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Abstract: Due to current global population growth, resource shortages, and climate change, traditional
agricultural models face major challenges. Precision agriculture (PA), as a way to realize the accurate
management and decision support of agricultural production processes using modern information
technology, is becoming an effective method of solving these challenges. In particular, the combination
of remote sensing technology and machine learning algorithms brings new possibilities for PA.
However, there are relatively few comprehensive and systematic reviews on the integrated application
of these two technologies. For this reason, this study conducts a systematic literature search using
the Web of Science, Scopus, Google Scholar, and PubMed databases and analyzes the integrated
application of remote sensing technology and machine learning algorithms in PA over the last
10 years. The study found that: (1) because of their varied characteristics, different types of remote
sensing data exhibit significant differences in meeting the needs of PA, in which hyperspectral remote
sensing is the most widely used method, accounting for more than 30% of the results. The application
of UAV remote sensing offers the greatest potential, accounting for about 24% of data, and showing
an upward trend. (2) Machine learning algorithms displays obvious advantages in promoting the
development of PA, in which the support vector machine algorithm is the most widely used method,
accounting for more than 20%, followed by random forest algorithm, accounting for about 18% of
the methods used. In addition, this study also discusses the main challenges faced currently, such as
the difficult problems regarding the acquisition and processing of high-quality remote sensing data,
model interpretation, and generalization ability, and considers future development trends, such as
promoting agricultural intelligence and automation, strengthening international cooperation and
sharing, and the sustainable transformation of achievements. In summary, this study can provide new
ideas and references for remote sensing combined with machine learning to promote the development
of PA.

Keywords: agricultural monitoring; disease and pest detection; land use and management; yield
prediction; agricultural sustainable development

1. Introduction

In the context of rapid global climate change, agricultural practices are facing unprece-
dented uncertainties and challenges, such as climate warming, sea-level rise, drought and
flooding, and other extreme hydroclimatic frequent occurrence [1-4]. At the same time, the
global population is expected to reach 8.7 billion by 2030 and climb to 9.7 billion by 2050,
which undoubtedly puts tremendous pressure on global food production [5]. However,
it is gratifying that in recent years, with the increase in investment in science, technology,
and agricultural research, the development of PA has achieved specific results [6,7]. This
progress not only changes the traditional mode of agricultural production, but also aims to
optimize agricultural inputs (seeds, water resources, chemicals) through the application of
advanced technologies (such as remote sensing, machine learning algorithms, agricultural
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robots, etc.), to effectively manage crop variability, to maintain or even increase yields,
and to cleverly avoid potential losses, thereby improving the efficiency and profitability of
agricultural systems [8]. For example, in 2023, Yomo et al. used the maximum likelihood
algorithm, based on Landsat-8 remote sensing images, to classify land use and land cover,
and by using the multi-layer perceptron-Markov chain modeling method, the results show
that the overall accuracy (Kappa coefficient) is as high as 92% [9]. This study shows that
the accuracy of agricultural monitoring and recognition can be significantly improved
by integrating advanced remote sensing technology and machine learning algorithms.
In addition, in another study, the integrated learning random forest classifier is used to
study the progressive lodging-sensitive characteristics of rice types based on multi-spectral
(444-842 nm) fusion unmanned aerial vehicle technology, with an overall accuracy of
96.1% [10]. These examples prove the effective application of advanced technologies and
algorithms in PA. Although PA offers many advantages, limitations such as information
accuracy, large data requirements, operational complexity, and high initial cost cannot be
ignored [11]. Therefore, for most countries in the world, it is necessary to actively promote
the coordinated development of PA, remote sensing (RS), and machine learning (ML); to
ensure agricultural production safety; and strictly abide by the food safety red line.

