Uncovering Fusarium Species Associated with Fusarium Wilt in Chickpeas (Cicer arietinum L.) and the Identification of Significant Marker–Trait Associations for Resistance in the International Center for Agricultural Research in the Dry Areas’ Chickpea Collection Using SSR Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Fungal Pathogens
2.2. Fusarium Infection
2.3. Polymerase Chain Reaction (PCR) Analysis
2.4. Genetic Diversity and Population Structure Analysis
2.5. Association Mapping for the Determination of Marker–Trait Associations (MTA)
3. Results
3.1. The Identification of Pathogenic Fungi Isolates
3.2. Genetic Diversity for FW Resistance
3.3. A SSR-Based Molecular Diversity Analysis
3.4. A Structure Analysis and Cluster Analysis
3.5. Identifying the Associations Related to FW Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merga, B.; Haji, J.; Yildiz, F. Economic importance of chickpea: Production, value, and world trade. Cogent Food Agric. 2019, 5, 1615718. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 2 June 2024).
- Varshney, R.K.; Mir, R.R.; Bhatia, S.; Thudi, M.; Hu, Y.; Azam, S.; Zhang, Y.; Jaganathan, D.; You, F.M.; Gao, J.; et al. Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.). Funct. Integr. Genom. 2014, 14, 59–73. [Google Scholar] [CrossRef]
- Varshney, R.K.; Graner, A.; Sorrells, M.E. Genic microsatellite markers in plants: Features and applications. Trends Biotechnol. 2005, 23, 48–55. [Google Scholar] [CrossRef]
- Udupa, S.M.; Robertson, L.D.; Weigand, F.; Baum, M.; Hahl, G. Allelic variation at (TAA)n microsatellite loci in a world collection of chickpea (Gicer arietinum L.) germplasm. Mol. Gen. Genet. 1999, 261, 354–363. [Google Scholar] [CrossRef]
- Moparthi, S.; Perez-Hernandez, O.; Burrows, M.E.; Bradshaw, M.J.; Bugingo, C.; Brelsford, M.; McPhee, K. Identification of Fusarium spp. associated with chickpea root rot in Montana. Agriculture 2024, 14, 974. [Google Scholar] [CrossRef]
- Cunnington, J.; Lindbeck, K.; Jones, R.H. National diagnostic protocol for the detection of Fusarium wilt of Chickpea (Fusarium oxysporum f. sp. ciceris). In Plant Health Australia; SPHD: Canberra, Australia, 2007. [Google Scholar]
- Trapero-Casas, A.; Jimenez-Díaz, R.M. Fungal wilt and root rot diseases of chickpea in southern Spain. Phytopathol. Mediterr. 1985, 75, 1146–1151. [Google Scholar] [CrossRef]
- Jalali, B.L.; Chand, H. Diseases of International Importance, Diseases of Cereals and Pulses; Singh, U.S., Chaube, H.S., Kumar, J., Mukhopadhyay, A.N., Eds.; Prentice Hall: Englewood Cliff, NJ, USA, 1992; Volume 1, pp. 429–444. [Google Scholar]
- Jiménez-Díaz, R.M.; Castillo, P.; Jiménez-Gasco, M.; Landa, B.B.; Navas-Cortés, J.A. Fusarium wilt of chickpeas: Biology, ecology and management. Crop Prot. 2015, 73, 16–27. [Google Scholar] [CrossRef]
- Del Mar Jimenez-Gasco, M.; Jimenez-Diaz, R.M. Development of a specific polymerase chain reaction-based assay for the identification of Fusarium oxysporum f. sp. ciceris and its pathogenic races 0, 1A, 5, and 6. Phytopathology 2003, 93, 200–209. [Google Scholar] [CrossRef]
