotranspiration
and the actual impacts of various factors.
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The PT-JPL model, due to its incorporation of dynamic vegetation information and
an evapotranspiration mechanism, facilitates a more accurate simulation of the evapo-
transpiration process across different environment conditions, elucidating the interaction
among elements of hydrological cycle under complex hydrothermal scenarios [24]. When
simulating evapotranspiration, especially at the interannual scale, the PT-JPL model yields
simulation closely aligned with observed values. At the regional scale, the model can
integrate remote sensing data and meteorological data to simulate a large-scale evapotran-
spiration process [25].

The Jing River, a critical component of the Yellow River system, is inextricably linked
to the Northwest Loess Plateau region. It is not only an area that responds swiftly to
climate fluctuations but also a fragile zone susceptible to ecological imbalance. Moreover,
it is pivotal in soil and water conservation efforts in the middle and upper reaches of the
Yellow River [26,27]. Conducting a comprehensive and detailed investigation into the
environmental challenges confronting the river basin and devising effective strategies to
foster sustainable agricultural development and ecological restoration are of paramount
importance, both academically and practically. Such efforts will aid in the protection and
enhancement of the local ecological environment while transforming and upgrading local
agricultural production models to accommodate evolving natural conditions and socio-
economic demands. In large-scale vegetation restoration and construction projects, the
inappropriate selection of tree species for restoration could lead to new ecological problems.

To advance the scientific understanding of water resources management and uti-
lization strategies in the Jing River Basin, this study aims to enhance the timeliness and
reliability of the previous research findings over 40 years [26]. The current study focused
on the period from 1984 to 2018, providing a detailed quantitative analysis of evapotranspi-
ration dynamics in the Jing River Basin. Given the potential limitations of historical data
for existing decision support systems, advanced time series analysis and high-precision
meteorological and hydrological data are utilized to uncover the principal drivers of
evapotranspiration in the Jing River Basin. This endeavor is intended to furnish local gov-
ernments with more accurate, timely advice on water resources management. It not only
fills a gap in existing research for specific periods, but also by identifying environmental
and human factors that dominate evapotranspiration changes, it provides a solid scientific
basis for the sustainable utilization of water resources and the policy-making of ecological
protection in the basin. At the same time, due to the complex relationship among climate,
vegetation, and hydrological cycles, the influence of recent meteorological factors on JRB
evapotranspiration and their direct contribution have not been fully included in previous
studies. The key factors influencing evapotranspiration in the Jing River Basin in recent
years remain unclear. This necessitates additional, comprehensive research to identify these
critical elements, thereby enhancing our ability to accurately comprehend and forecast
hydrological dynamics and ecosystem responses within the basin.

Given this, the project employed the PT-JPL model to simulate evapotranspiration
within the Jing River Basin. It quantitatively assessed the driving mechanisms of climate
change and vegetation change on evapotranspiration spatiotemporal evolution. According
to the research objectives of this paper, we make the following assumptions: (1) regional
vegetation greening will increase evapotranspiration; (2) climate change and vegetation
greening will have a synergistic effect on the increase in regional evapotranspiration;
(3) climate change and vegetation greening not only drive the evapotranspiration process
directly but also change the evapotranspiration process indirectly through their interaction.
The results of this study have significant reference value for regional water resources
management and sustainable vegetation restoration strategy.

2. Material and Methods
2.1. Study Area

The Jing River watershed occupies a central position within the Loess Plateau region
(between longitude 106◦20′~108◦20′ E and latitude 34◦24′~37◦48′ N), originating from the
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Liupan Mountain and flowing through the Northwest Loess Plateau [28]. The Jing River
traverses the regions of Ningxia, Gansu, and Shaanxi before joining the Wei River within
the jurisdiction of Gaoling County. The area encompasses approximately 45,400 square
kilometers and comprises seven urban centers and twenty-seven county regions spanning
three different provinces, characterizing it as a representative basin within the vegetation
rehabilitation zone of the Loess Plateau [18,29]. The underlying geologic framework plays
a significant role in shaping the intricate landforms found within the area. The geologic
framework of this area contributes to its intricate landscape. The composition of the
earth here closely resembles that found on the eastern side of Gansu’s Loess Plateau,
characterized by extensive layers of Quaternary sediments at the surface. The basin is
situated in the Wei he Rift Valley, with most of its expanse occupying the east of Gansu’s
Loess Plateau. This location presents a significant altitude variation, ranging from 359 m
to 2896 m above sea level [30] (Figure 1a). In the Jing River Basin, both precipitation and
temperature gradually rise as one moves southward. In the summer, the mercury can be
as high as 15 degrees Celsius. At the same time, in the winter, the thermometer can be as
low as 1 degree Celsius (Figure 1b). Annual precipitation varies significantly, ranging from
296 to 611 mm, with an average annual rainfall of 510.8 mm. (Figure 1c). The primary land
cover types include forests, grasslands, farmland, shrubland, desert, and other vegetation
(Figure 1d).

2.2. Data Sources and Processing
2.2.1. Remote Sensing Data

This study utilizes GLASS leaf area index (LAI) products for its analysis “https://www.
geodata.cn/ (accessed on 26 December 2022)”. Multiple remote sensing indicators were
utilized to drive the PT-JPL model, such as the normalized difference vegetation index
(NDVI), leaf area index (LAI), and land cover type data [31]. The NDVI data applied in this
research originated from the Global Inventory Modeling and Mapping Studies (GIMMS)
NDVI 3g V3.1 product “https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/ (accessed
on 8 October 2022)”.

The dataset encompasses a spatial granularity of 0.05 degrees and updates at intervals
of 15 days, spanning the years from 1984 to 2018. Key variables such as leaf area index
(LAI) and surface albedo are predominantly derived from the Global Land Surface Satellite
(GLASS) series, which offers these metrics at a spatial precision of 0.05 degrees and a tem-
poral frequency of once every eight days. Additionally, land cover information, presented
at a spatial scale of one kilometer, is retrieved from the National Earth System Science Data
Center [32,33] “https://www.geodata.cn/ (accessed on 5 June 2022)”. This source supplies
land cover mapping products that are updated every seven years (1980, 1990, 1995, 2000,
2005, 2010, and 2015). In this study, our analysis period is set from 1984 to 2018 [17]. To
streamline the data preparation process, we assume that the land cover status remained
unchanged between 1980 and 1984, and we use the 1980 land cover data as a baseline for the
classification in 1982. We reclassified the original land cover data into five main categories:
forest, grassland, cropland, shrub, and barren land. To ensure the accuracy of the analysis,
we excluded areas where land cover types changed during the study period, focusing only
on regions with stable land cover types. Using the bilinear interpolation technique in the
ArcGIS 10.8 software (Environmental Systems Research Institute, Redlands, CA, USA), we
resampled all datasets to a uniform 1 km spatial resolution to facilitate effective integration
and subsequent analytical work.

2.2.2. Meteorological Data

To ensure the accuracy of the meteorological data, we utilized a reanalysis dataset
containing near-surface meteorological and environmental parameters, carefully assembled
by experts at the Institute of Tibetan Plateau Research under the auspices of the Chinese
Academy of Sciences “http://data.tpdc.ac.cn (accessed on 20 November 2022)”. Our
climate factor data combine various global datasets such as Princeton reanalysis data,

https://www.geodata.cn/
https://www.geodata.cn/
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
https://www.geodata.cn/
http://data.tpdc.ac.cn
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GLDAS information, GEWEX-SRB radiation data, and TRMM precipitation records, along
with traditional meteorological observations from the China Meteorological Administration.
Spanning the years 1979 to 2018, it offers a three-hourly temporal resolution and a 0.1-degree
spatial resolution, encompassing seven key elements: 2 m air temperature, air pressure,
specific humidity, 10 m wind speed, downward shortwave and longwave radiation, and
surface precipitation rate.
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In the conducted research, the methodology employed involves deriving the magni-
tude of wind velocity at a height of approximately two meters above the ground level (WS),
utilizing a specified mathematical formula referred to as Equation (1) as the computational
framework [34]:

wind2 = wind10
4.87

ln(67.82 − 5.42)
(1)

In this case, z = 10 m, wind2 represents the near-surface 2 m, and 2 metering and
Wind10 represent the near-surface 10 m and 10 metering [35,36].