In recent years, researchers have engaged in multi-dimensional, deep exploration and
have exerted extensive efforts in the development of PA, which is mainly reflected in the
research and application of new technologies, covering many key links such as personnel
training, policy support, etc. [12,13]. The aim is to overcome the shortcomings of traditional
agriculture, such as time-consuming and strenuous labor requirements, improper use of
resources, unstable crop yield, and environmental pollution [14,15]. In this context, it is
actually a complex and critical challenge to accurately monitor crop growth and conditions
at multiple scales in different locations and environments in real time and to use data
with different time resolutions to meet a variety of purposes. In fact, it is a complex
and critical challenge to respond quickly to extreme events according to changing climate
conditions [16,17]. Fortunately, RS technology has developed rapidly in agriculture, forestry,
hydrology, environmental protection, and other fields because of its unique advantages
(such as synchronization, timeliness, spatiotemporal continuity, and large-scale observation
ability) [18-22]. RSis a technology that can obtain information regarding the earth’s surface
without physical contact. It uses sensors to capture and record electromagnetic radiation
signals reflected, emitted, or scattered from the earth’s surface via a long distance, and
then to continuously identify, measure, and evaluate the characteristics of target objects
located on, above, or even below the earth’s surface by analyzing these signals [23]. This
not only greatly improves the efficiency of agricultural information acquisition, but also
provides strong support for dealing with agriculture in extreme weather, allowing crop
managers to implement timely measures to reduce the impact of disasters and to ensure
the safety and stability of agricultural production [24,25]. In addition, with the maturity of
RS inversion algorithms (linear regression, the PROSAIL physical model, neural networks),
inversion datasets based on RS images have also appeared, including inversion product
datasets based on MODIS, Landsat-8, and Sentinel-2 images, e.g., water quality and water
environment elements inversion, vegetation parameter inversion, land surface temperature
inversion, and soil parameter inversion products. These provide reliable and rich data
sources for agricultural RS-related research [26-28].

It is well known that most agricultural RS data comprise information provided by
visible light and near infrared radiation reflected (or transmitted) by plants, measured ac-
cording to wavelength, e.g., spectral reflectance [29]. According to the change in vegetation,
the spectral data commonly used in PA include visible (400 nm), near infrared (700 nm),
and short-wave infrared (1300 nm) light [30,31]. In addition, multi-spectral remote sensing
and hyperspectral remote sensing have also been proven to be effective means of plant
phenotypic analysis, crop index acquisition, and stress monitoring [32]. For example, Euro-
pean Sentinel-2, ENVISAT MERIS, French SPOT satellite, NOAA AVHRR satellite, India’s
Hyperion, China’s GF series, and HJ remote sensing data have been widely used [33-35].
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It is worth mentioning that the emergence of unmanned aerial vehicles (UAVs) marks a
new era of RS. UAVs are a type of unmanned small aircraft which are often used to carry
remote sensing equipment for aerial data acquisition. They can provide more abundant
and comprehensive spectral, spatial, and temporal resolution data, vegetation height data,
and multi-angle observation, and exhibit high efficiency, convenience, low cost, and strong
adaptability [36]. There have been many successful cases of their use in crop classification,
weed detection, and vegetation monitoring, which prove the feasibility of the use of UAVs
in PA [37]. For example, in 2024, Marques et al. overcame the limitation of limited spectral
coverage based on UAVs, especially under low light, fog, or smoke conditions, to achieve
real-time, efficient, and distributed accurate monitoring [38]. Bah et al. used UAV images to
detect weeds in the field in 2017, with an accuracy of more than 90% [39]. Yang et al. used
UAYV image information to identify rice lodging, based on a decision tree (DT) algorithm,
in 2017, with an overall accuracy of 96.17% [40].

As the core means of dealing with agricultural remote sensing information, the ML
model has been widely used and deeply studied in recent years. ML is a data analysis
method that allows computer systems to automatically learn patterns and rules from
data without explicit programming [41]. Researchers tend to use ML as an integrated
framework for feature collection and classification, prediction, or decision support [42].
With the improvement in big data’s computing power, many classical algorithms have
been optimized and improved, and new models and methods continue to emerge [43].
Common ML methods include DT, support vector machine (SVM), and logical regression
(LR). The core of these methods is to identify optimized methods of obtaining statistical
information in order to automatically and efficiently solve practical problems such as
classification and regression [44]. In addition, the convolution neural network (CNN)
method, based on ML, offers unique advantages in the field of image processing. It can
automatically extract deep features from images and achieve accurate classification or
recognition tasks [45]. Because of their unique data expression abilities, these technologies
can learn and extract valuable information automatically, thus effectively avoiding the
complexity and subjectivity inherent in traditional methods, significantly improving the
efficiency and generalization regarding processing multi-platform RS data [46]. It is these
advantages of ML that have attracted more attention from agricultural researchers and
experts, identifying it as the driving factor for the development of PA [47-51].