- Halila, M.H.; Strange, R.N. Identification of thecausal agent of wilt of chickpea in Tunisia as Fusarium oxysporum f. sp. ciceris race 0. Phytopathol. Mediterr. 1996, 35, 67–74. [Google Scholar]
- Navas-Cortes, J.A.; Hau, B.; Jimenez-Diaz, R.M. Yield loss in chickpeas in relation to development of fusarium wilt epidemics. Phytopathology 2000, 90, 1269–1278. [Google Scholar] [CrossRef]
- Arvayo-Ortiz, R.M.; Esqueda, M.; Acedo-Felix, E.; Sanchez, A.; Gutierrez, A. Morphological variability and races of Fusarium oxysporum f.sp. ciceris associated with chickpea (Cicer arietinum) crops. Am. J. Agric. Biol. Sci. 2011, 6, 114–121. [Google Scholar] [CrossRef]
- Infantino, A.; Kharrat, M.; Riccioni, L.; Coyne, C.J.; McPhee, K.E.; Grünwald, N.J. Screening techniques and sources of resistance to root diseases in cool season food legumes. Euphytica 2006, 147, 201–221. [Google Scholar] [CrossRef]
- Tesso, T.T.; Ochanda, N.; Little, C.R.; Claflin, L.T.; Tuinstra, M.R. Analysis of host plant resistance to multiple Fusarium species associated with stalk rot disease in sorghum [Sorghum bicolor (L.) Moench]. Field Crops Res. 2010, 118, 177–182. [Google Scholar] [CrossRef]
- Caballo, C.; Castro, P.; Gil, J.; Millan, T.; Rubio, J.; Die, J.V. Candidate genes expression profiling during wilting in chickpea caused by Fusarium oxysporum f. sp. ciceris race 5. PLoS ONE 2019, 14, e0224212. [Google Scholar] [CrossRef]
- Jimenez-Diaz, R.M.; Trapero-Casas, A.; de La Colina, J.C. Races of Fusarium oxysporum f. sp. ciceri infecting chickpeas in southern Spain. In Vascular Wilt Diseases of Plants: Basic Studies and Control; Springer: Berlin/Heidelberg, Germany, 1989; pp. 515–520. [Google Scholar]
- Gurjar, G.; Barve, M.; Giri, A.; Gupta, V. Identification of Indian pathogenic races of Fusarium oxysporum f. sp. ciceris with gene specific, ITS and random markers. Mycologia 2009, 101, 484–495. [Google Scholar] [CrossRef]
- Kesawat, M.S.; Das Kumar, B. Molecular markers: It’s application in crop improvement. J. Crop Sci. Biotechnol. 2009, 12, 169–181. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, V.K.; Rangari, S.K.; Jha, U.C.; Sahu, A.; Paul, P.J.; Gupta, S.; Gangurde, S.S.; Kudapa, H.; Mir, R.R.; et al. High confidence QTLs and key genes identified using Meta-QTL analysis for enhancing heat tolerance in chickpea (Cicer arietinum L.). Front. Plant Sci. 2023, 14, 1274759. [Google Scholar] [CrossRef]
- Zane, L.; Bargelloni, L.; Patarnello, T. Strategies for microsatellite isolation: A review. Mol. Ecol. 2002, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Morgante, M.; Salamini, F. SSR (Simple Sequence Repeat) markers in crop improvement. In Genetic Diversity in Plants; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Liu, D.; Coloe, S.; Baird, R.; Pederson, J. Rapid mini-preparation of fungal DNA for PCR. J. Clin. Microbiol. 2000, 38, 471. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Bozorov, T.A.; Ma, R.; Ma, J.; Zhang, Y.; Yang, H.; Li, L.; Zhang, D. Characterization and pathogenicity of six Cytospora strains causing stem canker of wild apple in the Tianshan Forest, China. For. Pathol. 2020, 50, e12587. [Google Scholar] [CrossRef]