Estimate VPD based on Equations (2) and (3):

RH = 0.263pq
[

e(
17.67(T−T0)

T−29.68 )
]−1

(2)

VPD = 0.61078 × e
17.27×(T−273.16)
T−273.16+237.3 × (1 − RH) (3)

where p is the atmospheric pressure (Pa); T is the temp (K); T0 is the reference temp
(273.16 K usually). q is specific humidity (dimensionless). RH is relative humidity.

Calculated Rad was according to Equation (4):

Rad = LRad + SRad (4)

where LRad represents downward longwave radiation, Rad stands for the total radiation,
and SRad denotes downward shortwave radiation.

2.3. Methods
2.3.1. Priestley–Taylor Jet Propulsion Laboratory Model

By introducing a series of parameters to constrain the coefficients in the model, the
model can be parameterized and applied to different ecosystems and climate conditions.
In parameterization, we use a sensitivity analysis method to identify the parameters in
the model that have the most influence on the simulation results. This method can help
researchers find the best combination of parameters to improve the simulation accuracy
and reliability of the model. In addition, this study also deals with the constraints of
bio-meteorological methods on the coefficient, as well as the consideration of factors such
as relative humidity, soil moisture, and canopy coefficient, so that the model can more
accurately calculate the interception evaporation, soil surface evaporation, vegetation
transpiration, and water surface evaporation components of evapotranspiration. Finally,
the parameterization of the PT-JPL model needs to be adjusted and calibrated according to
the ecosystem characteristics and available data of a specific study area [25].

The PT-JPL model, through its quantification of these three evapotranspiration com-
ponents, provides a more precise description of the surface hydrological cycle, aiding in
a deeper understanding of water dynamics and energy balance within ecosystems. The
utilization of this technology extends across a diverse array of domains, including studies
on environmental shifts, the oversight of aquatic resources, and evaluations of ecological
systems’ well-being [37,38]. The specific formula is as follows:

ET = Ec + Es + Ei (5)

T = (1 − fwet) fg ft fmα
∆

∆ + γ
Rnc (6)

ES = ( fwet + fsm(1 − fwet))α
∆

∆ + γ
(Rns − G) (7)

LE = fwetα
∆

∆ + γ
Rnc (8)
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In the given equation, α takes a value of 1.26 (dimensionless), which represents the
adjustment coefficient of the Priestley–Taylor model. It usually takes a value between
1.25 and 1.31, whereas in the PT-JPL model, it usually takes 1.26; this factor is used to
adjust the potential evapotranspiration calculated by the model to be closer to the actual
evapotranspiration, while γ denotes the second coefficient, referred to as the dry-to-wet
constant, having a value of 0.066 kPa/◦C. The symbol ∆ signifies the gradient of the
curve representing saturated vapor pressure (kPa/◦C). Furthermore, Rns stands for the
net radiation absorbed by the soil (W·m−2), which can be computed utilizing the formula:
Rns= R −kRnLAI

nc , wherein kRn signifies the extinction coefficient, set at 0.6 (dimensionless).
Additionally, Rnc refers to the net radiation incident upon the canopy (W·m−2), which
can be represented as Rnc = Rn − Rns [17]. The computations and explanations related to
the bio-physiological constraint factors, namely, ( fwet, fg, ft, fm and fsm), along with the
determination of the soil heat flux ((G)(W·m−2)).

The calculation describing the relative humidity ( fwet) is shown in Equation (9):

fwet = RH4 (9)

Use Equations (10)–(12) to calculate the green canopy fraction ( fg):

fg =
fAPAR
f IPAR

(10)

fAPAR = b1 ×
(

1 − e−k1×LAI
)

(11)

f IPAR = b2 ×
(

1 − e−k2×LAI
)

(12)

In the formula given, fAPAR and f IPAR represent the proportion of photosynthetic
effective radiation absorbed and intercepted by vegetation canopy, respectively. Constants
b1 and b2, which are set to 0.95 and 0.9355, respectively, are critical for calculating fAPAR
and f IPAR [39,40].

Plant temperature constraints ( ft) are calculated using Equation (13):

ft = exp

(
1 −

(
Tmax − Topt

Topt

)2
)

(13)

In addition to the optimum temperature for plant growth (Tmax) and the optimum
temperature for plant growth (Topt), environmental factors are added, and examples are
relative humidity (RH4) and vapor pressure deficit (VPD).

Use Equation (14) to calculate plant moisture constraint ( fm):

fm =
fAPAR

fAPARmax

(14)

Fraction of PAR ( fsm) are calculated using Equation (15):

fsm = RHVPD/β (15)

Ground heat flux (G) is calculated using Equation (16):

G = Rn

[
Γc +

(
1 − NDVI − NDVImin

NDVImax − NDVImin

)
(Γs − Γc)

]
(16)

The model includes a parameter β, which indicates the response of soil moisture limi-
tation to VPD in a range between 0 and 1. The net radiation (Rn) is quantified in (W·m−2).
Furthermore, Γc was equal to 0.05, a parameter characterizing regions with increased
vegetation coverage, whereas Γs was set to 0.325, indicating regions with improved bare
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soil conditions [17,38]. The sensitivity of the PT-JPL model is significantly affected by its
key parameters k1, k2, and β, which have been fine-tuned for a variety of ecosystems to
improve model accuracy [17]. In this study, the model parameters were adjusted according
to the optimization of different vegetation types by our research group [17].

The specific parameters were adjusted as follows: forest, k1= 0.57, k2 = 0.81, β = 1.28;
grassland, k1 = 0.59, k2 = 0.80, β = 0.80; cropland, k1 = 0.59, k2 = 0.84, β = 1.43; shrubland,
k1= 0.56, k2 = 0.91, β = 1.17.

2.3.2. Trend Analysis

The Theil–Sen estimator is used to estimate time trends in time series data as a nonpara-
metric method. Due to its insensitivity to abnormal observation results and measurement
errors, this method is suitable for trend analysis in a wide range of time series datasets. The
estimation of the Theil–Sen parameter is facilitated by utilizing its prescribed Equation (17):

Slope = Median
(Xj − Xi

j − i

)
, ∀i < j (17)

In the formula, the slope represents the median estimated slope when i ̸= j; Xj and
Xi represent the values of variable X in the i-th and j-th years, and i and j are used to
represent years. When a variable shows an increasing trend within a given time series, it is
represented by a Slope > 0. Conversely, the Slope < 0.

2.3.3. Mann–Kendall Test

The Mann–Kendall method analyzes the general trend in time-series data, which can
show no trend, an increase, or a decrease. When no trend is detected, the data points are
considered independent and identical across time, with no ongoing connection to them.
The Mann–Kendall test does not demand a normal distribution of the data or a linear
nature of the trend change. Even with missing values or data below certain thresholds,
the test can still be performed, albeit potentially with reduced effectiveness. For the test’s
validity, it assumes that the intervals between samples are sufficiently long to ensure that
measurements taken at different times are uncorrelated.

The data are taken out in sequence according to the collection time, where X = (X1,
X2 . . . Xn), and where n is the number of samples. Use Equations (18) and (19) to test the
calculation formula for the statistic S.