In view of the major challenges posed by global population growth, resource shortage,
and climate change to traditional agricultural models, the purpose of this study is to explore
the methods for promoting the development of PA by integrating RS technology and ML
algorithms. In order to achieve this goal, based on the keywords such as “remote sensing
(RS)”, “machine learning (ML)” and “precision agriculture (PA)”, we used databases such
as the Web of Science, Scopus, Google Scholar, and PubMed to search the related literature
from 2014 to 2024. We selected more than 12,000 related research articles and conducted
a quantitative analysis of these articles (as shown in Figure 1). The results of the analysis
show that the number of related publications showed an overall upward trend during the
decade from 2014-2024 (as shown in Figure 1a). In order to ensure the comprehensiveness
and depth of the study, on the basis of the preliminary search, we also combined the
keywords such as “agricultural monitoring”, “detection of diseases and insect pests”, “land
use and management”, “yield prediction”, and “agricultural sustainable development” for
further screening. After a rigorous screening process, more than 330 peer-reviewed papers
published between 2014 and 2024 related to agricultural science, environmental science,
and related cross-disciplines were identified, from which it can be observed that the number
of research papers is also increasing year by year (as shown in Figure 1b). In addition, from
the perspective of international cooperation and regional distribution, researchers in China,
the United States, Brazil, and other countries have made significant contributions to the
application of remote sensing and machine learning in precision agriculture. However, at
the same time, we also note that there is an obvious imbalance in the spatial distribution
of these studies, and there are great differences in research contributions among different
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regions (as shown in Figure 2). Therefore, through the in-depth analysis and summary of
the existing research results, we systematically sort out the application status of remote
sensing technology and machine learning in precision agriculture and discuss the current
challenges and possible future development directions in this field. Thus, this study exhibits
important theoretical and practical significance.
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Figure 1. The changing trend of peer-reviewed papers published in the past 10 years, based on
keyword retrieval over time. (a) Using the Web of Science, Scopus, Google Scholar, and PubMed
databases, we searched 12,000 papers published over the past 10 years; (b) the changing trend of peer-
reviewed papers published in agricultural science, environmental science, and related cross-fields
over the past 10 years, based on keywords.
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Figure 2. The geographical distribution of precision agriculture research based on the combination of
remote sensing technology and ML; the change in color reflects the difference in research quantity.

2. Remote Sensing Technology and the Machine Learning Method
2.1. Remote Sensing Data in Precision Agriculture
There is no doubt that the application of RS technology in agriculture has greatly pro-

moted agricultural reform. This technology enables us to collect global data on the earth’s
surface, remotely on a regular basis, providing unprecedented convenience for agricultural
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production and management [52-54]. Through a variety of sensors, we can directly or
indirectly obtain information regarding almost all the key elements of agricultural practice,
including crop growth data, soil moisture monitoring, pest presence and pest early warning
notification, and yield prediction. At the same time, the wide geographical coverage and
diversified resolution of RS technology also provide valuable data support for agricultural
production and management [55]. As shown in Figure 3, remote sensing satellites with
different resolutions play distinctive key roles in various PA practices and rely on different
characteristics and advantages to comprehensively serve the specific needs of PA from
many angles [56,57]. With the continuous updating and upgrading of remote sensing
sensors, agricultural managers and practitioners will continue to benefit from the in-depth
application of RS technology; for example, the use of RS data shows high practicability and
effectiveness in evaluating and monitoring agricultural practice [58,59].
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Figure 3. The comprehensive application framework of different remote sensing satellites in precision

agriculture.