- Armstrong-Cho, C.; Sivachandra Kumar, N.T.; Kaur, R.; Banniza, S. The chickpea root rot complex in Saskatchewan, Canada- detection of emerging pathogens and their relative pathogenicity. Front. Plant Sci. 2023, 14, 1117788. [Google Scholar] [CrossRef] [PubMed]
- Chumakov, A.E.; Minkevich, I.I.; Vlasov, Y.; Gavrilova, E.A. The Main Methods of Phytopathological Research; Kolos: Moscow, Russia, 1974. [Google Scholar]
- Jha, U.C.; Jha, R.; Bohra, A.; Parida, S.K.; Kole, P.C.; Thakro, V.; Singh, D.; Singh, N.P. Population structure and association analysis of heat stress relevant traits in chickpea (Cicer arietinum L.). 3 Biotech 2018, 8, 43. [Google Scholar] [CrossRef]
- Saghai-Maroof, M.A.; Soliman, K.M.; Jorgensen, R.A.; Allard, R.W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 1984, 81, 8014–8018. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Zhang, Z.; Ersoz, E.; Lai, C.Q.; Todhunter, R.J.; Tiwari, H.K.; Gore, M.A.; Bradbury, P.J.; Yu, J.; Arnett, D.K.; Ordovas, J.M.; et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 2010, 42, 355–360. [Google Scholar] [CrossRef]
- Gujaria, N.; Kumar, A.; Dauthal, P.; Dubey, A.; Hiremath, P.; Bhanu Prakash, A.; Farmer, A.; Bhide, M.; Shah, T.; Gaur, P.M.; et al. Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2011, 122, 1577–1589. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Gaur, R.; Gupta, S. EST-derived genic molecular markers: Development and utilization for generating an advanced transcript map of chickpea. Theor. Appl. Genet. 2012, 124, 1449–1462. [Google Scholar] [CrossRef]
- Gaur, R.; Sethy, N.K.; Choudhary, S.; Shokeen, B.; Gupta, V.; Bhatia, S. Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.). BMC Genom. 2011, 12, 117. [Google Scholar] [CrossRef]
- Winter, P.; Pfaff, T.; Udupa, S.M.; Huttel, B.; Sharma, P.C.; Sahi, S.; Arreguin-Espinoza, R.; Weigand, F.; Muehlbauer, F.J.; Kahl, G. Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol. Gen. Genet. 1999, 262, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Jha, U.C.; Jha, R.; Bohra, A.; Manjunatha, L.; Saabale, P.R.; Parida, S.K.; Singh, N.P. Association mapping of genomic loci linked with Fusarium wilt resistance (Foc2) in chickpea. Plant Genet. Resour. Charact. Util. 2021, 19, 195–202. [Google Scholar] [CrossRef]
- Jendoubi, W.; Bouhadida, M.; Boukteb, A.; Béji, M.; Kharrat, M. Fusarium Wilt Affecting Chickpea Crop. Agriculture 2017, 7, 23. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Kumar, S.; Patil, B.S.; Sharma, M.; Kemal, S.; Ontagodi, T.P.; Datta, S.; Patil, P.; Chaturvedi, S.K.; Sultana, R.; et al. Narrowing yield gaps through genetic improvement for Fusarium wilt resistance in three pulse crops of the semi-arid tropics. SABRAO J. Breed. Genet. 2013, 45, 341–370. [Google Scholar]
