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Abstract: An advanced approach to the automated assessment of a microscopic slide containing
spores is presented. The objective is to develop an intelligent system for the rapid and precise
estimation of phytopathogenic spore concentration on microscopic slides, thereby enabling automated
processing. The smart microscopy scanning system comprises an electronic microscope, a coordinate
table, and software for the control of the coordinate table and image processing. The developed
smart microscopy scanning system processes the entire microscope slide with multiple exposed strips,
which are automatically determined based on the novel two-stage algorithm. The analysis of trained
convolutional neural networks employed for the detection of spore phytopathogens demonstrates
high precision and recall metrics. The system is capable of identifying and counting the number
of spores of phytopathogenic fungi species Blumeria graminis, Puccinia striiformis, and Pyrenophora
tritici-repentis on each exposed strip. A methodology for estimating the spore distribution on a
microscopic slide is proposed, which involves calculating the average spore concentration density.

Keywords: identification; spores; wheat leaf disease; microscopy; object detection

1. Introduction

The rapid growth of the world’s population continues to pose a challenge to food
security. This problem is intensified by the inability to expand arable land, even though
most of the world’s food supply comes from crop production. An important part of food
security involves the protection of crops against disease to increase yields. Wheat is among
the most important food crops in the world since cereal crops occupy the largest sown areas
among all agricultural crops. Leaf diseases caused by fungal pathogens significantly reduce
wheat yields and may be responsible for 15–20% of losses [1,2]. Moreover, wheat yield losses
in South Russia reached 30–40% when conditions were favorable for fungal pathogens
[3,4]. These are significant additional losses since the Russian Federation is the third-largest
producer and the first-largest exporter of wheat in the last decade (www.fao.org, accessed
on 12 June 2024).

Early detection and precise identification of diseases are crucial challenges in wheat
protection. The traditional method of disease detection and identification based on vi-
sual inspection is often not reliable enough and could lead to a significant decrease in
agricultural production since the corresponding procedure cannot guarantee the required
estimation accuracy. Moreover, it is also quite labor-intensive and demands intensive
academic phytopathological training for farmers or agronomists. Thus, the implementation
of artificial intelligence in agriculture automation is now being widely addressed [5,6].
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The effective monitoring of plant diseases can be achieved through the utilization
of specially designed devices. A variety of optical sensors are employed in fieldwork to
collect data for the early detection of alteration in plant physiology, such as multispectral
and hyperspectral reflectance sensors [7,8], thermal sensors [9], and other types of sensors
detailed in [10]. Nevertheless, it is preferable to identify infectious diseases at the earliest
possible stage, prior to the emergence of visible symptoms. One of the most promising areas
of phytosanitary monitoring involves the use of samplers for the detection of pathogen
spores in the atmosphere [11]. The combination of this technology with novel diagnostics
methodologies will facilitate a more expeditious and precise quantitative evaluation of
airborne infection. The results may be further interpreted, particularly to detect primary
inoculum thresholds, in order to predict disease development and, thereby, enhance the
efficiency of crop protection.

So far, a variety of sampler designs have been proposed, including volumetric sam-
plers based on suction, passive samplers relying on passive deposition [11,12], and mi-
crofluidic devices featuring low-pressure collection chambers [13]. On the other hand,
various methods are being developed to analyze the collected samples and to identify
and quantify collected biological particles: immunological methods (e.g., ELISA), DNA-
based diagnostics (e.g., PCR, TwistDX, and LAMP) and biosensors [12,14]. Among the
various techniques employed for the analysis of spore samples, light microscopy is a widely
used method, facilitating the identification of spore species and the enumeration of the
detected pathogen spores [15–17]. The extensive utilization of light microscopy can be
attributed to its cost-effectiveness when compared to alternative methodologies. Given
that the number of spores collected by samplers can exceed 1000 per sample, identifying
and counting these numerous phytopathogenic spores is a meticulous and time-consuming
process that requires the expertise of trained experts. Therefore, it is necessary to develop
cost-effective and precise automated techniques that combine rapid sample processing
with high-throughput identification of spore species.