In general, when obtaining remote sensing data, the value of RS images with appro-
priate resolution, band, reliable quality, and cost-effectiveness can be maximized if they
are selected according to specific agricultural problems [60,61]. For example, using daily
10 m NDVI data from Sentinel-2 images can allow for the quick, efficient, and accurate
monitoring of the flowering date of apples, subsequently providing technical reference for
the accurate classification and growth trend prediction of fruit trees [62]. In another study,
the use of Landsat-8 images with a spatial resolution of 10 to 30 m provided a promising
solution for disease detection in mixed forests in southern China [63]. In other studies
regarding the detection of plant diseases and pests infecting vegetation, the detection
accuracy does not seem to be satisfactory based on visible light (780 nm) data [64]. In a
2023 study by Zhu et al., although the use of UAV technology can confirm the importance
of red-light bands and adjacent bands, it did not achieve the desired results in the inves-
tigation of plant diseases and pests invading vegetation [65]. However, it is gratifying
that multi-spectral remote sensing data, with rich bands and a wide range of wavelengths,
can capture subtle changes in infected plants affected by diseases and insect pests, thus
showing excellent ability for early pest detection [66]. In their research in 2024, Ren et al.
used the characteristics of UAVs to obtain crop growth status quickly and accurately in
small and medium-sized areas [67]. By effectively assimilating remote sensing data with
the WOFOST model using the Kalman filter algorithm, the accuracy of the yield simulation
of different processing schemes is significantly improved, and more accurate and reliable
yield prediction information is provided for agricultural producers.

In the practical application of PA, according to different requirements and application
scenarios, commonly used RS data sources include hyperspectral, multispectral, and ther-
mal infrared remote sensing; LIDAR remote sensing; SAR remote sensing; UAV technology;
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etc. As shown in Figure 4, the application of various RS data sources in PA is shown in
detail, including the time distribution and the proportion of RS data sources in PA. This
information undoubtedly provides valuable references for agricultural managers and prac-
titioners, not only to help them develop a more comprehensive and in-depth understanding
of the characteristics and applicability of various RS technologies but also to provide strong
support for them in making scientific and reasonable decisions in real-world situations.
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Figure 4. Remote sensing data commonly used in precision agriculture. (a) The distribution character-
istics of different types of remote sensing data over time, marked in different colors; (b) the statistical
analysis of the proportion of all types of remote sensing data sources, based on the literature retrieved
in this paper.

2.2. Overview of the Use of ML Algorithms in Precision Agriculture

The concept of machine learning (ML) can usually be traced back to Alan Turing’s clas-
sic research article published in 1950, i.e., the possibility that machines can exhibit behaviors
similar to human intelligence [68,69]. This concept continued to develop in the following
decades and gradually became a vital branch of computer science. The core principle of
ML is to automatically learn and sum up the rules in the input data, realizing the accurate
prediction or classification of unknown data by extracting key features and constructing
mapping functions [70]. In addition, as the core component of artificial intelligence, ML
gives computer systems the ability to perform a variety of tasks efficiently, and continues
to promote the innovation and development of intelligent technology [71]. Generally
speaking, ML mainly contains three elements, namely: a model, objective functions, and
an optimization algorithm. The model explains the correlation between input and output
and the meaning and range of the parameters, the objective function measures the differ-
ence between the model prediction and the actual results, and the optimization algorithm
minimizes or maximizes the objective function by iteratively adjusting the parameters. As
a result, the best model parameters are obtained [72,73]. According to different types of
learning, ML can be divided into four main categories: supervised learning, unsupervised
learning, semi-supervised learning, and reinforcement learning [74,75]. In Table 1, the
applications of the four main categories of algorithms in PA and their scope of application
are listed and described in detail.
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Table 1. Common machine learning algorithms and references in the field of precision agriculture.

