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Abstract: Macronutrients, including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), mag-
nesium (Mg), and sulfur (S), are the most basic nutrient elements in the solution for the hydroponic
system. However, the current management of hydroponic nutrient solutions usually depends on EC
and pH sensors due to the lack of accurate specific macronutrient sensing equipment, which easily
leads to nutritional imbalance for the cultivated plant. In this study, the UV-NIR absorption spec-
troscopy (200–1100 nm) was used to predict six macronutrients in hydroponic solutions; two kinds of
single-task learning algorithms, including partial least squares (PLS) and least absolute shrinkage
and selection operator (LASSO), and two kinds of multi-task learning algorithms, including dirty
multi-task learning (DMTL) and robust multi-task learning (RMTL), were investigated to develop
prediction models and assess capabilities of UV-NIR. The results showed that N and Ca could be
quantitatively predicted by UV-NIR with the ratio of performance to deviation (RPD) more than
2, K could be qualitatively predicted (1.4 < RPD < 2), and P, Mg, and S could not be successfully
predicted (RPD < 1.4); the RMTL algorithm outperformed others for predicting K and Ca benefit from
the underlying task relationships with N; and predicting P, Mg, and S were identified as irrelevant
(outlier) tasks. Our study provides a potential approach for predicting several macronutrients in
hydroponic solutions with UV-NIR, especially using RMTL to improve model prediction ability.

Keywords: hydroponic solutions; macronutrients; spectral detection; machine learning; multi-task

1. Introduction

The hydroponic culture provides a more accurate control of environmental conditions
to allow a more efficient use of water and fertilizers that may increase production and
improve the quality of crops [1,2]. Increasingly, the nutrient solutions are recirculated
and reused to reduce environmental pollution and economic costs [3]. Due to the lack
of in-situ accurate detection methods of nutrients in the hydroponic system, the current
existing mode of nutrient solution management system usually depends on an EC (electric
conductivity) sensor [4,5], which is an indicator of total ion concentrations, and pH sensor,
which is used to adjust to the suitable acid and alkali environment [6]. Consequently, the
EC-based nutrient measurement mode couldn’t provide the concentrations of individual
nutrients in the solution, which easily leads to nutritional imbalance for the cultivated
plant [7], and may result in the development of toxicity or deficiency symptoms and
ultimately impair productivity [8].

Macronutrients, including nitrogen (N), phosphorus (P), potassium (K), calcium
(Ca), magnesium (Mg), and sulfur (S) are the most basic nutrient elements in the so-
lution for the hydroponic system, and the plant productivity [1,9]. Usually, macronu-
trients dissolved in water in ionic form, including nitrate NO3

−, ammonium NH4
+,

phosphate(PO4
3−,HPO4

2−,H2PO4
−), potassium ion K+, calcium ion Ca2+, magnesium
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ion Mg2+, and sulfate SO4
2−, with the characteristics of low content of concentrations, easy

solubility in water, and having an ion state that is easily disturbed by environmental vari-
ables such as temperature and pH [4]. Thus, the hydroponic solution is a multi-component
mixture with constantly changing parameters caused by crop growth and environment
change, and macronutrients should be precisely and individually measured online for
optimal management and supplement, and better in real time. Recently, ion-selective
electrode (ISE) technology has been investigated by researchers to detect macronutrients in
hydroponic solutions in situ and individually [10–12]; however, the problems of having an
ion interference effect, being drift-prone, and having a short lifespan limit the application
of ISE in the actual hydroponic work site [13,14].