The advent of sophisticated digital image processing technologies has given rise to the
development of novel algorithms for the automatic detection and counting of spores. Some
existing methods employ a series of image processing techniques for the automatic identifi-
cation of objects in microscopic images of slides [16,18,19]. In some instances, the extracted
geometric features are employed to build object classifiers in images using machine learning
methods [20–22]. The advancement of deep learning techniques, particularly convolutional
neural networks (CNNs) in computer vision, enables the automatic extraction of object
features for the detection of diverse objects within images [17,23–27]. It is important to note
that the majority of the studies mentioned above were conducted in laboratory settings.
In contrast, using data collected under natural conditions, where images contain multiple
fungal spores and other microparticles, results in complex backgrounds. This complexity
invariably degrades the recognition quality of the target spores.

An advanced approach to the automatic evaluation of microscopic slides with a variety
of spore types on a complex background is proposed in the present paper. The developed
smart microscopy scanning system is based on the employment of an X-Y coordinate table
for slide movement and convolutional neural networks (CNNs) for spore detection. The
main objective of this study is to develop a universal approach to estimating the level of
spore concentration on microscopic slides. The main novelty of the paper is the proposed
two-stage algorithm for the automatic scanning of microscopic slides obtained from spore-
trapping devices and estimating spore concentration. Moreover, we propose a methodology
for calculating a universal measure of spore concentration, namely, a spore concentration
density instead of calculating the number of spores. The efficacy of this methodology has
been validated through experimentation with various exposure times. To the best of our
knowledge, this study is the first to propose such a methodology.

To implement the intelligent system, namely, a smart microscopy scanning system,
for the rapid and precise detection of spores, thereby enabling the automated processing
of microscopic slides several stages have been passed. Initially, microscopic slides were
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exposed in a spore trapping device (as described in Section 2.1) to create a data collection
of images of several kinds of airborne spores (dataset) as described in Section 2.3.1. Next,
a smart device and the corresponding software based on a novel two-stage algorithm
for scanning microscopic slides was developed, see Section 2.2. The developed smart
microscopy scanning system is to automatically process the entire microscope slide with
multiple exposed strips that are automatically determined, and then identify and count
the number of spores in each exposed strip. Accordingly, two CNNs were trained on
the prepared dataset to enable their application for spore detection in micrographs. The
selected CNNs, which have proven highly effective in object detection, are YOLOv8 and
RT-DETR. The accuracy of these CNNs and the proposed algorithm for spore detection
is demonstrated in Section 3. Finally, the average spore concentration density for various
exposure times is investigated.

2. Materials and Methods
2.1. Airborne Spore Collection

The spores of pathogens responsible for leaf disease in wheat were obtained under
field conditions using a device for the detection of plant diseases developed at the Fed-
eral Research Centre of Biological Plant Protection (Krasnodar, Russian Federation) [28].
A dataset comprising airborne spores of fungal pathogens was collected in 2022–2023
from experimental fields of the Laboratory of Phytosanitary Monitoring of Agroecosys-
tems. The present study focuses on the examination of spores associated with fungal
diseases of wheat (Triticum L.). During the experiment, various types of winter soft wheat
(Triticum aestivum L.) with varying degrees of sensitivity to pathogens were examined for
the collection of phytopathogen spores. The following spores of leaf diseases of wheat
are the subjects of this study: Blumeria graminis, Puccinia striiformis, and Pyrenophora tritici-
repentis [29]. Examples of wheat leaves affected by the above-mentioned wheat pathogens
are depicted in Figure 1.

Figure 1. Photos of leaves affected by Puccinia striiformis, Blumeria graminis, and Pyrenophora tritici-repentis.