Model Name Application of Precision Agriculture Reference
. Classification of different crop diseases, soil types, etc.;
Naive Bayes prediction of the yield of wheat, corn, and other crops. [76,771
Logistic Regression A'ssessment of the risk level of pest occurrence; prediction of the [78,79]
yield of wheat, corn, and other crops.
Linear Regression Optlmlzz.atllon of the amount of fertilizer application to improve [80,81]
the prediction accuracy of wheat, corn, and other crops yield.
Lasso Regression Dete.ctlon of the extent to which crops are attacked by diseases [82,83]
and insect pests.
AdaBoosT Algorithm Class@catlon and 1'dent1f1cat10r.1 of different crop species and [84,85]
detection of crop diseases and insect pests.
Linear Discriminant Classification of soil types, identification of crop varieties, and
Analvsis determination of the effects of different soil fertilities on crop [86,87]
Y growth.
Recurrent Neural Network An.alys1s of crop growth.tlme series f:lata and prediction of time [88,89]
series changes in crop diseases and insect pests.
.. Selection of pest management strategies; identification of crop
Decision Tree pest types [90,91]
Nearest Neighbor Identification of different crop varieties; evaluation of soil
Aleorith fertili d [92,93]
gorithm ertility grades.
XGBoost Algorithm PI?edlCthl‘l pf ylek?l pf wheat, corn, anq other crops based on [84,85]
climate, soil conditions, and other variables.
Supervised Long Short-Term Memory For.ecastmg the long—t?rm t?end of crop yield based on Cllma}te
. variables, such as precipitation and temperature, and prediction  [94,95]
Learning Network . . . .
of the outbreak of crop diseases and insect pests by time series.
. Crop growth monitoring and modeling, using remote sensing
Support Vector Regression reflectance data to predict crop leaf area index, yield, etc. [80,96]
Identification of crop diseases and insect pests; crop growth
Artificial Neural Network — monitoring and modeling; prediction of crop leaf area index, [97,98]
yield, etc.
. Identification of crop leaf diseases and detection of disease
Convolutional Neural . . .
. invasion degree of crop leaves; prediction of crop leaf area [87,99]
Algorithm ) .
index, yield, etc.
Identification of crop diseases and insect pests; crop growth
Random Forest monitoring and modeling; prediction of crop leaf area index, [100,101]
yield, etc.
Identification of crop diseases and insect pests; crop growth
Support Vector Machine monitoring and modeling; prediction of crop leaf area index, [102,103]
yield, etc.
CatBoosT Algorithm 'Ident%flcatlon of crop leaf diseases and detection of disease [96,104]
invasion degree of crop leaves.
Ridge Regression Prc:edlcnon of soil nutrients and key nutrient content based on [105,106]
soil sample data.
Optimization of model parameters to improve the accuracy of
Random Gradient Descent agrlc.ultl'lral prediction and. decision-making modgls; [107,108]
application to complex agricultural system modeling and
prediction.
. . . Assessment of soil quality; prediction of soil fertility, acidity,
Semi supervised Generative .. . . . .
. . . . alkalinity, etc.; prediction and control of diseases and insect [109,110]
learning Semi-Supervised Learning pests
Identification and classification of diseases and insect pests;
Autoencoders . [111]
assessment of the risk level of pest occurrence.
Unsupervised Co-Training Identification, classification, and risk assessment of diseases [112]

and insect pests; soil type classification.
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Table 1. Cont.

Model Name

Application of Precision Agriculture

Reference

Learning

Reinforcement

Probabilistic Graphical

Identification of crop diseases and insect pests; crop growth

M monitoring and modeling; prediction of crop leaf area index, [113]
odel .

yield, etc.
Independent Component Identification, classification, and risk assessment of diseases [114]
Analysis and insect pests; soil type classification.
iﬂg(z)rﬁilll};nDetectlon Detection of crop wilt, soil moisture, and pH anomaly. [115]
Self-Organizing Maps Classification of crops and rapid identification of soil types. [116]
K-Means Clustering Accurate identification of crops. [117]
Principal Component Accurate classification of crops based on their growth [87]
Analysis characteristics (such as color, texture, size, etc.).
Deep Q-Network Retrieva'l of key gr'owth information, such as vegetation index, [118]

to effectively monitor crop growth and development.

Policy Gradient Methods ~ Optimization of crop irrigation and fertilization strategies. [89]
Q-learning Optimization of agricultural decision making and [119]

environmental interaction.