S = ∑n−1
i=1 ∑n

i=i+1 sgn
(
Xj − Xi

)
(18)

Sgn
(
Xj − Xi

)
=


+1, Xj − Xi > 0
0, Xj − Xi = 0
−1, Xj − Xi < 0

(19)

When S represents a value greater than zero, the data points towards the end of
the observation period are likely to exhibit a higher trend than those recorded earlier.
Conversely, if S assumes a value less than zero, the latter observed data points are expected
to show a decline relative to their preceding counterparts.

Calculate the variance Var(S) using Equation (20):

Var(S) =
n(n − 1)(2n + 5)− ∑n

i=1 ti(i − 1)(2i + 5)
18

(20)

where ti represents the number of members in the i group with equal data sets. Calculate
the standardized statistic Z using Equation (21)
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Z =


S−1√
Var(S)

, S > 0

0, S = 0
S+1√
Var(S)

, S < 0
(21)

At a given significance level α, the rejection of the null hypothesis (H0) suggests
that there is a statistically significant trend with a confidence level of 1 − α. Conversely,
accepting the null hypothesis implies that the observed trend lacks statistical significance.
A positive Z value signifies an increasing trend within the dataset, whereas a negative Z
value points towards a decreasing trend.

2.3.4. Partial Correlation

Partial correlation (PC) serves as a technique to assess the strength of association
between two variables while controlling for the influence of a designated variable. In
a scenario where a correlation analysis involving three variables reveals a correlation
among all three, it is necessary to isolate the effect of the third variable prior to examining
the correlation between the first and second variables. When considering the influence
of a single control variable, the resulting measure is referred to as a first-order partial
correlation coefficient. Conversely, when accounting for the effects of two control variables,
the measure employed is known as a second-order correlation coefficient. This approach
takes into account the complex interplay among various variables in determining their
relationships. Calculate the partial correlation coefficient of x1 and y1 using Equation (22):

ry1,2 =
ry1 − ry2r12√(

1 − r2
y2

)(
1 − r2

12
) (22)

In this formula, ry1, ry2, and r12 represent the correlation coefficients between y and
x1, y and x2, and x1 and x2. The absolute value of the partial correlation coefficient (PCC)
can indicate the degree of direct correlation between two variables. A larger absolute value
indicates a stronger linear correlation, while a weaker correlation indicates a smaller value.
In this study, the partial correlation coefficients of six driving factors concerning ET were
calculated.

2.3.5. Attribution Analysis

Normalize all raw data using Equation (23):

Xi =
xi − xmin

xmax − xmin
(23)

where Xi is normalized data; xmax and xmin represent the maximum and minimum values
of the sample data; and xi refers to the annual data of the sample.

Multiple regression analysis (MRA) is used to calculate the contribution of various
driving factors in JRB to ET. Calculate using Equations (24) and (25):

YET = b0 + b1X1 + b2X2 + . . . + biXi + µ (24)

Wbai
=

biXitrend

YETatrend

YETntrend (25)

Among them, YET represents normalized ET; b0 represents constant error, respectively,
µ indicates system error; and bi indicates the standard regression coefficient. The contribu-
tion of each driving factor to the trend of ET is represented by Wbai

; YETntrend refers to the
actual trend of ET; the trend of normalized ET is shown in YETntrend .

To identify the primary influences on evapotranspiration (ET) variations through
a systematic approach, we aim to pinpoint the regulatory element exerting the least detri-
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mental effect on regions experiencing a decline in ET. Additionally, we assess the pro-
portional impacts of precipitation, air temperature, radiation, wind speed, vapor pressure
deficit, and leaf area index on fluctuations in ET levels.

2.3.6. Pathway Analysis Method

Path coefficient analysis is a statistical methodology that can investigate the direct
relationships among multiple predictor variables and one outcome variable through linear
connections. It builds upon regression analysis and can handle intricate relationships
among variables where numerous independents are interconnected or where specific inde-
pendents influence the dependent variable indirectly through other factors. The structural
equation model, composed of a group of linear equations, reflects the relationships among
independent variables, mediating variables, latent variables, and the dependent variable,
and it quantifies the impact of these variables on each other accurately. Path coefficients
serve as dimensionless comparative figures, quantifying the magnitude of the direct influ-
ence that independent variables exert on a dependent variable. These values facilitate the
assessment of the relative significance of each predictor variable. Path analysis can establish
an “optimal” multiple regression equation, thereby better understanding the relationships
among variables [41–43].

2.4. Technology Road

Figure 2 clearly shows the research process of this study. In order to study the syner-
gistic effects of climate and vegetation on evapotranspiration in Jing River Basin, leaf index,
net radiation data set, evapotranspiration data set and land use data set were obtained,
and Arcgis 10.8 software (Environmental Systems Research Institute, Redlands, CA, USA),
was used for data processing. By using the PT-JPL model optimized by MATLAB 2023a
software (Shanghai Pudong New Area MathWorks Company, Shanghai, China), we ana-
lyzed the data and obtained the spatiotemporal evolution characteristics and change rules
of meteorological elements and vegetation evapotranspiration at the annual scale. Origin
software (OriginLab Company, Northampton, MA, USA) was used for mapping to reveal
the correlation between meteorological elements and evapotranspiration and the spatiotem-
poral changes of evapotranspiration in different vegetation types. It provides theoretical
basis for the practice of sustainable water resources management in Jing River Basin.
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3. Results
3.1. Validation of Evapotranspiration Simulation Based on Water Balance

To validate the accuracy of ET simulation using the PT-JPL model, we calculated ET for
the watershed based on the water balance method. Specifically, we obtained annual runoff
data for the watershed from the Gansu Provincial Water Conservancy and Hydroelectric
Power Bureau. We used the water balance formula ET = P − Q − ∆S to calculate the
water balance ET, where P, Q, and ∆S represent the precipitation, runoff, and changes in
soil moisture within the watershed, respectively. It should be noted that the runoff data
are based on the monitoring of the Zhangjiashan hydrological station in the Jing River
Basin. The multiyear averaged water storage is assumed to be constant [16]. Meanwhile,
Shao and his colleagues also point out that changes in soil water over many years in
Some Random Place Somewhere areas are negligible [44]. Consequently, the multiyear
averaged water storage ET is calculated as the annual P minus the annual Q. As shown in
Figure 3, the annual precipitation and annual runoff in the Jing River Basin show an upward
trend. In contrast, the water balance ET shows an upward trend; this is consistent with
our simulated ET trends. To further verify the accuracy of our simulation, we used the
determination coefficient and root mean square error and used regression analysis to reveal
the correlation between water balance ET and simulated ET. The results show that there is
a high correlation between PT-JPL ET and water balance ET with a determination coefficient
of 0.98 and a root-mean-square error of 11.016, which confirms that our simulation results
are reliable in the Jing River Basin and can be used for subsequent analysis.
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Figure 3. The annual precipitation, yearly runoff, and examination of the variance between the three-
year mean estimated evapotranspiration (ET) and the ET derived from the water balance approach
across twelve distinct sub-catchments within the Jing River Basin over the period spanning from 1984
to 2018.