- Lakmes, A.; Jhar, A.; Sadanandom, A.; Brennan, A.C.; Kahriman, A. Inheritance of resistance to chickpea Fusarium wilt disease (Fusarium oxysporum f. sp. ciceris Race 2) in a wide-cross Cicer arietinum x Cicer reticulatum mapping family. Genes 2024, 15, 819. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Whitaker, B.K.; Laraba, I.; Proctor, R.H.; Brown, D.W.; Broders, K.; Kim, H.S.; McCormick, S.P.; Busman, M.; Aoki, T.; et al. DNA sequence-based identification of Fusarium: A Work in Progress. Plant Dis. 2022, 106, 1597–1609. [Google Scholar] [CrossRef] [PubMed]
- Knutsen, A.K.; Torp, M.; Holst-Jensen, A. Phylogenetic analyses of the Fusarium poae, Fusarium sporotrichioides and Fusarium langsethiae species complex based on partial sequences of the translation elongation factor-1 alpha gene. Int. J. Food Microbiol. 2004, 95, 287–295. [Google Scholar] [CrossRef]
- Gannibal, P.B. Polyphasic Approach to Fungal Taxonomy. Biol. Bull. Rev. 2022, 12, 18–28. [Google Scholar] [CrossRef]
- Namsi, A.; Rabaoui, A.; Masiello, M.; Moretti, A.; Othmani, A.; Gargouri, S.; Gdoura, R.; Werbrouck, S.P.O. First report of leaf wilt caused by Fusarium proliferatum and F. brachygibbosum on aate palm (Phoenix dactylifera) in Tunisia. Plant Dis. 2020, 105, 1217. [Google Scholar] [CrossRef]
- Qiu, R.; Li, J.; Zheng, W.; Su, X.; Xing, G.; Li, S.; Zhang, Z.; Li, C.; Wang, J.; Chen, Y.; et al. First report of root rot of tobacco caused by Fusarium brachygibbosum in China. Plant Dis. 2021, 105, 4170. [Google Scholar] [CrossRef]
- Thudi, M.; Upadhyaya, H.D.; Rathore, A.; Gaur, P.M.; Krishnamurthy, L.; Roorkiwal, M.; Nayak, S.N.; Chaturvedi, S.K.; Basu, P.S.; Gangarao, N.V.; et al. Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS ONE 2014, 9, e96758. [Google Scholar] [CrossRef]
- Upadhyaya, H.D.; Bajaj, D.; Das, S.; Kumar, V.; Gowda, C.L.; Sharma, S.; Tyagi, A.K.; Parida, S.K. Genetic dissection of seed-iron and zinc concentrations in chickpea. Sci. Rep. 2016, 6, 24050. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, H.D.; Bajaj, D.; Narnoliya, L.; Das, S.; Kumar, V.; Gowda, C.L.; Sharma, S.; Tyagi, A.K.; Parida, S.K. Genome-Wide Scans for Delineation of Candidate Genes Regulating Seed-Protein Content in Chickpea. Front. Plant Sci. 2016, 7, 302. [Google Scholar] [CrossRef]
- Winter, P.; Benko-Iseppon, A.M.; Hüttel, B.; Ratnaparkhe, M.; Tullu, A.; Sonnante, G.; Pfaff, T.; Tekeoglu, M.; Santra, D.; Sant, V.J.; et al. A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum×C. reticulatum cross: Localization of resistance genes for fusarium wilt races 4 and 5. Theor. Appl. Genet. 2000, 101, 1155–1163. [Google Scholar] [CrossRef]
- Sharma, K.D.; Winter, P.; Kahl, G.; Muehlbauer, F.J. Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor. Appl. Genet. 2004, 108, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Jingade, P.; Ravikumar, R.L. Development of molecular map and identification of QTLs linked to Fusarium wilt resistance in chickpea. J. Genet. 2015, 94, 723–729. [Google Scholar] [CrossRef]
- Soi, S.; Chauhan, U.S.; Yadav, R.; Kumar, J.; Yadav, S.S.; Yadav, H.; Kumar, R. STMS based diversity analysis in chickpea (Cicer arietinum L.) for Fusarium wilt. New Agric. 2014, 25, 243–250. [Google Scholar]
- Maqbool, M.A.; Aslam, M.; Ali, H.; Shah, T.M. Evaluation of advanced chickpea (Cicer arietinum L.) accessions based on drought tolerance indices and SSR markers against different water treatments. Pak. J. Bot. 2016, 48, 1421–1429. [Google Scholar]