In order to ensure the identification of all target pathogens, winter wheat varieties
characterized by different levels of resistance to leaf diseases were selected for the study.
Furthermore, an artificial infectious background of intended leaf diseases was created in
the plots to provide a sufficient quantity of infectious material for the establishment of a
database of spore images. Collection, isolation, and multiplication of infectious material
from pathogens were conducted in order to inoculate the test plots with winter wheat plants.
In the case of Puccinia striiformis, an experimental procedure was conducted in a greenhouse
setting. This involved the repeated infection of plants cultivated in hydroponics, followed
by the collection of urediniospores [3]. Tan spot pathogens were isolated and propagated
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on a nutrient medium in a clean box [30]. The artificial background of infestation at the
experimental fields was established in the second half of April, when conditions conducive
to inoculation occurred, such as an air temperature above 16 ◦C and the presence of dew
on plant leaves.

The spore-trapping device was employed for the purpose of air sampling containing
spores of pathogens responsible for wheat leaf diseases [28]. The device is an impactor
that uses a standard microscope slide coated with Vaseline as a retention compound to
precipitate contaminants from the air.

Sampling was carried out during May and June, representing the period of peak
disease development and diversity in wheat crops, spanning the transition from the flag
leaf stage (Z 47) to flowering (Z 61–69). During the sampling process, the device was
lowered on a belt so that the slot nozzle (narrow nozzle) was positioned at a height
8–10 cm below the tops of the plants. Subsequently, the device was operated for a period
of time following its activation, oscillating at an amplitude of 15–20 cm, which facilitates
the shaking of spores from the leaves and their entrainment into the aspiration zone of the
device. Samples were obtained at ten points along the diagonal of each plot so that there
were 10 samples on each slide as rectangular imprints of 100 mm2.

To investigate the influence of the exposure time, four slides with exposure time pe-
riods of 1, 1.5, and 2 min have been prepared for analysis (see Figure 2). The slides were
prepared with three stripes exposed in the same area of the agrocenosis to ensure consis-
tency in the level of wheat decline. The exposure locations were positioned two meters
apart to facilitate the uniform distribution of spores [29].

Figure 2. Photo of the microscopic slides with exposed stripes.

2.2. Smart Microscopy Scanning System

The smart microscopy scanning system should calculate the number of spores r per a
certain area, e.g., per 1 mm2, for each exposed stripe. In this section, the design and the
processing algorithm providing the corresponding values are described.

2.2.1. Design of the Device

The smart microscopy scanning system consists of the foundation, which is used for
the installment of the two-dimensional X-Y coordinate table with a microscopic slide, a
light source, and a microscope based on the holder; see Figure 3. The two-dimensional
coordinate table provides the movement of the microscopic slide along two axes parallel to
the motor shafts, which are driven by motors Stepper Nema 17hs-4023 and threaded shafts.
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The fixed angle of the rotation of the stepper motor shaft provides precise linear movement
of the table. In the presented assemblage, a microscope ToupCam UCMOS03100KPB with
a 60X-600X objective, ToupTek Photonics Co. Ltd., Hangzhou, China has been used.

Figure 3. Photo of the intelligent system.

2.2.2. General Algorithm

For simplicity, Cartesian coordinates are introduced, with the origin located at the
corner of the slide, as shown in Figure 4. It is assumed that a single image made by a
microscope depicts a rectangle with sides l1 and l2, i.e., it has area S = l1 l2; therefore,
frames of the m-th image can be exhaustively described if the coordinates of the left lower
corner are known.

The entire scanning procedure is split into two stages. In the first stage, the lengths
and locations of all exposed stripes are determined. In the second stage, each stripe is
scanned and the number of spores identified in the stripe is counted. A detailed description
of the scanning is given below. The scanning scheme is illustrated in Figure 4.

At the preliminary stage, two input values M1 and M2 must be determined. M1 − 1 is
the number of frames situated between two arrays of images to be made at the first stage;
see Figure 4b. The number of frames situated along the axis Ox in the two-dimensional
arrays for each exposed area is denoted as M2; see Figure 4b,c.
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Figure 4. Scheme of the scanning procedure of the microscopic slide.