3.2. Spatiotemporal Variations of ET
3.2.1. Annual Interannual Trends in Evapotranspiration

As shown in Figure 4, the annual evapotranspiration (ET) in the Jing River Basin
ranges from 472 to 600 mm, with an average value of 538 mm. Overall, from 1984 to 2018,
ET showed a significant increasing trend with fluctuations (p < 0.01), with an interannual
rate of change of 3.05 mm/year. There was little change from 1984 to 1995, after which it
began to fluctuate significantly. In 1989, the ET value was the smallest, 66 mm lower than
the average. By land type, the order of ET is Forest > Cropland > Shrub > Grassland.
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3.2.2. Spatial Distribution, Temporal Trends, and Significance of ET Changes

In the illustration shown in Figure 5, a clear trend can be observed that the annual mean
evapotranspiration rate shows a continuous decreasing trend as it moves from the southeast
coastal area to the northwest inland area. The spatial distribution of evapotranspiration
in Jing River Basin reflects the spatial distribution of annual precipitation in China, with
higher evapotranspiration mainly occurring in the southwest and southern parts of the
basin. On the contrary, the northern Jing River Basin showed a lower ET value (Figure 5a).
The temporal trend and significance of ET change during 1984-2018 were analyzed, and
the results showed that ET showed an increasing trend in most areas of the study area. The
change of ET in the eastern region is stronger than that in the western region. Some central
parts of the study area showed no discernible ET changes (Figure 5b). Geographically, the
significant increase in ET was concentrated in the western part of the basin (Figure 5c).
Among them, the ET in the southeast of the basin decreased most obviously, and the change
rate was −0.19 mm/ year. Land types according to the rate of change in the comparison,
the cultivated land (3.33) > shrub (3.17) (3.02) > grassland > forest (2.90).
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Figure 5. Investigate the spatial dispersion traits of the yearly mean, as well as the geographical
trends and statistical assessments of alterations in Evaporation (ET) and its constituent elements
across the Jing River Basin (JRB) between 1984 and 2018.

3.3. Temporal–Spatial Characteristics of LAI and Climatic Factors
3.3.1. The Temporal–Spatial Characteristics of LAI and Climatic Factors

As shown in Figure 6, the leaf area index (LAI) ranged from 0.96 to 2.16 mm2/mm2

from 1984 to 2018, with an average value of 1.45 mm2/mm2. Overall, from 1984 to 2018, the
LAI fluctuated and increased (with a significance level of p < 0.1), with an interannual rate
of change of 0.03 mm2/mm2/year. The largest LAI since 1984 occurred in 2018, exceeding
the average by 0.71 mm2/mm2. The smallest LAI was recorded in 1997, which was
0.49 mm2/mm2 below the average (Figure 6a). The annual radiation values varied between
451 and 477 W/m2, with an average of 467 W/m2 and overall large fluctuations and
an upward trend, with an interannual rate of change of 0.41 W/m2/year (Figure 6b).
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Precipitation showed overall large fluctuations and an increasing trend, ranging from 338
to 745 mm, with an average of 512 mm and an interannual rate of change of 1.9375 mm per
year; however, its correlation with ET was not significant (Figure 6c). Temperature exhibited
an overall upward trend, with a downward trend from 1998 to 2010, at an interannual rate
of change of 0.07 ◦C per year, with the lowest temperature occurring in 1984 and the highest
in 2017 (Figure 6d). Wind speed showed an overall upward trend, with a decline from 2000
to 2010 and large fluctuations, at an interannual rate of change of 0.01 m/s/year (Figure 6e).
The saturated vapor pressure displayed large fluctuations and an overall increasing trend,
with an interannual rate of change of 0.004 kPa per year (Figure 6f).
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3.3.2. Multiyear Mean Spatial Distribution Patterns of LAI and Climatic Factors

As depicted in Figure 7, the leaf area index (LAI) has experienced more growth in
the western and eastern marginal areas of the JRB, with smaller increases in the middle
region transitioning gradually towards the margins, where the LAI values are higher,
including areas west and south of Xifeng City, and lower values in areas such as Baoji
City, southern Yan’an, and Northwest Xi’an (Figure 7A-1). Among different vegetation
types, forests have the highest average annual LAI (2.12 mm2/mm2), followed by croplands
(1.53 mm2/mm2), while grasslands have the lowest (0.98 mm2/mm2). In terms of radiation,
the western part of the basin has seen smaller increments compared to the central area, and
the margins have also shown less increase, with low radiation values in areas like Guyuan
County and Xianyang City (Figure 7B-1). Overall, croplands have the highest average
annual Rad (464.84 W/m2), followed by shrublands (468.14 W/m2), and forests have the
lowest Rad values (464.85 W/m2) (Figure 7B-2). Precipitation decreases gradually from
the southeastern part of the basin to the northwestern areas, with significant reductions in
the latter (Figure 7C-1). Generally, the average annual Pre values are highest in croplands
(547.52 mm), followed by forests (543.74 mm), shrublands (515.52 mm), and grasslands
(1468.33 mm) (Figure 7C-2). High-temperature zones include Xi’an, Xifeng City, while
low-temperature zones include Guyuan County, with high-temperature zones in Xifeng
City, Pingliang City, Xianyang City, and Baoji City, and low-temperature zones in Wuzhong
City and Yulin City (Figure 7D-1). There are noticeable differences in the average annual
Temp among different vegetation types, with the highest TF values recorded in croplands
(9.80 ◦C) and the lowest in grasslands (8.52 ◦C) (Figure 7D-2). Saturated vapor pressure
has increased significantly in the northern, central, and southeastern corners of the basin,
such as in Wuzhong City and Xifeng City, while other surrounding areas have shown
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minimal growth (Figure 7E-1). Overall, grasslands have the highest average annual VPD
(0.32 kPa), followed by shrublands (0.30 kPa), and forests have the lowest VPD values
(0.28 kPa) (Figure 7E-2). Wind speeds have notably increased in the northwestern fringe
regions of the basin, such as in Wuzhong City and Yulin City, with more modest rises seen
in the eastern, western, and southeastern areas, including Pingliang City and Xianyang City,
displaying a declining trend from northwest to southeast (Figure 7F-1). The average annual
WS values for different vegetation types are highest in grasslands (1.56 m/s), followed by
shrub (1.55 m/s), cropland (1.53 m/s), and forest (1.52 m/s) (Figure 7F-2).
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Figure 7. Spatial distributions of annual mean LAI (A-1), Rad (B-1), Pre (C-1), Temp (D-1), VPD (E-1),
and WS (F-1) in the Jing River Basin from 1984 to 2018, along with the average values of different
vegetation types for LAI (A-2), Rad (B-2), Pre (C-2), Temp (D-2), VPD (E-2), and WS (F-2).