Alternatively, with the advantages of rapid, direct, cost-effective, and effective online
monitoring, the absorption spectroscopy analytical approach could be used in chemomet-
rics to construct mathematical models for predicting the concentrations of macronutrients
in hydroponic solutions [15]. UV-NIR absorption spectroscopy (200–1100 nm) has been
widely used to directly detect nitrate [16–18], chemical oxygen demand [16,19,20], dissolved
organic carbon [17,21,22], and other water attributes [15]. With respect to macronutrients
in the hydroponic solutions, a UV-VIS spectroscopy (190–650 nm) based sensing system
was designed to quantify the presence of N, P, and K, and the results showed that the
self-learning artificial intelligence algorithm can find interference modes among a spec-
tral database and perform feasible predictions [23]. Researchers extended their work to
investigate the interferences within a complex matrix orthogonal test solution samples;
quantitative results for N and K and qualitative results for P were obtained [24]. Spec-
troscopic IoT systems ranging from 410 nm to 940 nm were also proven as usable in
monitoring N in nutrient solutions with an R2 of more than 0.9 [25]. To improve the pre-
diction of P, the cobalt electrochemical data and the principle component of near infrared
(NIR, 900–1700 nm) spectral data were fused to build an artificial neural network (ANN)
estimation model, which can yield an R2 of 0.89 [26]. A modified molybdenum colorimetric
method was proposed to obtain the visible range spectrum (400–800 nm), and the ANN
model achieves an R2 of 0.86 [27]. In addition to the two mentioned methods that coupled
with chemical technique, the machine learning models based on hybrid ensemble were also
proved that could effectively increase the accuracy of UV-NIR for classifying the concentra-
tions of P [28]. The predictions of Ca, Mg, and S using a spectroscopy analytical approach
still need to be researched.

As mentioned above, the hydroponic solution is a kind of mixture composed of
several inorganic salts; however, to the best of our knowledge, almost no nutrient has
direct absorption wavebands except nitrate, which has been proven with several significant
sensitive bands ranging from 200 to 300 nm [15–18,23]. The existence of interferences
and overlapping signals between different nutrients may increase the misevaluation for
the spectral chemometric prediction models [24], as commonly used intelligent learning
algorithms treat the calibration and prediction of specific macronutrients independently
as a single modeling task [23,27,28], which may lose sight of underlying cross-relatedness
between different nutrients. As we proved before, multi-task learning could take advantage
of underlying correlations to improve the prediction performance of regression models for
predicting soil properties [29]. Thus, it is feasible to assume that the tasks of predicting
macronutrients in hydroponic solutions are related.

The overarching aim of the study was to assess the capabilities of UV-NIR spectroscopy
for predicting the individual concentrations of six macronutrients in hydroponic solutions
with single-task and multi-task learning algorithms. The specific objectives are threefold:
(1) investigate the predictive ability of UV-NIR spectroscopy to predict N, P, K, Ca, Mg,
and S in hydroponic solutions; (2) compare the prediction performance of two selected
multi-task learning algorithms with two traditional single-task ones; and (3) study the
prediction mechanism and underlying correlations between different attributes of hydro-
ponic solutions.
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2. Materials and Methods
2.1. Sample Preparation

In this study, 5 basic nutritional formulations (NFs), that were used to plant tomato,
sweet potato, lettuce, grape, and watermelon, respectively, in the Baiyun test base of
Guangdong Academy of Agricultural Sciences were selected to produce the nutrient
solution samples, shown in Table 1. The used chemical reagents of basic NFs included
potassium nitrate (KNO3), magnesium sulfate heptahydrate (MgSO4·7H2O), ammonium
dihydrogen phosphate (NH4H2PO4), potassium dihydrogen phosphate (KH2PO4), and
calcium nitrate tetrahydrate (Ca(NO3)2·4H2O).

Table 1. The five basic nutritional formulations (NFs) used for making nutrient solution samples.

Mother Solution Chemical Reagents
Application Amounts (mg/L)