2.2.3. Stage 1: Exposed Zones Recognition

To determine the exposed stripes, two series of N0 snapshots of the entire slide
(N0l1 ≤ w1) along two lines distanced from the center of the slide at distance M1l2/2,
occupying frames

F±
j = {|x − xj − l1/2| ≤ l1/2, |y − w2/2 ∓ M1l2| ≤ l2},

must be made. The left lower corner of the rectangular frame F±
j is situated at the point

(xj, w2/2 ± M1l2/2), where xj = l1 j.
Let us define a recognition function R(F, l), which has frame F and the enumerator

of spore/particle class number l as input and returns the number of spores or particles
belonging to the l-th class recognized in the image (F). The total number of considered
classes is denoted (L).

The search for the i-th exposed stripe is performed, considering the following rule for
each pair of frames F±

j :

sj =
(

Q(F+
j ) ≥ R̂

)∧(
Q(F−

j ) ≥ R̂
)

, (1)

Q(F±
j ) =

L

∑
l=1

R(F±
j , l).

Condition (1) is true if the number of recognized spores or particles is larger than the
threshold value R̂ for both frames. In addition, the series of images is assumed to be in the
i-th exposed stripe if more than two pairs of frames in a row have feature sj, showing that
they belong to the exposed stripe, i.e.,(

sj = . . . = sj+K = True
)∧(

sj−1 = False ∧ j > 1
)∧(

sj+K+1 = False ∧ j ≤ N0 − K − 1
)
. (2)

If K and j are determined, then the centers of the frames corresponding to the start and the
end of i-th exposed stripe can be determined as follows:

ai = cj, bi = cj+K, Ni = K.

The number of recognized exposed stripes is denoted as N.
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2.2.4. Stage 2: Pore Concentration Evaluation for Each Exposed Area

In the second stage, scanning of the exposed stripe is performed as illustrated in
Figure 4c. Therefore, a two-dimensional array of frames Fm belonging to the i-th exposed area

{ai − l1/2 ≤ x ≤ bi + l1/2, |y − w2/2| ≤ M2l2/2}

determined at Stage 1 is to be considered. For each frame Fm, the same recognition proce-
dure is applied so that the total number of spores identified in the i-th stripe is as follows:

P(i, l) =
N1 M2

∑
m=1

R(Fm, l). (3)

Therefore, the spore concentration density can be calculated using (3) for each kind of spore
and recognized exposed stripes, as follows:

D(i, l) =
P(i, l)

Ni · M2 · S
. (4)

The flowchart demonstrated in Figure 5 summarizes the two-stage algorithm for
processing the slide via the smart microscopy scanning system described above.

Figure 5. Flowchart of the algorithm for processing the slide via the intelligent system.

2.3. Proposed Methodology or Pipeline of the Automated Procedure
2.3.1. Dataset Creation

At first, glass slides from a spore-trapping device exposed in the agrocenosis with
a high concentration of the three considered wheat disease spores were collected and
examined. Micrographs of the exposed slides were then made using a ToupCam UC-
MOS05100KPA (ToupTek Photonics Co. Ltd., China) video eyepiece at different magni-
fications, 10× and 40×, and processed. The crisp photos with images of spores of the
three kinds were extracted from the photo set for data annotation. After the systematic
processing of these images by experienced biologists, a labeled dataset of spore images was
created. The number of images of each spore species at two magnifications is shown in
Table 1.
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Table 1. Number of images of spores taken by a microscope.

Magnification Puccinia striiformis Blumeria graminis Pyrenophora tritici-repentis

10× 24 19 29
40× 100 100 44

Following the application of image augmentations, including the rotation and mixing
of spores from different species within a single image at 40× magnification and the allo-
cation of spore clusters from the images at 10× magnification, 1392 images were retained.
These images encompass all the target classes of spores. All the images have a complex
background, where a lot of microparticles are also observed in addition to spores. Moreover,
two species of spores under study might be observed in the same image; therefore, such
images were also included in the dataset. Some examples of images from the dataset are
depicted in Figure 6.