- Barman, P.; Handique, A.K.; Tanti, B. Tagging STMS markers to Fusarium wilt race-1 resistance in chickpea (Cicer arietinum L.). Indian J. Biotechnol. 2014, 13, 370–375. [Google Scholar]
- Raghu, R.; Ravikumar, R.L. Development of novel microsatellite markers using genome sequence information in chickpea (Cicer arietinum L.). Mysore J. Agric. Sci. 2016, 50, 395–399. [Google Scholar]
- Millan, T.; Clarke, H.J.; Siddique, K.H.M.; Buhariwalla, H.K.; Gaur, P.M.; Kumar, J.; Juan, G.; Kahl, G.; Winter, P. Chickpea molecular breeding: New tools and concepts. Euphytica 2006, 147, 81–103. [Google Scholar] [CrossRef]
- Sachdeva, S.; Dawar, S.; Rani, U.; Patil, B.S.; Soren, K.R.; Singh, S.; Sanwal, S.K.; Chauhan, S.K.; Bharadwaj, C. Identification of SSR markers linked to Botrytis grey mould resistance in chickpea (Cicer arietinum). Phytopathol. Mediterr. 2019, 58, 283–292. [Google Scholar]
- Patil, B.S.; Ravikumar, R.L.; Bhat, J.S.; Soregaon, C.D. Molecular mapping of qtls for resistance to early and late Fusarium wilt in chickpea. Czech J. Genet. Plant Breed. 2014, 50, 171–176. [Google Scholar] [CrossRef]
- Sabbavarapu, M.M.; Sharma, M.; Chamarthi, S.K.; Swapna, N.; Rathore, A.; Thudi, M.; Gaur, P.M.; Pande, S.; Singh, S.; Kaur, L.; et al. Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 2013, 193, 121–133. [Google Scholar] [CrossRef]
- Ratnaparkhe, M.B.; Santra, D.K.; Tullu, A.; Muehlbauer, F.J. Inheritance of inter-simple-sequence-repeat polymorphisms and linkage with a fusarium wilt resistance gene in chickpea. Theor. Appl. Genet. 1998, 96, 348–353. [Google Scholar] [CrossRef]
- Tullu, A.; Muehlbauer, F.J.; Simon, C.J.; Mayer, M.S.; Kumar, J.; Kaiser, W.J.; Kraft, J.M. Inheritance and linkage of a gene for resistance to race 4 of fusarium wilt and RAPD markers in chickpea. Euphytica 1998, 102, 227–232. [Google Scholar] [CrossRef]
- Lal, D.; Ravikumar, R.L.; Jingade, P.; Subramanya, S. Validation of molecular markers linked to Fusarium wilt resistance (Foc 1) in recombinant inbred lines of chickpea (Cicer arietinum). Plant Breed. 2022, 141, 429–438. [Google Scholar] [CrossRef]
- Tar’an, B.; Warkentin, T.D.; Tullu, A.; Vandenberg, A. Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 2007, 50, 26–34. [Google Scholar] [CrossRef]
- Soregoan, C.D.; Ravi Kumar, R.L. Marker assisted characterization of wilt resistance in productive chickpea genotypes. Electron. J. Plant Breed. 2010, 1, 1159–1163. [Google Scholar]
- Sharma, K.D.; Muehlbauer, F.J. Fusarium wilt of chickpea: Physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 2007, 157, 1–14. [Google Scholar] [CrossRef]
Isolate | Predicted Fungi | Strain | Similarity, % |
---|---|---|---|
1 | Neocosmospora solani (previously the F. solani) | NRRL 46643 | 99.71 |
2 | Neocosmospora nelsonii (previously the F. caricae) | CBS 309.75 | 99.58 |
3 | Neocosmospora falciformis (previously the F. falciforme) | NRRL 32798 | 99.8 |
4 | Fusarium brachygibbosum | NRRL 34033 | 99.4 |