Basic NF1/
Tomato

Basic NF2/
Sweet Potato

Basic NF3/
Lettuce

Basic NF4/
Grape

Basic NF5/
Watermelon

A

KNO3 500 750 600 404 238
MgSO4·7H2O 300 450 433 246 500
NH4H2PO4 50 75 133 - -

KH2PO4 150 225 - 136 185

B Ca(NO3)2·4H2O 900 2700 900 590 910

The application amounts of chemical reagents were changed to obtain more samples
with different concentrations, specifically: for each chemical reagent of each basic NF, the
application amount was evenly decreased by a 10 arithmetic series, to obtain 10 sub-NFs;
and 10 random numbers generated between the min and max values of the just produced
arithmetic sequences, were used as application amounts to obtain another 10 sub-NFs. Thus,
10 evenly varied sub-NFs and 10 randomly varied sub-NFs were derived from each of the
five basic NFs, that is to say, a total of 100 sub-NFs with different application amounts, which
can be seen in the Supplementary Materials, were used to make nutrient solution samples.
The mixing and stirring for each sub-NF was operated under a stable indoor condition
of 24 ◦C. The pH and EC values were measured with online detectors (Mettler-Toledo,
Billerica, MA, USA) to assist in analysis after the homogeneous mixture of sample solutions.
The descriptive statistics and the Pearson correlation coefficients (r) of the concentrations
of six macronutrients and pH and EC values were used for statistical analyses.

2.2. Spectral Collection and Preprocessing

During each spectral collection, the hydroponic solution sample was filled in an optical-
grade quartz cell with a path length of 10 mm, which was placed in a specific holder with
shading cover under a stable indoor environment. A combined deuterium and halogen
light source was used to generate transmission spectra for the samples, and the transmission
spectra were collected with a UV-VNIR (200–1100 nm) spectrometer (Maya2000Pro, Ocean
Optics, Orlando, FL, USA) and a laptop with data collection software. Figure 1a shows the
experiment conducted in action. Each sample was measured 100 times and averaged as the
final spectra to reduce spectral noise. After the sample spectral collections, the reference
and dark intensity of radiation were collected by an empty quartz cell with or without a
light source, individually [16]. The absorbance of samples was calculated with transmission
spectra based on reference and dark intensity of radiation [30], and the absorbance of pure
water was also collected for analysis, as shown in Figure 1b. In order to further look into
spectral response, the significant specific absorption peaks along the UV-VNIR were plotted
and analyzed.
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Figure 1. (a) Physical picture of spectral collection experiment: 1, spectrometer, 2, light source, 3,
laptop with data collection software, and 4 holder with the sample inside; (b) absorbance spectra of
samples and pure water.

Spectral preprocessing and transformation have been proven to be an effective method-
ology to correct for non-linearity, measurement and sample variations, and noisy spec-
tra [31,32]. In this study, we resampled the original spectral band to 1 nm along the
entire spectral region of 200–1100 nm, and the Savitzky–Golay filtering algorithm with a
second-order polynomial was selected to smooth the resampled absorption spectra [33]; the
standard normal variate was performed to correct additive and multiplicative effects [34],
and the first derivative was conducted to remove the baseline and improve the linear
trends [35].

2.3. Learning Algorithms

In this study, the modeling tasks of 6 macronutrients share the same input independent
variables, i.e., the preprocessed spectral matrix of 100 samples, which includes 898 wave-
bands, that is, high-dimensional data with multi-collinearity and redundancy inside [36].
The commonly used linear learning algorithms in spectral chemometrics usually overcome
the problem of overfitting and improve the generalization performance by dimensionality
reduction or feature selection. For linear single-task learning, the typical algorithms are
partial least squares (PLS) (e.g., [26,27]) and least absolute shrinkage and selection oper-
ator (LASSO) (e.g., [37,38]), respectively. The PLS algorithm decomposes independent
variables and dependent variables by linear combinations to extract latent variables (LVs,
or components) and builds the regression model based on the LVs instead of the original
input independent variables [39]. The LASSO algorithm defines a continuous shrinking
operation using L1-norm regularization that can produce coefficients that are exactly zero,
and hence retain the good characteristics of both subset selection and ridge regression,
which can provide a sparse and interpretable model [40].