Figure 6. Examples of the annotated data from the created dataset.

The data annotation was performed using LabelImg image annotation platform with
the Auto Mouse Clicker macro. In addition to the target spore species, various microparti-
cles were also labeled, resulting in four classes being classified. The images from the dataset
were further divided into training, validation, and sets at a 7:2:1 ratio. The number of types
of spores and the microparticles in the sets are presented in Table 2.

Table 2. Split of data into training, validation, and test samples.

Sample Puccinia striiformis Blumeria graminis Pyrenophora tritici-repentis Microparticle

train 750 653 313 3626
validation 496 284 164 1231
test 241 265 85 721
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2.3.2. Spore Detection

In order to detect spores in micrographs, the developed algorithm has to detect targets
and classify objects in the images. Thus, the problem consists of two tasks related to
object detection methods: localization and classification. CNNs are powerful tools for
solving classification problems through the efficient extraction of features from images.
The development of CNNs has also enabled the solution of localization problems by
enumerating potential areas and determining in which regions objects are located. In
the application of deep learning methods, various CNNs were used for the detection of
microparticles (spores, pollen grains), e.g., ResNet [23,25], Faster R-CNN [17,25], and more
frequently, YOLOv5 [17,24–26].

The YOLOv8 algorithm, which is one of the latest stable versions of the YOLO series
of object detection algorithms, is employed in this study. The YOLO algorithms use the
grid in the image to predict the probability of membership to a particular class. YOLO’s
performance is limited by the number of predicted bounding boxes in each cell, so the
neural network does not work well with small objects that are densely clustered in the
image. A series of enhancements have been implemented in YOLOv8 to optimize the
detector’s performance in terms of accuracy and speed [31].

In addition to the YOLO object detector, the real-time detection transformer (RT-DETR),
which offers real-time performance while maintaining high accuracy, is also applied. The
RT-DETR architecture is based on the concept of end-to-end Transformer-based detectors
(DETRs) that do not use the non-maximum suppression (NMS) method, which negatively
affects the speed and accuracy of YOLOs. The RT-DETR deals efficiently with multiscale
features, separating intra-scale interactions from cross-scale fusion [32]. YOLO and RT-
DETR models have been trained on the dataset described in Section 2.3.1. An example
of the application of YOLOv8 and RT-DETR model to three images from the test set is
depicted in Figure 7.

Figure 7. Examples of the application of YOLOv8 and RT-DETR to the images from the test set.
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2.3.3. Evaluation of the Number of Spores on a Micrograph of the Exposed
Microscope Slide

An example of the image composed of all micrographs obtained via scanning the
entire exposed microscopic slide using the proposed system and further considered in
Section 3.3 is exhibited in Figure 8. Several trajectories of scanning procedures used at the
two stages of the proposed algorithm described in Section 2.2.2 are shown by dashed lines,
whereas the domains detected as exposed stripes are surrounded by red rectangles.

Figure 8. An example of the photomicrograph of the exposed microscopic slide.

Thus, two linear scans of the slide or one-dimensional arrays of micrographs are
evaluated at the first stage, as shown in Figure 8 by red dashed lines. Two pre-trained CNN
models, as described in Section 2.3.2, are applied to each image in the array, with the results
evaluated according to the proposed algorithm. Notably, the exposure time determines the
threshold value R̂. The total number of objects detected in each frame (CNNs are trained on
both target spores and other microparticles at this stage) is used to determine the location
of the exposed stripes on the slide according to (1) and (2).