3.3.3. Spatial Trends and Significance of Changes in LAI and Climatic Factors

As illustrated in Figure 8, the rate of change of the leaf area index (LAI) from 1984
to 2018 is positive, with high-value areas concentrated in the central region of the JRB,
showing a significant increasing trend, while some southwest areas exhibit a substantial
decrease. The pixel-based rate of change ranges from −0.024 to 0.072 mm2/mm2/year, with
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an average change rate of approximately 0.0257 mm2/mm2/year (Figure 8A-1). Among
different land types, croplands have the highest increase rate (0.032 mm2/mm2/year),
followed by shrublands (0.027 mm2/mm2/year) and grasslands (0.025 mm2/mm2/year),
with the lowest rate observed in forests (0.021 mm2/mm2/year) (Figure 8A-2). The radia-
tion change in the central region of the basin is small, mainly concentrated in Xifeng City,
while the southern areas show significant changes, primarily in Pingliang City and Xi’an.
There is a significant increase in the northern and southern parts of the basin and a notable
increase in the eastern and western regions. The western parts show no change, with
a pixel-based rate of change ranging from 0.16 to 0.76 W/m2/year, and an average change
rate of approximately 0.36 W/m2 per year (Figure 8B-1). For different land types, croplands
have the highest increase rate (0.42 W/m2/year), followed by forests (0.38 W/m2year),
shrublands (0.35 W/m2/year), and grasslands (0.33 W/m2/year) (Figure 8B-2). Precipita-
tion shows no significant change within the basin. The northern and southwestern parts
of the basin have reduced rainfall, while the central region has increased, especially in
Xifeng City and Guyuan County, with a pixel-based rate of change ranging from 1.98 to
3.83 mm/year and an average change rate of approximately 2.11 mm/year (Figure 8C-1).
For different land types, grasslands have the highest change rate (2.35 mm/year), followed
by shrublands (2.08 mm/year), croplands (1.97 mm/year), and forests (1.93 mm/year)
(Figure 8C-2). The temperature in the central region of the basin has increased significantly,
including Xifeng City and Tongchuan City, with smaller increases in the southwest areas,
showing a decreasing trend from the center to the edges. The basin exhibits a highly
significant increase overall with a pixel-based rate of change ranging from 0.046 to 0.082
◦C/year and an average change rate of approximately 0.0683 ◦C per year (Figure 8D-1).
For different land types: grasslands have the highest change rate (0.071), followed by
shrublands (0.068), croplands (0.067), and forests (0.066) (Figure 8D-2). Saturated vapor
pressure has increased in the southeastern corner of the basin, including Xi’an, while it has
decreased in other areas, specifically showing a gradual decrease from the edges to the
central region, with a highly significant increase in the northwest and east and an average
change rate of approximately 0.0044 KPa/year (Figure 8E-1). For different land types,
croplands have the highest change rate (0.0051 KPa/year), followed by shrublands and
grasslands (0.0044 KPa/year), and forests (0.0042 KPa/year) (Figure 8E-2). The fluctuations
in wind velocity are minimal within the central area of the basin, exemplified by the city of
Xifeng, whereas the southeastern edge exhibits greater variations, indicating a declining
pattern moving from the southeast towards the core. The northern and western sectors,
along with specific central areas of the basin, remain unchanged; conversely, discernible
upward trajectories have surfaced in particular central locales, and an average change
rate of approximately 0.118 m/s/year was recorded (Figure 8F-1). Among the different
land types, the wind speed change rate is equal for croplands and forests (0.13 m/s/year),
followed by grasslands (0.12 m/s/year), and shrublands have the lowest rate, equal to the
basin’s change rate (0.11 m/s/year) (Figure 8F-2).

3.4. Changes in ET Caused by Vegetation Greening and Climate Change

In order to assess the short-term impacts of diverse elements on alterations in evapo-
transpiration within the Jing River Basin over the period from 1984 to 2018, a technique
known as partial correlation analysis was utilized to investigate the interconnections among
evapotranspiration, the leaf area index, and climatic variables. The most pronounced as-
sociation was found between LAI and ET, with a partial correlation coefficient (PCC) of
0.35. Positive correlations were prevalent across the central and northwestern parts of the
JRB, peaking at 0.86, whereas negative correlations were less intense in the southeastern
region, with a PCC of −0.44 (Figure 9a). The correlation coefficient between Rad and ET
averages at 0.25, exhibiting predominantly positive associations within the core zone of
the JRB while manifesting negative linkages in the outer regions (Figure 9b). Examina-
tion reveals a predominantly inverse relationship between Pre and ET, characterized by
a mean PCC of approximately −0.29. Within the southwestern region, there exists a modest
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positive association, peaking at 0.15. Conversely, regions beyond the southwest exhibit
pronounced negative associations, attaining a level as low as −0.66 (Figure 9c). The rela-
tionship between temperature and ET exhibits the most pronounced negative association,
characterized by an overall Pearson Correlation Coefficient (PCC) of approximately −0.33.
Within the core zone of the basin, this inverse connection is particularly robust, attaining
a figure as low as −0.73. Conversely, in certain southeastern pockets, there are instances
of modest positive correlations, with the highest recorded being up to 0.34 (Figure 9d).
The relationship between relative humidity and evapotranspiration (ET) exhibits a slight
inverse association, characterized by an overall Pearson Correlation Coefficient (PCC) of
approximately −0.037. In the western regions, this connection intensifies into a robust
positive correlation, peaking at a significant level of 0.47. Conversely, in the southeast-
ern and eastern zones, the correlation shifts to a pronounced negative trend, attaining
a notable magnitude of −0.48 (Figure 9e). The relationship between wind velocity and
evapotranspiration (ET) exhibits a generally mild inverse association, characterized by
pronounced adverse connections in the northwestern and certain southeastern regions,
attaining a coefficient of −0.65. Conversely, there are areas in the eastern part where this
correlation turns positive, peaking at a value of 0.37 (Figure 9f).

The spatial distribution of contributions of leaf area index (LAI) and climatic factors
to evapotranspiration (ET) changes from 1984 to 2018 is shown in Figure 9. Among these
factors, the impact of vegetation greening on ET is most significant, with LAI contributing
an average of 0.41 mm/year. Areas where contributions indicate an increase account for
7.9% of the total area, and the highest contribution rates are mainly located in Wuzhong
City, accounting for 92.1% of the JRB (Figure 10a). The impact of Rad on ET exhibits
distinct patterns across different zones. Notably, this influence predominantly diverges
along the edges of the core zone within the JRB, exerting beneficial effects in the heartland
while yielding detrimental consequences in the outer territories. An overwhelming ma-
jority, encompassing 97.5% of the entire expanse, demonstrates favorable contributions
(Figure 10b). In terms of the impact on ET, Pre has made a negative contribution at a rate
of −0.12 mm per year. Among these cities, Wuzhong primarily experiences a decrease in
contributions, accounting for 97.6% of the total. In contrast, the cities of Pingliang, Xifeng,
Xianyang, Tongchuan, and Xi’an predominantly exhibit an upward trend in contributions
(Figure 10c). Among the climatic factors, temperature plays a pivotal role in influencing
evapotranspiration (ET), with an annual increase rate of 1.5 mm. It is noteworthy that
92.44% of the studied region exhibits a decline in the temperature’s contribution to ET,
particularly in cities such as Xi’an, the eastern parts of Pingliang and Yan’an, as well as
Xianyang and Tongchuan in the southeastern portion of the JRB (Figure 10d). In contrast,
VPD contributes at a slow rate of −0.013 mm/year, gradually reducing ET. Areas with
contributions less than −0.013 mm/year are concentrated in Wuzhong City, Xi’an City,
Xianyang City, and Yan’an City, and these areas include certain zones with a greater decline
in ET, exceeding −0.013 mm/year, accounting for 49.7% (Figure 10e). WS advances at a rate
of 0.14 mm/year, with 59.6% of the total area showing growth. Regions with rates above
this threshold are concentrated in the south-central part of the JRB, encompassing cities
like Xifeng, Pingliang, Xianyang, Tongchuan, and Xi’an, as well as Yan’an (Figure 10f).

In Figure 11, the primary factors influencing evapotranspiration (ET) across the study
area are identified. Radiation emerges as the most significant factor, contributing to 56.69%
of the total ET. It is predominantly spread throughout the central region of the JRB, encom-
passing areas such as the center of Xifeng City, the southern parts of Guyuan, and Xianyang
City. ET driven by LAI accounts for 35.61%, concentrated in the northern parts of Xifeng
City and Pingliang City. Temperature tends to control ET changes in 4.68% of the study
area, focused on the southern region of the JRB, such as Xi’an City and Baoji City. The
remaining areas are predominantly influenced by wind speed (2.09%) and VPD (0.93%). In
croplands, both temperature and radiation have the highest proportions, accounting for
41%, while in forests, radiation has the highest proportion at 54%, followed by LAI at 29%.
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In shrublands, radiation has the highest proportion at 60%, and LAI accounts for 34%. In
grasslands, radiation has the highest proportion at 53%, and LAI accounts for 46%.
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tion fluctuations between 1984 and 2018.