Multi-task learning aims to improve the performance of multiple related learning
tasks by leveraging useful information among them [41,42]. Typically, with respect to
linear learning algorithms, the dirty multi-task learning (DMTL) algorithm decomposes
the regression coefficient matrix W (features × tasks) into a block-sparse matrix WB (cor-
responding to the shared features) and an elementwise sparse matrix WE (corresponding
to the non-shared features) [43,44], that can take advantage of the shared feature struc-
ture (block-sparse) between each task and model all the tasks simultaneously with L1/L∞
block-sparse regularization [45,46]. Mathematically, the object function is
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min
W

t

∑
i=1

∥ Wi
TXi − Yi ∥

2
F + λB∥ WB ∥1,∞ + λE∥ WE ∥1 (1)

subject to : W = WB + WE (2)

where Xi is the spectral matrix of task i that is the same for each task in this study, Yi is
the predicted variable of task i, and λB and λE are regularization parameters to control the
degree of penalty on WB and WE, respectively.

In addition to shared features, linear multi-task learning can also capture the task
relationship by constraining the tasks share a low-dimensional subspace, i.e., W is of low
rank, and the trace norm regularization has been widely used to replace and solve the
rank minimization problem (e.g., [47,48]). Usually, the assumption that all models share a
common low-rank structure is restrictive in many real-world applications. Thus, the robust
multi-task learning (RMTL) algorithm was proposed to identify the irrelevant (outlier)
tasks as well as learn multiple tasks simultaneously [49]. Similar to DMTL, RMTL also
decomposes the W into two parts, i.e., a low-rank structure WL (obtained by trace norm
regularization) to capture the task relationships, and a group-sparse structure WS (obtained
by L2,1 norm regularization) to identify the outlier tasks [44]. RMTL is formulated as

min
W

t

∑
i=1

∥ Wi
TXi − Yi ∥

2
F + λL∥ WL ∥∗ + λS∥ WS ∥1,2 (3)

subject to : W = WL + WS (4)

where Xi is the spectral matrix of task i that is the same for each task in this study, Yi is
the predicted variable of task i, and λL and λS are regularization parameters to control the
degree of penalty on WL and WS, respectively.

2.4. Modelling and Evaluation

The Kennard–Stone algorithm [50] was applied to the original spectral matrix data to
divide the total 100 samples into calibration and validation sets with a split ratio of 0.7 to 0.3.
Thus, 70 samples were selected as the calibration set (also used for cross-validation during
training) and the remaining 30 as the validation set (independent testing for the established
model). As different predicting variables (macronutrients) vary in numerical ranges, to
make every variable contribute equally to the regression analysis, both the calibration
and validation sets were standardized by scaling their mean and standard deviations to
0 and 1 [51], respectively. To avoid overfitting or underfitting, a 10-fold cross-validation
based on the smallest mean squared error with 100 hundred random repetitions was
individually used in model calibrations to determine the optimal parameters of the used
learning algorithms, including the number of LVs of PLS and the regularization parameters
of LASSO, DMTL, and RMTL.

According to the regression evaluation framework that we proposed before [31], the
prediction accuracy of the regression models was validated and compared with the ratio
of performance to deviation (RPD): category A (RPD > 2.0) with good accuracy indicat-
ing quantitative prediction ability; category B (1.4 < RPD < 2.0) with moderate accuracy
indicating qualitative prediction ability; and category C (RPD < 1.4) with poor accuracy
indicating ineffective prediction ability [52]. The ratio between the interpretable sum
squared deviation and the total sum squared deviation (SSR/SST) was also used to assist
evaluation; usually, the SSR/SST should be greater than 0.5 to ensure the interpretability of
the calibration model [53]. The RPD and SSR/SST are calculated as

RPD = SD/RMSE =
√

m∑m
i=1(yi − y)2/∑m

i=1( f (xi)− yi)
2/(m − 1) (5)

SSR/SST = ∑m
i=1( f (xi)− y)2/∑m

i=1(yi − y)2 (6)
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In order to further explore the prediction capabilities and mechanism of UV-NIR for
predicting six macronutrients in hydroponic solutions, the regression coefficients of sparse
models built by LASSO were used to distinguish essential wavebands for predicting specific
macronutrients [38,46]. The variable importance for projection (VIP) scores obtained by
PLS was applied to identify important wavebands for predicting models when the score
was greater than 1 [54]. For the DTML and RMTL models, we also plotted the regression
coefficient matrixes to analyze the shared features and the correlated or outlier tasks.