Recent studies have shown that with the improvement of computing performance
and the enhancement of massive datasets, ML has shown strong application capabilities
in many fields, especially in the field of PA [120,121]. In particular, a series of emerging
algorithms and technologies, such as deep learning (DL), intelligent optimization, neural
networks, computer vision, and data enhancement, continue to emerge. These improve-
ments have not only injected a strong impetus into the field of ML but have also provided
rich opportunities at all stages of agriculture. They enable agricultural practitioners to
respond more effectively to challenges and to achieve specific goals [122]. As shown in
Figure 5, the frequency distribution of the algorithm is obtained by searching the keywords
“ML” and “PA”. From the chart, we can see that ML is widely used in the field of PA, and
the SVM algorithm displays the highest frequency, accounting for more than 20%, followed
by the random forest (RF) algorithm, accounting for about 18%.

In addition, in the specific application of PA, different algorithms have revealed
their own advantages, achieving a series of encouraging results. For example, Sladojevic
et al. proposed a new plant leaf disease detection and classification model based on
deep CNN. The model can accurately identify 13 different plant diseases and effectively
distinguish plant leaves from the surrounding environment, which provides a powerful
tool for plant health monitoring [123]. Li et al. have made remarkable progress in the
field of vegetable disease detection. They propose a lightweight network improvement
algorithm based on YOLOv5s. The algorithm effectively eliminates external interference
and significantly enhances the ability for multi-scale feature extraction, thus improving the
scope and performance of disease detection [124]. Ashwinkuma et al. developed a CNN
based on the optimal mobile network, which is used to automatically detect and classify
plant leaf diseases. The experimental results show that the CNN model performs well: the
maximum accuracy is 0.985, the recall rate is 0.9892, the accuracy is 0.987, and the Kappa
coefficient is 0.985 [125]. Yu et al. used DL target detection technology to extract image
feature information through a complex network structure to achieve the non-destructive
recognition of crop diseases. Compared with the traditional method, this technique delivers
higher recognition accuracy, faster detection speed, and good stability in the visible light
range [126]. Ang et al. creatively used Landsat-8 time series satellite images, combined with
ML and the normalized difference vegetation index (NDVI), to successfully develop an
effective new method of yield prediction [127]. Aydin et al. tested gradient lifting methods
such as XGBoost, LightGBM, and CatBoost for soil sample classification and achieved high
classification accuracy of up to 90%. Compared with the results of previous studies, the
prediction accuracy was significantly improved [128].
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Figure 5. The distribution of the most commonly used machine learning algorithms is obtained based
on the keywords “machine learning” and “precision agriculture”.

3. Integrated Application of Remote Sensing Technology and the Machine
Learning Method

3.1. Agricultural Monitoring and Identification

Recent scientific research shows that the integration of RS technology and ML meth-
ods resulted in remarkable progress from its application to agricultural monitoring and
identification. RS technology can efficiently obtain crop planting area, growth status, and
other important information, while ML technology can accurately detect targets and extract
features from these rich RS data to achieve the precise identification and classification of
crops. The continuous integration and development of these two technologies will usher
in a new turning point in regards to solving related agricultural challenges such as horti-
culture line detection [129], crop recognition and classification [130,131], and vegetation
distribution [132,133]. For example, Zhao et al. improved the standardized precipitation
evapotranspiration index by integrating RS data, and the results show that the new SPEI
can greatly enhance the capacity for agricultural drought monitoring [134]. Lyu et al. used
EO-1 Hyperion images, combined with multi-terminal spectral mixing analysis and fully
constrained least square pixel mixing techniques, to successfully identify typical vegeta-
tion species and improve the accuracy of grassland degradation monitoring [135]. Xiao
et al. fused Sentinel-2 and MODIS RS images using the enhanced spatiotemporal adaptive
reflection fusion model and then accurately obtained the spatial distribution of irrigated
rice fields using the RF algorithm. Based on the Penman-Monteith model and making full
use of the daily observation data of the meteorological station, the dynamic monitoring of
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water resources in the critical irrigation period has been realized, and remarkable results
have been achieved [136]. This application increases the feasibility for the spatiotemporal
fusion of multi-source RS data and makes it possible to continuously monitor the irrigation
dynamics of paddy fields on a large scale.