5 | Neocosmospora falciformis (previously the F. falciforme) | NRRL 32798 | 99.8 |
6 | Neocosmospora falciformis (previously the F. falciforme) | NRRL 32339 | 99.9 |
7 | Neocosmospora brevis (previously the F. brevis) | F93 | 99.69 |
8 | Fusarium gossypinum | CBS 116613 | 100 |
№ | Genotype | Type | FW Response | № | Genotype | Type | FW Response * |
---|---|---|---|---|---|---|---|
1 | 17102 | Germplasm line | MR | 49 | 17174 | Germplasm line | R |
2 | 17103 | Germplasm line | MR | 50 | 17201 | Variety | R |
3 | 17104 | Variety | R | 51 | 17206 | Germplasm line | R |
4 | 17106 | Germplasm line | R | 52 | 17212 | Germplasm line | S |
5 | 17108 | Germplasm line | S | 53 | 17222 | Variety | S |
6 | 17109 | Germplasm line | MS | 54 | 17223 | Germplasm line | MR |
7 | 17110 | Variety | MR | 55 | 17225 | Variety | R |
8 | 17111 | Germplasm line | R | 56 | 17236 | Germplasm line | R |
9 | 17112 | Germplasm line | R | 57 | 17244 | Germplasm line | MR |
10 | 17114 | Germplasm line | R | 58 | 17265 | Germplasm line | R |
11 | 17115 | Germplasm line | R | 59 | 17269 | Germplasm line | R |
12 | 17116 | Variety | R | 60 | 17270 | Variety | R |
13 | 17117 | Germplasm line | R | 61 | M1 | Germplasm line | R |
14 | 17118 | Germplasm line | R | 62 | M2 | Germplasm line | R |
15 | 17120 | Germplasm line | S | 63 | M3 | Germplasm line | MR |
16 | 17121 | Germplasm line | MR | 64 | M4 | Germplasm line | R |
17 | 17123 | Germplasm line | MS | 65 | M5 | Germplasm line | R |
18 | 17124 | Germplasm line | R | 66 | M6 | Germplasm line | R |
19 | 17125 | Variety | R | 67 | M7 | Germplasm line | R |
20 | 17126 | Germplasm line | R | 68 | M8 | Germplasm line | R |
21 | 17127 | Germplasm line | R | 69 | M9 | Germplasm line | R |
22 | 17130 | Germplasm line | R | 70 | M10 | Germplasm line | R |
23 | 17132 | Germplasm line | R | 71 | M11 | Variety | R |
24 | 17135 | Germplasm line | R | 72 | M12 | Germplasm line | R |
25 | 17136 | Germplasm line | MR | 73 | M13 | Germplasm line | R |
26 | 17139 | Germplasm line | R | 74 | M14 | Germplasm line | R |
27 | 17141 | Germplasm line | R | 75 | M15 | Germplasm line | R |
28 | 17142 | Germplasm line | R | 76 | M16 | Germplasm line | MR |
29 | 17143 | Variety | S | 77 | M17 | Germplasm line | R |
30 | 17144 | Germplasm line | MR | 78 | M18 | Variety | R |
31 | 17145 | Germplasm line | MS | 79 | M19 | Germplasm line | R |
32 | 17147 | Germplasm line | R | 80 | M20 | Germplasm line | R |
33 | 17148 | Germplasm line | MR | 81 | M21 | Germplasm line | R |
34 | 17150 | Germplasm line | MR | 82 | M22 | Germplasm line | R |
35 | 17151 | Germplasm line | MS | 83 | M23 | Germplasm line | R |
36 | 17153 | Germplasm line | MS | 84 | M24 | Germplasm line | MR |
37 | 17154 | Germplasm line | R | 85 | M25 | Variety | MR |
38 | 17156 | Germplasm line | MS | 86 | M26 | Germplasm line | R |
39 | 17157 | Germplasm line | MS | 87 | M27 | Germplasm line | R |
40 | 17158 | Variety | MR | 88 | M28 | Germplasm line | R |
41 | 17159 | Germplasm line | R | 89 | M29 | Germplasm line | R |
42 | 17161 | Variety | R | 90 | M30 | Germplasm line | MS |
43 | 17162 | Germplasm line | R | 91 | M31 | Germplasm line | R |