All mathematical analysis methods mentioned above were conducted in MATLAB
R2021b (MathWorks, Natick, MA, USA). The processes of multi-task learning were carried
out with MALSAR Version 1.1 [44].

3. Results and Discussion
3.1. Characteristics of the Content of Nutrients

Table 2 shows the descriptive statistics of the concentrations of six macronutrients and
pH and EC values of the 100 samples used for calibrating and validating the regression
models. The results showed high variation with a significant range of change in all six
macronutrients, indicating that the data could be used for the regression analysis. The
STD of pH was significantly small, indicating the pH values in the sample dataset were
relatively consistent. Among the macronutrients, the concentrations of N, K, and Ca were
higher, with mean values of more than 100 mg/L.

Table 2. Descriptive statistics of pH, EC, and the concentrations of six macronutrients.

Units Mean STD Min Median Max

pH 6.96 0.31 6.17 6.95 7.59
EC µS/cm 288.95 149.66 72.09 257.90 864.00
N mg/L 111.81 80.89 12.54 91.91 433.43
P mg/L 24.08 15.84 0.46 22.11 71.50
K mg/L 122.00 74.00 2.70 115.82 354.13
Ca mg/L 103.77 86.20 3.05 86.95 457.63
Mg mg/L 20.86 14.03 0.17 18.13 64.75
S mg/L 24.19 14.47 0.23 22.85 57.55

Abbreviations used: pH, electrical conductivity (EC), nitrogen (N), phosphorous (P), potassium (K), calcium (Ca),
magnesium (Mg), and sulfur (S).

Table 3 shows the Pearson correlation coefficients (r) between different variables.
Bold underlined values indicate strong positive correlations (r ≥ 0.8) [55], which were
found between EC and N/K/Ca, N and K/Ca, and Mg and S. Bold italic values indicate
moderately positive correlations (0.6 ≤ r < 0.8), which were found between EC and P/Mg,
N and P/Mg, P and K/Ca/Mg, K and Ca, Ca and Mg. In addition, it was found that pH has
significant negative correlations with all other detecting variables, especially with P, which
is an element that occurs in forms that are strongly dependent on environment pH [1].

Table 3. Pearson correlation coefficients between the seven soil properties.

pH EC N P K Ca Mg S

pH 1.00
EC −0.72 1.00
N −0.66 0.99 1.00
P −0.85 0.66 0.61 1.00
K −0.67 0.88 0.86 0.65 1.00
Ca −0.64 0.95 0.97 0.60 0.73 1.00
Mg −0.61 0.76 0.70 0.62 0.56 0.71 1.00
S −0.52 0.57 0.48 0.45 0.40 0.47 0.90 1.00

Abbreviations used: pH, electrical conductivity (EC), nitrogen (N), phosphorous (P), potassium (K), calcium (Ca),
magnesium (Mg), and sulfur (S). Underlined values indicate strong positive correlations (r ≥ 0.8), and italic values
indicate moderately positive correlations (0.6 ≤ r < 0.8).
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3.2. Spectral Response

Figure 1b shows the absorbance along the UV-NIR range of 100 hydroponic solution
samples and pure water. As seen, three significant absorption peaks showed around
230 nm, 302 nm, and 975 nm for the samples. Particularly, the absorption peaks around
230 nm and 302 nm of the evenly decreased 10 samples of five basic NFs are presented in
Figure 2, and the absorbance of both peaks became significantly larger with the increase in
N’s concentrations; in addition, the first one moved from 225 nm to 236 nm and the second
one with a stable center of 302 nm, which was proven to be generated by nitrate in the
samples [15–18,23], and thus pure water had no response. The absorption peak around
975 nm is one of the water absorption bands [30,56], and thus both samples and pure water
have similar absorption characteristics.
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3.3. Model Performance
3.3.1. Prediction Results