A path analysis was performed to elucidate both direct and indirect influences of
diverse drivers on evapotranspiration (ET) within the Jing River Basin, as detailed in Table 1.
Findings indicated a clear direct correlation between ET and pertinent variables. The
culminating structural equation model (SEM) is depicted in Figure 12. The model’s efficacy
is commendable, evidenced by a Comparative Fit Index (CFI) of 0.99 and a Root Mean
Square Error Approximation (RMSEA) of 0.093. Employing the chosen variables—leaf
area index (LAI), radiation (Rad), temperature (Temp), precipitation (Pre), wind speed
(WS), and vapor pressure deficit (VPD)—the developed SEM accounted for 96% of the
variance in ET (R2 = 0.96). In summary, LAI emerges as the most indicative ecological
parameter reflecting shifts in ET, exerting a cumulative impact of 0.78. Additionally, VPD,
PRE, and TEMP function as intermediary variables, being indirectly influenced by LAI and
subsequently affecting ET to a lesser extent (0.12). Additionally, WS indirectly influences
ET changes through LAI (WS → LAI → ET, WS → LAI → TEMP → ET, WS → LAI → PRE
→ ET) (0.051) and through RAD (WS → RAD → TEMP → ET) (0.008). Besides its direct
effect on ET, RAD also indirectly influences ET changes through TEMP (RAD → TEMP →
ET), with an influence coefficient of 0.027. PRE is also related to ET variations, with a total
impact coefficient of 0.0883, and it indirectly influences ET changes through TEMP (PRE →
TEMP → ET) (0.004). Both VPD and WS have negative direct effects on ET, with influence
coefficients of −0.12 and −0.102, respectively.

Table 1. Path coefficients of factors.

Output
Item Factors Direct Path

Coefficients
Indirect Path Coefficient A Sum of

Indirect Path
Total Path

CoefficientsLAI Rad Pre Temp VPD WS

ET

LAI 0.078 - - 0.032 0.05 0.038 - 0.12 0.9
Rad 0.042 - - - 0.027 - - 0.027 0.447
Pre 0.004 - - - 0.004 0.0007 - 0.0047 0.008

Temp 0.099 - - - - - - - 0.099
VPD −0.102 - - - - - - - −0.102
WS −0.12 0.051 - 0.008 0.027 0.082 - 0.168 0.66
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Figure 12. In the context of assessing the influence of both leaf area index and climatic factors
on evapotranspiration fluctuations, a schematic representation known as the structural equation
modeling (SEM) graph is employed to discern the explicit and implicit effects at play.

4. Discussion
4.1. Rate Analysis and Attribution Discussion

We analyze the impact of climatic factors on evapotranspiration (ET) in the Jing River
Basin through various statistical techniques. Our results show that the mean annual ET
in the region is 538 mm, with the maximum yearly ET reaching 600 mm. The highest
ET recorded since 1984 occurred in 2016. This phenomenon may be related to climate
factors. The changes of precipitation, temperature, vegetation quantity, and wind speed
affect the evapotranspiration process through many ways, such as the supply of soil water,
the physiological activities of plants, the diffusion and transportation of water vapor, etc.,
causing a change in the amount of evapotranspiration. Based on data from the “China
Climate Bulletin” and concurrent climate records, climate change in 2017 had an impact
on evapotranspiration in the Jing River Basin. Specifically, precipitation, temperature,
and wind speeds were higher than historical averages that year, while relative humidity
was lower. This climate condition may have led to increased evaporation rates, affecting
the hydrological cycle and soil moisture conditions in the region [18,45]. Furthermore,
environmental restoration policies implemented in the JRB may also contribute to these
phenomena. These policies likely include vegetation recovery projects aimed at improving
the ecological environment and preventing soil erosion. However, if water-consuming
plant species are introduced during the vegetation reconstruction process or if local water
resource carrying capacity is not adequately considered, these measures may indirectly
exacerbate soil moisture depletion, affecting the variation in evapotranspiration [46,47].
The lowest ET value occurred in 1989, possibly related to the lower wind speeds and
higher relative humidity in the JRB that year. High evapotranspiration (ET) values are
predominantly found in regions with lower latitudes within the study area. This pattern can
be linked to implementing the Grain for Green program since 2002, which has effectively
enhanced vegetation coverage across numerous regions, thereby contributing positively to
local ecological restoration [48]. Increased vegetation often leads to higher precipitation
levels due to the improved capacity of the surface to retain and conserve water, thus
facilitating the water cycle and potentially resulting in an upward trend in ET [45,47,49].
Some northern parts of the study region might experience lower evapotranspiration (ET)
due to their inland position, severe weather conditions, inferior soil quality, and reduced
vegetation cover. These factors can hinder plant growth and diminish the moisture transfer
from the ground to the atmosphere, ultimately leading to lower overall ET rates. From
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1984 to 2018, most areas in the study region exhibited an upward trend in ET, which can be
attributed to both climate change and national environmental policies. The Three-North
Shelterbelt Program, a significant ecological initiative by the Chinese government aimed
at combating desertification and improving the ecosystem, has played a pivotal role in
this region. It encompasses northwestern, northern, and northeastern China, as well as
the middle reaches of the Yangtze River. It has achieved substantial ecological and social-
economic benefits through actions like tree planting, afforestation, converting farmland into
forests and grasslands, and controlling desertification. Additionally, the “Sealing Mountains
for Reforestation” policy focuses on safeguarding and restoring forest resources, minimizing
harmful human activities, and fostering natural regeneration and biodiversity recovery.
Afforestation practices involve planting trees to expand forest cover, strengthen carbon
absorption capabilities, and contribute to improved soil health and water conservation
functions [50,51]. In the southeastern area, a notable decline in ET has been observed,
attributable primarily to the expansion of the population, swift economic advancement,
and the ongoing process of urban transformation, all of which contribute to a diminishing
rate of vegetative cover [51].

From 1984 to 2018, the LAI increased more in the marginal areas of the study region,
with the highest LAI occurring in 2018. This can be partly attributed to the afforestation
ecological restoration policies [52,53]. The lowest LAI value occurred in 1997, possibly
related to extensive deforestation causing vegetation destruction and soil erosion. The
interannual variation rate of annual radiation was 0.41 W/m2/year. This could be due
to soil erosion in the Loess Plateau. The LAI directly reflects the extent and density
of vegetation cover. With a rise in the leaf area index (LAI), there is an expansion in
the coverage of plant life, which intensifies the process of water vapor release into the
atmosphere through leaves. Consequently, this necessitates an increased uptake of water
by plants from the soil to fulfill the demands associated with this enhanced evaporation
process [22]. Vegetation absorbs carbon dioxide and releases water vapor, promoting gas
exchange. The larger the LAI, the more that light is captured by photosynthesis and the
stronger the transpiration, releasing more water into the atmosphere.

The distribution of yearly rainfall exhibits a progressive decline, moving from the
north towards the southeast. On average, this region receives approximately 512 mm
of precipitation. However, in certain areas, the amount can peak at around 745 mm.
The increase in rainfall could be attributed to rising temperatures, which enhance plant
transpiration and lead to more rainfall. The annual temperature increase rate is 0.07 ◦C
per year, with the coldest year being 1984 and the warmest being 2017. This trend is
probably due to rising CO2 levels and global warming in recent decades, resulting in higher
temperatures. Over the period from 1984 to 2018, changes in evapotranspiration (ET) in the
Jing River Basin are closely linked to climatic factors like vegetation radiation temperature
and precipitation. Temperature fluctuations had only a minor effect on ET, contributing
negatively by −1.5 mm per year with a correlation coefficient of −0.33, while radiation had
a positive influence of 0.34 mm per year. According to Stefan–Boltzmann’s Law, even minor
fluctuations in temperature can lead to substantial alterations in radiant flux density, and
elevated surface temperatures can enhance ground radiation [54]. As plant cells respond to
radiation, the radiation increases stomatal closure, reducing water loss and thus decreasing
transpiration. Higher temperatures can boost plant metabolic activities and biochemical
reactions, offering additional energy and resources for transpiration.