In addition, it is very important to evaluated the planting and distribution of crops
on a large scale in a timely and efficient manner. Although scholars have conductive
extensive research on the basis of low and medium resolution RS, due to the widespread
existence of mixed pixels and the lack of red edge bands, it is difficult to effectively identify
small plots of farmland using these techniques, resulting in unsatisfactory recognition
accuracy [137,138]. However, the research of Guo et al. in this field has brought new
breakthroughs. Using GF-6 WFV images, they constructed several DT models, which not
only efficiently obtained the crop planting area and its spatial distribution information, but
also significantly improved the accuracy of image recognition [139]. In their latest research,
Zhang et al. used GF-1 RS images, combined with advanced multi-scale segmentation
algorithms, to improve the accuracy of forest type identification in the Engebei ecolog-
ical demonstration areas and used nearest neighbor classification and RF classification,
respectively, comparing the recognition results. The results showed that the effect of RF
classification was superior, and the Kappa coefficients obtained over two consecutive years
were 0.92 and 0.90, respectively [99]. Through extensive research, scientists have reached a
consensus: ML algorithms, including RE, SVM, DT, etc., offer great potential in the field of
agricultural monitoring and recognition and can significantly improve the efficiency and
accuracy of monitoring and recognition [140-147].

3.2. Stress Detection of Diseases and Insect Pests

Crop diseases and insect pests are not only one of the core factors affecting plant
yield and quality, but they also one of the main causes of crop damage. As emphasized by
the United Nations Food and Agriculture Organization, the damage caused by diseases
and insect pests to agroecosystems should not be underestimated. Unfortunately, in early
agricultural production, the problem of diseases and insect pests is often marginalized
and not given enough attention, resulting in huge economic losses [148]. Therefore, the
implementation of efficient and accurate detection of plant diseases and insect pests not
only plays a vital role in ensuring the health of the agroecosystem, improving crop yield
and quality, and reducing economic losses, but also plays a key role in the development of
PA. in recent years, it has attracted the attention of many scholars [149]. The premise for
achieve this goal is to accurately detect and classify diseases and insect pests, distinguishing
different types and estimating quantities, in order to implement accurate pest prevention
and control strategies. Traditional pest monitoring mainly depends on the manual iden-
tification of pests by insect experts or technicians; this method is not only subjective and
labor-intensive, but also impractical in large-scale applications [150]. However, with the
popularity of sensors and devices embedded with Internet connections, the combination of
RS and ML has opened up a new method for the detection of diseases and insect pests in
modern agriculture [151]. Mahanta et al. obtained rich spectral features of vegetation based
on a variety of sensor devices and used ML models to identify spectral patterns related to
specific diseases. Finally, the evaluation of the health of insects invading the forest was
realized, and the detection efficiency was greatly improved [152].

Most diseases and insect pests exhibit characteristics of concealment, latency, infectiv-
ity, and uncertainty, which undoubtedly increase the difficulty and cost of control and create
great challenges to agricultural production [153,154]. However, it is worth noting that RS
data from satellite sensors show that plants affected by the disease can be distinguished in a
relatively short period of time by identifying their spectral characteristics which differ from
those of healthy plants [155]. Figure 6 shows the pest monitoring process based on different
remote sensing data such as IDS maps, MODIS and Landsat-8 data, and drone images.
More importantly, through further use of ML for analysis, we can not only determine the
degree of damage but also accurately identify the type of disease [156,157]. In the early
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detection of diseases and insect pests, many researchers tend to use traditional methods,
i.e., to establish empirical statistical models between diseases and insect pests and their
related factors (such as environment, climate, soil, and vegetation index) [158,159], in order
to achieve the effective monitoring of diseases and insect pests. These methods include
multiple linear regression, partial least squares regression, support vector regression, and
RF regression. For example, Ebrahimi et al. use support vector regression to detect parasites
in crop canopy images, which greatly improves the detection accuracy [160].