To comprehensively evaluate the selected four learning algorithms, the indicators
including the used parameters, the numbers of used features, and prediction results of
PLS, LASSO, DMTL, and RMTL models for predicting six macronutrients were employed
and are presented in Table 4. The numbers of LVs and the regularization parameters
were determined via 10-fold cross-validation during model calibration. We assessed the
capabilities of UV-NIR for predicting macronutrients by RPD and SSR/SST values regarding
the independent validation set. The prediction accuracies of N and Ca with four learning
algorithms were categorized as A (RPD > 2) for RPDs ranging from 7.50 to 9.89 with
SSR/SSTs more than 0.84, indicating good prediction ability. The prediction accuracies
of K were categorized as B (1.4 < RPD < 2) with RPD ranging from 1.45 to 1.68 for four
models, and SSR/SSTs more than 0.76, indicating moderate prediction ability. However,
the prediction accuracies of P, Mg, and S were categorized as C with RPDs < 1.4, confirming
ineffective prediction ability. In addition, the best prediction of N was obtained by LASSO
with RPD = 10.12 and SSR/SST = 0.9, the best prediction of Ca was obtained by RMTL with
RPD = 4.35 and SSR/SST = 0.81, and the best prediction of K was also obtained by RMTL
with RPD = 1.73 and SSR/SST = 0.93.

Table 4. The used parameters, the numbers of used features, and the prediction results of the partial
least squares (PLS), least absolute shrinkage and selection operator (LASSO), dirty multi-task learning
(DMTL), and robust multi-task learning (RMTL) models for predicting six macronutrients.

Algorithm Macronutrient Parameter 1 N 2
Calibration Validation Accuracy Category

RPD SSR/SST RPD SSR/SST

PLS

N 5 898 11.16 0.99 9.46 0.91 A
P 2 898 1.60 0.61 1.04 0.41 C
K 4 898 3.16 0.90 1.70 0.87 B
Ca 5 898 6.94 0.98 3.93 0.86 A
Mg 2 898 1.46 0.52 1.08 0.38 C
S 2 898 1.35 0.44 0.91 0.59 C

LASSO

N 0.03 12 9.62 0.93 10.12 0.90 A
P 0.08 21 2.38 0.59 1.03 0.35 C
K 0.09 18 2.98 0.70 1.66 0.68 B
Ca 0.03 25 6.33 0.90 3.27 0.72 A
Mg 0.2 10 1.57 0.33 1.32 0.19 C
S 0.16 13 1.58 0.35 0.96 0.30 C

DMTL

N

29 7

31 8.28 0.90 7.50 0.84 A
P 51 2.90 0.69 1.04 0.40 C
K 49 4.02 0.80 1.68 0.82 B
Ca 44 4.82 0.85 3.43 0.69 A
Mg 46 2.84 0.67 1.15 0.45 C
S 59 2.80 0.64 0.95 0.55 C

RMTL

N

5 21

898 51.06 0.99 8.58 0.91 A
P 898 40.49 0.99 1.07 0.49 C
K 898 37.65 0.98 1.73 0.93 B
Ca 898 44.03 0.99 4.35 0.81 A
Mg 898 38.76 1.00 1.28 0.44 C
S 898 32.09 1.03 1.09 0.58 C

1 Note: The parameter for PLS is the number of latent variables; for LASSO, is the regularization parameter; for
DMTL and RMTL, there are two regularization parameters. 2 Note: n is the number of features used in the model.
Category A: RPD > 2.0, Category B: 1.4 < RPD < 2.0, Category C: RPD < 1.4. Abbreviations used: nitrogen (N),
phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), the ratio of performance to deviation
(RPD), the ratio between the interpretable sum squared deviation and the total sum squared deviation (SSR/SST).
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3.3.2. Comparison of Different Algorithms