In the second stage, each recognized exposed strip is processed row by row, see
Figure 8, where only the scanning trajectory for the first exposed strip is shown by blue
dashed lines. The best CNN selected in the training phase is used for object detection
here, and the number of spores of the target species is counted in each scanned image.
Formula (4) is finally applied to ascertain the aggregate number of spores of each species
present on the exposed strip or the entire slide.
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3. Results
3.1. Spores Identification

The two selected CNNs, YOLOv8 and RT-DETR, were trained on prepared test sets
with the following hyperparameters: the training process was conducted over 100 epochs,
with a batch size value of 8 and a learning rate of 0.01. Table 3 presents the metrics
for the bounding boxes. The metrics of CNNs trained on data labeled with only three
types of spores are slightly better than those of CNNs trained on data labeled with other
microparticles on the slide. Although the precision and recall rates are higher for the
RT-DETR model, the mean average precision (mAP) at an IoU threshold of 0.5 is higher for
the YOLOv8 model. Basically, the performance of both models is comparable.

Table 3. CNN metrics for bounding boxes.

Model Micro-Particles
Metrics

Precision (B) Recall (B) mAP50 (B) mAP50-95 (B)

YOLOv8
Y 0.934 0.939 0.954 0.803

N 0.964 0.983 0.984 0.861

RT-DETR
Y 0.978 0.984 0.942 0.791

N 0.961 0.977 0.982 0.857

The quality of the predictions of class membership was determined by confusion
matrix C based on the detection of spores in the images from the validation set. The
TP (true positive) value indicates that the classifier has correctly assigned the detected
object to the class under consideration. The FP (false positive) value indicates the incorrect
assignment of an object to the k-th class under consideration and is calculated for each class
by the following formula:

FPk =
L

∑
j = 1
j ̸= k

Ck,j, (5)

and the FN (false negative) value corresponds to an incorrect statement that the object does
not belong to the class under consideration:

FNk =
L

∑
j = 1
j ̸= k

Cj,k. (6)

The following recognition quality metrics are calculated based on (5) and (6) for the
k-th class:

Precisionk =
TPk

TPk + FPk
, Recallk =

TPk
TPk + FNk

. (7)

Here, Precision is the ratio of the number of correctly classified objects of a class to the total
number of elements of that class, and Recall is the ratio of the number of correctly classified
objects to all objects that the classifier has assigned to that class. The values and metrics
calculated from the confusion matrix for the four CNN models are given in Table 4, where
“Y” and “N” in column microparticles show whether the microparticle class was used for
model training or not, respectively.

The data presented in Table 4 demonstrate that all the trained models provide high-
quality detection for all three spore types. The RT-DETR model exhibits a higher Precision
metric than the YOLOv8 model. Conversely, the Recall metric indicates that CNNs may
erroneously identify some microparticles as spores, resulting in an overestimation of the
spore count. It should be noted that the misidentification of spores belonging to the
Blumeria graminis species is more prevalent.
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Table 4. CNN metrics for classification.

Model Micro-Particles Type of Spores TP FN FP Recall Precision

YOLOv8

Y
P. striiformis 486 10 4 0.9798 0.9918
B. graminis 279 5 25 0.9824 0.9148
P. tritici-repentis 162 2 3 0.9878 0.9818

N
P. striiformis 485 11 3 0.9778 0.9939
B. graminis 277 7 24 0.9754 0.9203
P. tritici-repentis 161 3 3 0.9817 0.9817

RT-DETR

Y
P. striiformis 491 5 6 0.9899 0.9879
B. graminis 279 5 39 0.9936 0.8774
P. tritici-repentis 162 2 19 0.9878 0.895

N
P. striiformis 488 8 11 0.9839 0.978
B. graminis 282 2 36 0.993 0.8868
P. tritici-repentis 162 2 20 0.9878 0.8901

To calculate the generalization metrics for the quality of the detection of all types of
spores by the trained models, the following relations are used:

Precision =

L
∑

k=1
TPk

L
∑

k=1
TPk +

L
∑

k=1
FPk

, Recall =

L
∑

k=1
TPk

L
∑

k=1
TPk +

L
∑

k=1
FNk

.