The average PCC between Rad and ET is 0.25, indicating that enhanced irradiance
activates water molecules and promotes the transition from liquid to gaseous states,
enhancing evaporation. However, under certain conditions, Rad suppresses ET in the
surrounding areas of the Jing River Basin. Intense radiation caused by high temperatures
and low relative humidity can promote evaporation rates; if evaporation exceeds the
water supply, it depletes surface water and suppresses evaporation [55]. Solar radiation
is the primary source of energy received by the Earth’s surface, and this energy is
transmitted to the surface and atmosphere in the form of heat, which increases the surface
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and atmosphere temperature, thereby increasing the kinetic energy of water molecules
and promoting evaporation. In addition, solar radiation can also directly irradiate
to the water surface, increase water surface temperature, accelerate evaporation rate.
Furthermore, the indirect effect of radiation on evapotranspiration involves influencing
evapotranspiration by changing land surface characteristics and atmospheric conditions.
For example, solar radiation can change the albedo of the Earth’s surface, affecting the
energy it absorbs and the surface temperature and evaporation potential. Radiation can
affect plant growth and alter transpiration because plants release large amounts of water
into the atmosphere through transpiration. Precipitation (Pre) shows an overall negative
correlation with ET, with an average PCC of −0.29. Rainfall is a vital water resource, and
increased precipitation provides more water for evaporation. Rainwater covers the land
surface, moistening the soil to provide sufficient moisture for transpiration. Notably,
the most significant inhibition is linked to temperature, contrary to the conventional
belief that higher temperatures enhance evapotranspiration (ET). Rainfall increases, but
evapotranspiration decreases. This may be because natural surface concrete and other
waterproof materials cover the soil during urbanization, reducing the chance of rainwater
reaching the soil and increasing temperatures as a result of the urban heat island effect.
This will increase the amount of condensation in the atmosphere, which will result in less
evapotranspiration as soil moisture returns to the atmosphere through transpiration due
to reduced vegetation in urbanized areas. In addition, climate change can lead to changes
in precipitation patterns, for example, as soil may not have enough time to absorb
water due to a short period of heavy rainfall, leading to the release of water through
surface runoff, instead of entering the atmosphere through evapotranspiration. Finally,
changes in wind speed may accelerate the evaporation of water from the surface into
the atmosphere, increasing the saturation of the air with an increase in humidity, further
limiting evaporation, and vice versa. A robust negative relationship exists between
temperature and ET, with a partial correlation coefficient of −0.33, defying the common
assumption that higher temperatures increase ET. In arid areas of the Loess Plateau, this
finding may be due to insufficient soil moisture supply; even with temperature increases,
there is not enough water available to support widespread evaporation across the surface.
The correlation between relative humidity and ET is weakly negative, with an average
PCC of −0.037, and strong positive correlations in the west, reaching up to 0.47. In
contrast, strong negative correlations are observed in the southeast and east, with values
of −0.48. About vapor pressure deficit (VPD), its association with evapotranspiration
(ET) exhibits a feeble and inverse relationship, characterized by an average Pearson
Correlation Coefficient (PCC) of −0.037. The contribution of VPD to ET is adversely
impactful, partially because a diminished VPD impairs the water transitioning from
a liquid state to a gaseous one. At reduced humidity levels, the propensity for water
molecules to transform into vapor diminishes, thereby curtailing the rate of water
evaporation [3]. When VPD was higher, plants would reduce transpiration rate by
closing stomata to minimize water loss. The closure of stomata can reduce water loss,
but it can also limit the uptake of carbon dioxide by plants and affect photosynthesis.
Plants and ecosystems may develop a series of physiological and ecological strategies to
cope with high VPD conditions through long-term adaptation to environmental changes,
such as increasing water use efficiency and changing growth cycle, etc. These adaptive
measures may result in a reduction in evapotranspiration.

In this study, Rad is the dominant factor in ET over the JRB, and there is a mutual
influence between ground radiation and evapotranspiration. When the ground temperature
drops, the solar radiation incident on the ground decreases, while the ground radiation
increases. Part of the sunlight that reaches the Earth’s surface bounces back into the
atmosphere, while some gets transformed into heat energy emitted by the surface. When
ground radiation increases, it will lead to increased evaporation, as high temperatures
and abundant energy can cause water vapor to sublime into water vapor, increasing the
moisture content in the atmosphere. At the same time, when surface radiation decreases,
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evaporation will also decrease, as water vapor will be constrained by radiation energy,
causing it to condense into droplets and fall, thereby reducing the moisture content in the
atmosphere [15].

4.2. Effects of Human Activities and Soil Properties

The Loess Plateau, with its unique soil structure and historical overexploitation, has
long been facing severe problems of soil erosion [56,57]. Soil erosion problems not only
alter the terrain but also lead to numerous ecological and environmental issues. With
changes in the landscape, exposed loess surfaces increase the area receiving direct solar
radiation, leading to higher surface temperatures and more incredible radiative energy. In
this situation, soil moisture is more easily evaporated, accelerating the consumption of soil
moisture [58]. For plants growing in this region, the rapid loss of soil moisture means they
find it more difficult to access water. To adapt to such arid conditions, plants may develop
a range of physiological and morphological adaptive mechanisms for self-protection [59].
If soil erosion continues to worsen beyond the adaptation limits of the plants, even these
resilient species may struggle to maintain average growth and reproduction, ultimately
leading to vegetation degradation and a decline in ecosystem function [60,61]. Managing
soil loss, improving soil conservation, and implementing evidence-based re-vegetation
practices are crucial for restoring the ecology and water resources across the Loess Plateau
and the wider Jing River Basin. Erosion has significantly altered the landscape, leading to
a progressive reduction in altitude in some areas of the basin. Increased solar radiation
accelerates water evaporation from the soil, limiting the ability of plant roots to absorb water,
which in turn impacts transpiration—a mechanism of plant self-defense. Soil properties
are one of the critical factors affecting regional evapotranspiration. Soil physical and
chemical properties, such as soil texture, organic matter content, water holding capacity,
and permeability, will directly affect soil water dynamics and plant root water supply, thus
affecting the process of evapotranspiration. For example, areas with high soil moisture
often have more significant potential for evapotranspiration because the soil provides more
water for plant absorption and evaporation [62]. In addition, the color and structure of soil
also affect its absorption and reflection of solar radiation, and they further jeopardize the
soil surface temperature and water evaporation rate.

Human activities, including farming, urbanization, hydraulic engineering, and land
use change, have a significant impact on regional evapotranspiration [63]. These activities
can change land cover types and management practices, thus altering the water and energy
balance of the land surface. For example, agricultural irrigation increases soil moisture
and crop evapotranspiration; urban hardening reduces water infiltration and evaporation
and alters land surface energy distribution; and ecological restoration measures such as
conversion of cropland to forests may increase vegetation coverage and evapotranspiration.
The effects of soil properties and human activities on evapotranspiration in an area are
intertwined. The soil’s initial conditions determine its capacity to retain rainfall and
irrigation water, while human activities alter soil water status and evapotranspiration
potential by changing soil cover and management practices. The combined effect of these
factors determines the characteristics of actual evapotranspiration and time variation in
a specific region. In Some Random Places, for example, evapotranspiration has risen due
to improved soil water conditions and increased vegetation cover after the conversion of
cropland to forests.