In this study, two kinds of single-task learning algorithms, including PLS and LASSO,
and two kinds of multi-task learning algorithms, including DMTL and RMTL, were investi-
gated to develop prediction models for six macronutrients in hydroponic solutions. For
the calibration set, the single-task models of PLS for predicting S and LASSO for predict-
ing Mg and S were invalid with RPDs < 1.4 or SSR/SSTs less than 0.5. However, all six
macronutrients gained high prediction accuracies that could be categorized as A (RPD > 2)
with the multi-task models of DMTL and RMTL; the prediction ability of P, Mg, and S were
especially significantly improved, which showed as invalid or moderate with single-task
models. In addition, what needs to be illustrated is that all of the four algorithms had
the same accuracy categories for six macronutrients of the validation set; the best RPD
value of N was obtained by LASSO, and the best RPD values of K and Ca were obtained
by RMTL. It could be concluded that the multi-task learning algorithms usually had a
stronger learning ability, benefiting from the underlying relevant information compared to
single-task learning algorithms. However, significant overfitting could be seen in multi-task
models of DMTL and RMTL, and the performance of generalization ability still needs to
be optimized.

The PLS models were calibrated based on LVs extracted from the preprocessed spectra
and the RMTL were calibrated based on shared low-rank structure, and thus PLS and
RMTL have the common characteristic of dimensionality reduction that can produce
derived models [53], and all of the 898 wavebands were used as model input. However,
the LASSO models and DMTL models were calibrated based on feature selection, and only
parts of wavebands were used, which can produce sparse models. The difference in feature
distribution between derived models and sparse models can be seen in Figures 3 and 4. In
addition, the SSR/SST values of derived models were higher than sparse models of N, K,
and Ca for the validation set (shown in Table 4), indicating stronger explanatory power.
This result might be because the feature selection removed useful information and resulted
in the low explanatory power of sparse models.

3.3.3. Interpretation of the Prediction Mechanism

Figure 3 shows the distributions of the VIP scores over the entire UV-NIR wavelength
range of the PLS models for predicting six macronutrients; when the score was greater
than 1, the waveband is important for the specific macronutrient prediction model and
the distributions of the regression coefficients of the LASSO models; when the coefficient
was nonzero, the waveband was selected as the model’s input feature. As can be seen,
the distributions of the important wavebands of PLS models and selected features of the
LASSO models showed similar characteristics, and most of them were concentrated in the
UV region (200–380 nm) or the short-wave NIR region (780–1100 nm). Particularly, the
N was accurately predicted by LASSO with 12 wavebands and the significant features,
including 280 nm, 276 nm, and 306 nm, were all around the absorption peak of 302 nm,
which is the index of nitrate (Figure 2); the K was predicted by LASSO with 18 wavebands
and the significant features included 277 nm, 1053 nm, 337 nm, 237 nm, 265 nm, etc.; the
Ca was accurately predicted by LASSO with 25 wavebands and the significant features
were 306 nm, 305 nm, 280 nm, 269 nm, 874 nm, etc. These three sets of significant features
obtained by LASSO models were also recognized as the important wavebands by the
corresponding PLS models. Furthermore, it is worth mentioning that several specific
significant features were shared among six macronutrients, especially for N, K, and Ca,
with good or moderate prediction ability, including 276 nm or 277 nm, which were shared
by N and K, 280 nm shared by N and Ca, and 306 nm shared by N and Ca. However,
P, Mg, and S did not have significant shared features with N, and thus the predictions
were unsuccessful.