The YOLOv8 model, trained on the full complete labeled dataset, including both
spores and microparticles, demonstrated the highest average precision value of 0.982 and
average recall value of 0.9697. The value of the average recall can be employed to rectify
the number of identified spores in micrographs. The results of the spore counting of
each species in the test set are presented in Table 5. The number of spores in the images,
calculated using trained CNNs, differs from the real values presented in Table 2 by less
than 5%. Calculations on the test set have confirmed the results obtained for the validation
set: the most effective model is YOLOv8, which demonstrated an average recall value of
0.9949. For instance, Li et al. [26] applied an improved YOLOv5 to detect downy mildew
spores in complex contexts, and the resulting recall metric was 0.947. An advanced version
of the YOLOv5 algorithm was employed by Zhang et al. [24] for the detection of Fusarium
germinate spores, resulting in a recall metric of 0.98.

Table 5. The amount of identified spores on test data.

Model Micro-Particles
Amount of Identified Spores

P. striiformis B. graminis P. tritici-repentis

YOLOv8
Y 242 267 85

N 241 261 84

RT-DETR
Y 239 264 82

N 241 267 81

3.2. Exposed Zones Recognition

In accordance with the algorithm for automatic spore density determination, as out-
lined in Section 2.2.3, a linear scan of the slide is conducted initially to ascertain the exposed
zones. The number of objects present in each frame, including both spores and other
microparticles, is determined through the application of pre-trained CNNs. Figure 9 illus-
trates the outcomes of a single linear scan, displaying the number of micro-objects Q(F+

j )

as a function of the number of image j identified by YOLOv8 (Figure 9a) and RT-DETR
(Figure 9b).
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Figure 9. The number of objects Q(F+
j ) recognized by YOLOv8 (a), RT-DETR (b) in the j-th image

at the first stage of the proposed algorithm and marked zones belonging to the recognized exposed
zones (c).

It can be observed that RT-DETR identifies a greater number of objects in the micro-
images. This is due to the fact that RT-DETR is better at recognizing fine details and can
separate objects when they are clustered. Figure 9c, where recognized exposed zones are
marked, illustrates the presence of three distinct exposed strips. It demonstrates that the
area between the first and second strips is not pristine and has adhered microparticles.
Furthermore, the third strip exhibits a slight lateral displacement toward the right edge of
the slide.

In order to ascertain the start and end of each strip, the threshold level R̂ is as follows:

R̂ = 0.5(q0.9 − q0.1).

Here, qα is the quantile of order α. In the case of the YOLO application, the threshold level
is R̂YOLO = 5.1, while in the case of RT-DETR, the threshold level is R̂RT−DETR = 11.18.
The corresponding levels are shown by thick blue solid lines in Figure 9a,b. Frames with
a number of objects in excess of a specified threshold level are potentially classified as
belonging to the exposed zone.

It should be noted that the edges of the exposed zone might be non-uniformly covered
by microparticles. This phenomenon leads to the reduction of the width of the recognized
exposed zone, e.g., the first strip and the third strip in Figure 9a,b. Thus, the beginning
of the exposed strip is accepted by the algorithm if the number of recognized objects in
two consecutive frames is above the specified threshold value R̂.

3.3. Evaluation of Average Spore Concentration Density

In this section, the average spore concentration density is introduced to provide a
universal characteristic for estimating spore distribution over the microscopic slide. For
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this purpose, the three slides with various exposure times described in Section 2.1 and
depicted in Figure 2 have been studied. Different exposure times have been chosen to
introduce a unifying measure that allows for the assessment of the agroecosystem not only
for the presence of certain spores but also quantitatively, regardless of exposure time.