4.3. Implications for Water Management and Vegetation Restoration

Under the continuous advancement of key ecological projects in China, such as the
sandstorm source treatment initiative in the Beijing–Tianjin region, the vast Three-North
Shelterbelt System construction, and the pilot-satisfied land conservation zones, our coun-
try’s ecological restoration and governance efforts have become increasingly robust [48].
The trend of land desertification has experienced a historic leap from expansion to re-
gression [64]. Previous research results suggest that although an increase in vegetation
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does intensify water uptake and transpiration, potentially exacerbating the water scarcity
situation in the Loess Plateau, the response of regional water resources to vegetation
changes varies. Quantitative research findings on this variability are crucial for precisely
guiding vegetation layout adjustments and avoiding the risk of water shortages [65]. Con-
sequently, adopting conservation practices for water usage and meticulously strategizing
the allocation of limited water supplies to mitigate local water stress is an endeavor of
significant magnitude. To achieve this, we can use a variety of management strategies to
balance ecological protection with hydrological management. Indeed, strategies aimed at
promoting reforestation are capable of strengthening the soil’s aptitude for holding water,
which in turn supports the renewal of underground aquifers and enhances the situation for
individuals situated along river networks. These approaches can additionally lead to a re-
finement in the way current flora make use of available water supplies [66,67]. Additionally,
managers need to deeply understand the local ecological context and select appropriate
plant species to adjust the current vegetation composition and pattern, seeking a delicate
balance between environmental and hydrological interests to optimize both environmental
and water resource benefits [68–70].

The research findings suggest a hierarchy in water usage among various plant com-
munities, with forests exhibiting the highest demand, followed by croplands, shrubs, and
grasslands. These insights offer valuable guidance for optimizing vegetation composition
and informing strategic ecological planning within the JRB region. Given the varying
water storage potential, dynamic supply and demand balance, and evaporation charac-
teristics of different land types, we should design targeted ecological restoration plans
accordingly [71,72]. It involves selecting appropriate vegetation regeneration models, deter-
mining suitable planting ranges and plant spacing, and ensuring the scientific and practical
effectiveness of ecological restoration work. In future vegetation recovery practices, we
should select water-efficient and ecologically significant plant species based on their evapo-
transpiration characteristics and local environmental factors, using them as the cornerstone
for adjusting regional vegetation layouts and enhancing their ecological functions [72].

The accessibility of water supply significantly influences the fluctuations in evapotran-
spiration levels among various land categories [71,72]. Therefore, in arid areas with little
rainfall, it is necessary to carefully select plants with low water consumption and avoid
planting plants with high water consumption in large areas. Especially in places with dense
vegetation cover and vast green spaces, those plants with strong water absorption capacity
should be phased out in a planned way to protect limited water resources.

4.4. Uncertainty and Limitations

There are some uncertainties in this study. First, when conducting an extensive analysis
of remote sensing data, it is inevitable to encounter challenges in spatiotemporal accuracy,
which stem from limitations such as spatial resolution and data quality. These inherent
constraints may impact the final relevance findings [73]. In future graduate studies, remote
sensing data from different sensors, which may have different spatial, spectral, or temporal
resolutions, can be combined. Through the fusion, the information can be obtained from
the complementary point of view to improve the overall spatial–temporal accuracy. In
addition, spatial interpolation techniques in GIS such as Kriging and inverse distance
weighting can be used to estimate the values of unobserved regions, thus improving the
spatial resolution. Secondly, image radiation will produce errors. For example, optical
cameras and photoelectric scanners mainly cause errors caused by the sensor itself. In the
process of the propagation of electromagnetic waves in the atmosphere, they are affected
by the action of the particles in the atmosphere, which will be reflected, refracted against,
absorbed, scattered, and transmitted, which will affect the absorption of electromagnetic
waves by the sensor. In addition, due to the changes in the solar altitude angle and
azimuth angle, as well as the changes in the terrain undulation, different surface locations
receive different solar radiation. Due to the difference in sensor characteristics, interference,
and fault, the remote sensing image causes abnormal stripes and spots, which affect the
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statistical calculation of the image to a certain extent. In the PT-JPL model, various sources
of information are used to estimate evapotranspiration and its components, including land
use types, meteorological data, and satellite imagery. To ensure consistency among these
datasets, bilinear interpolation is applied to adjust their resolutions, thereby improving
the spatial detail of lower-resolution remote sensing and meteorological data. However,
this process might introduce extra uncertainties due to the simulation involved [74]. This
error can be addressed by using multi-scale remote sensing data combined with images of
different resolutions, which can take advantage of the extensive coverage and temporal
continuity of low-resolution data while maintaining high-resolution details or using data
fusion algorithms, such as Kalman filter or particle filtering, to integrate remote sensing and
meteorological data from different sources. These methods can consider the uncertainty of
data and reduce the error in the fusion process.

5. Conclusions

This study carried out a detailed spatiotemporal analysis of evapotranspiration pat-
terns, partial correlation, multiple regression, and contribution analysis in the Jing River
Basin from 1984 to 2018 using the GLASS leaf area index product. It measured the con-
tributions of five climatic factors and vegetation to evapotranspiration and revealed the
relationships between these drivers and evapotranspiration through partial correlation
analysis. The main findings include as follows:

(1) Over time, ET (Slope = 3.05 mm/year, p < 0.01), LAI (Slope = 0.03 m2/m2/year), Rad
(0.41 W/m2/year, p < 0.01), Temp (0.07 ◦C/year), Pre (Slope = 1.94 mm/year, p = 0.24),
VPD (Slope = 0.01 Kpa/year, p < 0.01), WS (Slope = 0.01 m/s/year, p < 0.01) showed
a significant upward trend. Spatially, ET increased from the northwest (314 mm)
to the southeast (736.65 mm), LAI increased from the northwest (0.25 m2/m2) to
the east (4.9 m2/m2), and Rad decreased from the middle (432.19 W/m2) to the
edge (490.99 W/m2). Pre increased from the southeast (296.11 mm) to the northwest
(611.96 mm), Temp increased from the southeast (1.73 ◦C) to the northwest (15.12 ◦C),
VPD decreased from the middle (0.45 kpa) to the edge (0.15 kpa), and WS decreased
from the northwest (2.08 m/s) to the southeast (1.15 m/s).

(2) Multi-variable analysis revealed that vegetation greening was the key driver behind
the rise in evapotranspiration (ET), contributing 0.41 mm. There was also a robust
positive linkage between greenery, radiation, and ET. Amongst meteorological factors,
radiation played a pivotal role in enhancing ET, at a rate of 0.34 mm per annum,
covering 56.69% of the study area. In agricultural lands, temperature and radiation
were the principal contributors to the ET uptick. Wind speed and vapor pressure
deficit (VPD) exerted some modulating influence on ET fluctuations, albeit their
regulatory strength was moderate. Rainfall’s impact on ET in the Jing River Basin
was negligible, which consequently influenced the contributions of wind speed and
relative humidity to ET within the basin.

(3) Regarding spatial distribution, the alteration in evapotranspiration (ET) influenced
by radiation predominated over half of the research region, with a focal point in
the central zone of the JRB. The leaf area index (LAI) predominantly governed the
ET fluctuations towards the northwest, encompassing approximately 35.61% of the
investigated territory. Meanwhile, temperature, wind velocity, and relative humidity
collectively shaped the ET dynamics in the southeastern part of the Jing River. These
insights hold significance for aiding regional authorities in crafting effective strategies
for water conservation and vegetation rehabilitation.
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