Figure 4a shows the nonzero regression coefficients of the block-sparse matrix WB, the
elementwise sparse matrix WE, and the combined regression coefficient matrix W of DMTL
models. Accordingly, 23 shared features for predicting six macronutrients were obtained
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by WB, and significant shared features included 300 nm, 336 nm, 337 nm, 260 nm, 304 nm,
971 nm, 259 nm, 901 nm, 850 nm, 876 nm, 306 nm, etc. Regrettably, only five of them were
shared by the N, K, and Ca of the LASSO models, including 337 nm shared by K, 850 nm
shared by Ca, 306 nm shared by N and Ca, 276 nm shared by N and K, and 874 shared
by K and Ca. Most other shared features were shared by the other three macronutrients
with low prediction ability, and thus it is hard to improve the prediction abilities for P, Mg,
and S with the DMTL algorithm, and the prediction abilities for N, K, and Ca were not
outstanding compared to the single-task models.
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Figure 4. (a) Block-sparse matrix WB, elementwise sparse matrix WE, and the combined regression
coefficient matrix W (features × tasks) of dirty multi-task learning (DMTL) models; (b) low-rank
structure WL, group-sparse structure WS, and the combined regression coefficient matrix W of the
robust multi-task learning (RMTL) models for predicting nitrogen (N), phosphorous (P), potassium
(K), calcium (Ca), magnesium (Mg), and sulfur (S). NaN: the coefficients are exactly zero and the
wavebands are not used as a feature.
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Figure 4b shows the regression coefficients of the low-rank structure WL, the group-
sparse structure WS, and the combined regression coefficient matrix W of RMTL models.
It can be seen clearly that the regression coefficients of the group-sparse structure WS for
predicting P, Mg, and S were nonzero, which means regression modeling for predicting
P, Mg, and S were identified as outlier tasks. On the other hand, regression modeling for
predicting N, K, and Ca were correlated tasks that might caused by shared features, and
Pearson correlation coefficients also proved strong positive correlations of N, K, and Ca
(Table 3). As a result, the underlying task relationships could improve the prediction ability
of K and Ca regarding RPD values, as illustrated in Table 4. In addition, the RPD of RMTL
for predicting N was slightly decreased compared to LASSO, which might be due to the
overall smallest mean squared error during the parameters optimization.

Based on the above-shown analysis, it can be inferred that, for the six macronutrients,
K and Ca have significant shared features with N for the LASSO and PLS models, and
regression modeling for predicting N, K, and Ca were also identified as correlated tasks by
the RMTL algorithm. Thus, the benefit from the significant spectral absorptions of N in the
UV-NIR, N, K, and Ca could be nicely or moderately predicted, but P, Mg, and S could not.

3.3.4. Comparison with Previous Studies

Our results demonstrated that N and Ca could be quantitatively predicted by UV-NIR,
K could be qualitatively predicted, and P, Mg, and S could not be successfully predicted.

Previous studies have made great efforts to improve the capabilities of spectral regres-
sion models for predicting macronutrients in hydroponic solutions. Specifically, N could
be easily and quantitatively predicted [23–25], as with our results. P has received more
attention; artificial intelligence algorithms (e.g., [23]) and those coupled with chemical tech-
niques (e.g., [26]) are commonly used methods that can achieve quantitative prediction for
P. K could also be quantitatively predicted based on artificial intelligence algorithms [23,24].
The prediction capabilities of P and K in previous studies outperform our results, except
for the use of chemical techniques, which is possibly due to the linear learning algorithm
or the volume of the sample set that we used, which could have limited the capabilities of
UV-NIR. However, the underlying correlations and prediction mechanism that we found
could be the base of artificial intelligence algorithms for future research.

In addition, this study is the first attempt to use spectral regression for predicting the con-
centrations of Ca, Mg, and S, which are also important macronutrients in hydroponic solutions.

4. Conclusions

The results of single-task and multi-task models illustrate the capability of UV-NIR for
predicting macronutrients in hydroponic solutions; specifically, the following conclusions
could be drawn in this study:

• N and Ca could be predicted with good accuracy (RPD > 2), K could be predicted
with moderate accuracy (1.4 < RPD < 2), and P, Mg, and S could not be successfully
predicted (RPD < 1.4);

• Significant spectral absorptions mainly caused by N could be found around 230 nm
and 302 nm, and regression features were thereby generated. Other macronutrients
did not show any obvious absorption characteristic along UV-NIR, but K and Ca have
significant shared features with N;

• Multi-task algorithms usually showed stronger learning ability compared to single-
task algorithms, especially with RMTL, which could improve prediction performance
for relevant tasks, namely predicting K and Ca and identifying the irrelevant (outlier)
tasks—predicting P, Mg, and S.

Future work should evaluate the practical use of nonlinear artificial intelligence multi-
task algorithms and long-wave NIR region (1100–2500 nm) for improving the prediction
capability of macronutrients in hydroponic solutions, especially for P, Mg, and S, and more
in situ hydroponic solution samples should be used to calibrate more robust prediction
models for achieving scientific and precise management of hydroponic culture.
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