44 | 17163 | Germplasm line | R | 92 | M32 | Germplasm line | R |
45 | 17165 | Germplasm line | R | 93 | M33 | Germplasm line | R |
46 | 17166 | Germplasm line | R | 94 | M34 | Germplasm line | R |
47 | 17169 | Germplasm line | R | 95 | M35 | Variety | R |
48 | 17172 | Germplasm line | R | 96 | M36 | Germplasm line | R |
MTA | Locus | p-Value | R2 | LG | Reference * |
---|---|---|---|---|---|
GLM mean in year 2023 | |||||
TA42 | A | 0.0028 | 0.0911 | LG5 | [36] |
TA125 | A | 0.0043 | 0.0834 | LG1 | [36,37] |
TR2 | B | 0.0096 | 0.0692 | LG6 | [35] |
TA125 | B | 0.0098 | 0.0688 | LG1 | [36,37] |
TA37 | D | 0.01 | 0.0684 | LG2 | [35] |
TAASH | B | 0.0108 | 0.067 | LG1 | [37] |
MLM mean in year 2023 | |||||
TA42 | A | 0.0028 | 0.0912 | LG5 | [36] |
TA125 | A | 0.0043 | 0.0834 | LG1 | [36,37] |
TA125 | B | 0.0098 | 0.0688 | LG1 | [36,37] |
TA37 | D | 0.0111 | 0.0666 | LG2 | [35] |
TAASH | B | 0.0165 | 0.0596 | LG1 | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murodova, S.M.; Bozorov, T.A.; Aytenov, I.S.; Ochilov, B.O.; Qulmamatova, D.E.; Salakhutdinov, I.B.; Isokulov, M.Z.; Khalillaeva, G.O.; Azimova, L.A.; Meliev, S.K. Uncovering Fusarium Species Associated with Fusarium Wilt in Chickpeas (Cicer arietinum L.) and the Identification of Significant Marker–Trait Associations for Resistance in the International Center for Agricultural Research in the Dry Areas’ Chickpea Collection Using SSR Markers. Agronomy 2024, 14, 1943. https://doi.org/10.3390/agronomy14091943
Murodova SM, Bozorov TA, Aytenov IS, Ochilov BO, Qulmamatova DE, Salakhutdinov IB, Isokulov MZ, Khalillaeva GO, Azimova LA, Meliev SK. Uncovering Fusarium Species Associated with Fusarium Wilt in Chickpeas (Cicer arietinum L.) and the Identification of Significant Marker–Trait Associations for Resistance in the International Center for Agricultural Research in the Dry Areas’ Chickpea Collection Using SSR Markers. Agronomy. 2024; 14(9):1943. https://doi.org/10.3390/agronomy14091943
Chicago/Turabian StyleMurodova, Sojida M., Tohir A. Bozorov, Ilkham S. Aytenov, Bekhruz O. Ochilov, Dilafruz E. Qulmamatova, Ilkhom B. Salakhutdinov, Marufbek Z. Isokulov, Gavkhar O. Khalillaeva, Laylo A. Azimova, and Sodir K. Meliev. 2024. "Uncovering Fusarium Species Associated with Fusarium Wilt in Chickpeas (Cicer arietinum L.) and the Identification of Significant Marker–Trait Associations for Resistance in the International Center for Agricultural Research in the Dry Areas’ Chickpea Collection Using SSR Markers" Agronomy 14, no. 9: 1943. https://doi.org/10.3390/agronomy14091943
APA StyleMurodova, S. M., Bozorov, T. A., Aytenov, I. S., Ochilov, B. O., Qulmamatova, D. E., Salakhutdinov, I. B., Isokulov, M. Z., Khalillaeva, G. O., Azimova, L. A., & Meliev, S. K. (2024). Uncovering Fusarium Species Associated with Fusarium Wilt in Chickpeas (Cicer arietinum L.) and the Identification of Significant Marker–Trait Associations for Resistance in the International Center for Agricultural Research in the Dry Areas’ Chickpea Collection Using SSR Markers. Agronomy, 14(9), 1943. https://doi.org/10.3390/agronomy14091943