The sampling for this investigation was carried out on 5 June 2024, during the devel-
opment phase of wheat Z 75-85 “milk-wax ripeness”. This phase of wheat development
is typical for such diseases as wheat brown rust, whose spores are visually very similar
to those of wheat yellow rust. The predominance of brown rust is caused by climatic
conditions such as temperature and humidity, which are the most favorable for the corre-
sponding pathogens during this period. For pathogens of powdery mildew and yellow
rust of wheat, lower temperatures are preferable; therefore, intensive development of these
diseases is usually observed from the end of March until the beginning of May. Further
development of these diseases and the sporulation process slowly decreases. Therefore,
the largest number of spores in the obtained samples is related to brown rust of wheat or
Puccinia recondita. Although the CNNs have been trained on the dataset without brown
rust, the CNN models were applied to the slides with brown rust since spores of brown
leaf rust are visually very similar to those of wheat yellow rust.

Three sample slides were evaluated automatically and images obtained with parame-
ters l1 = 0.234 mm and l2 = 0.176 mm were carefully studied using the developed smart
microscopy scanning system and by biologists with double cross-validation. An example
of the calculations performed with the algorithm and manually on a single exposure strip
for each slide is shown in Table 6. Although the YOLOv8 model, trained on the full dataset
with microparticles, achieves the best Recall metric on the validation and training sets, the
RT-DETR model shows superior performance on the experimental data. The discrepancy in
the number of detected spores reaches as high as 15%, which may be attributed to various
factors, as outlined in Section 4.

Table 6. Normalized average spore concentration density.

Amount Exposure Time RT-DETR, Y Real Data

Spores per 1 mm2
1 min 17.2 15.5
1.5 min 39 44.5
2 min 52.2 59.2

Spores per 1 mm2 in a 1 min
1 min 17.2 15.5
1.5 min 26 29.7
2 min 26.1 29.6

The results of the unified measure, i.e., normalized average spore concentration density,
calculations show that exposure times of 1.5 and 2 min are in good agreement. Therefore,
these exposure times can be recommended for characterizing the number of spores with
high accuracy.

4. Discussion

The experimental verification of the developed algorithm for automatic spore counting
has demonstrated its practical applicability to the processing of microscopic slides with
good quality. The two CNNs, YOLOv8 and RT-DETR, exhibited comparable performance
in spotting the exposed strips. Manual counting typically considers wider strips than
those analyzed by the proposed algorithm, but a unifying measure such as the proposed
average spore concentration density—which counts the number of specific spores per
square millimeter per minute—appears to be more accurate. Although the CNNs were
trained on the yellow rust dataset, the algorithm confidently detects brown rust spores. It
should be noted that the simultaneous and separate detection of brown and yellow rust
spores, which appear similar to CNNs, requires training with a larger dataset than the one
used in this study.
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The notable discrepancy in spore counts implemented with the algorithm and man-
ually is attributed to the degradation of spore recognition in some blurred images. The
latter is caused by the non-uniform distribution of the glue on the microscopic slide, which
results in changes in the distance to the microscope and its de-focusing. Nevertheless, these
discrepancies are not critical, and the results produced by the smart microscopy scanning
system allow us to adequately determine the number of spores in the air.

5. Conclusions

In the present study, an advanced smart microscopy scanning system for the rapid
and precise identification of spores providing automated processing of microscopic slides
is presented. It is shown that the average spore concentration density can be employed as a
measure allowing for the standardization of results obtained under different conditions.

The proposed system is based on a novel two-stage algorithm, which has the potential
to be extended to the detection of other types of spores. The presented methodology and
the developed software can be adapted for the scanning and detection of various objects
situated on microscopic slides. Furthermore, the method provides an effective tool for
related researchers to fasten the processing of the microscopic slides for the collection of
data on the changes in various agrocenosis, where the knowledge of the spore density is
important for decision-making.

It should also be noted that the procedure used at the second stage of the proposed
algorithm can be directly applied to the selected area of the slide using the developed
software and the system. This enables the application of this specific stage of the algorithm
not only to slides but also, for instance, to the enumeration of spores obtained using other
types of spore-trapping devices. Although winter soft wheat (Triticum aestivum L.) was
used to collect spores of phytopathogens due to its varying sensitivity to them, the proposed
smart system can be readily extended to other grain crops, including soft spring wheat,
and both winter and spring durum wheat (Triticum durum).
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