Forest observation satellites

Wood boring pests and defoliators

Healthy  damaging forest trees
. damaged

Insect

Ti
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Insect and Disease MODIS Map of Landsat Map of Comparing hyperspectral
Survey (IDS) Map insect pest damage insect pest damage response between healthy Collecting and
of insect pest and insect pest damaged processing remote
damage forest sensing data

Figure 6. The process of detecting insect infestation and evaluating forest health was realized based
on IDS, MODIS, and Landsat-8 mapping, along with hyperspectral response technology.

In addition, through the comprehensive use of advanced image processing techniques
such as image segmentation [161], feature extraction [162], target detection [163-166] and
classification, researchers can solve complex problems in plant disease detection more
accurately and efficiently [167]. Image segmentation technology is used to distinguish
normal and abnormal leaves in RS images, while feature extraction is used to extract mean-
ingful information, such as color, texture, shape, etc., from the segmented regions [168,169],
providing a more detailed and accurate method of analysis for disease detection [170,171].
For example, studies by Zhang et al. have shown that the TinySegformer model can provide
a robust and practical solution for large-scale agricultural pest detection because of its high
efficiency and accuracy, along with its light weight [172]. The interactive segmentation
method based on GrabCut proposed by Lu et al., which is applied to field RS, can quickly
extract locust images from various segments [173]. Barbedo et al. proposed an automatic
detection algorithm for wheat scab based on hyperspectral technology. The algorithm
displays a greater than 91% classification accuracy and shows excellent robustness un-
der the impact of variety of complex factors such as shape, direction, and shadow [174].
Mumtaz et al. combined optical RS, image processing, and depth learning methods to
accurately detect and grade wheat rust [175]. Bao et al. proposed an RS UAV method based
on DDMA-YOLO, which can not only reduce the workload and time consumption of pest
detection, but also effectively improve the detection efficiency [176].

Many studies have shown that the image fusion method can greatly enhance the
accuracy of vegetation disease detection by fusing image information from different sensors
or multi-stage processing [177-181]. For example, some scholars apply DL technology
to the fusion of RGB images and segmented images, developing a multi-head DenseNet
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architecture. After the strict verification of the public dataset and the application of 50%
discount cross-validation technology, the method shows excellent performance, and all
the evaluation indicators have reached a very high level, e.g., the average accuracy, recall,
accuracy, and F1 score reached 98.17%, 98.17%, 98.16%, and 98.12%, respectively [182].
Based on the multi-source fusion UAV images and visible light, Ma et al. successfully
constructed a variety of ML models, which significantly improved the accuracy of cotton
Verticillium wilt detection [183].

It is worth mentioning that some researchers have adopted the improved DL algorithm
framework for plant disease detection, achieving remarkable results [184-187]. Dong et al.
creatively proposed an effective scale-aware network architecture (ESA-Net) based on
low-cost RS images [188]. After strict verification, ESA-Net showed excellent performance
in plant disease detection and achieved strong competitive results. Amarathunga et al.
proposed a new architecture based on a visual converter, which integrates the attention
mechanism driven by domain knowledge and effectively improves the accuracy of micro-
pest detection and recognition at the species level [189]. Ye et al. designed an end-to-end
automatic disease detection framework based on a multi-scale MA-UNet model and a
single-phase image based on UAV aerial photography data and Landsat-8 satellite RS
markers, which greatly improved the efficiency and accuracy of disease monitoring [190].

3.3. Management and Analysis of Soil and Land

As the cornerstone of human survival and development, land not only carries the key
mission of agricultural production, providing us with food to maintain our livelihood, but
is also an indispensable key prerequisite for ensuring human well-being [60,191]. There-
fore, the management and analysis of soil and land resources is particularly urgent and
important. In the field of soil monitoring and management, traditionally, we rely on field
survey methods to obtain the spatial distribution data for soil groups [191]. However, these
methods have many shortcomings, such as a long monitoring period, high cost, complex op-
eration procedures, many subjective judgment factors, and relatively limited accuracy [192].
Therefore, using traditional methods for soil monitoring is not only time-consuming and
labor-intensive, but also may be inadequate for meeting the needs of modern soil man-
agement regarding accuracy and efficiency [16]. With its more accurate, richer, and more
professional characteristics, RS has brought revolutionary changes to soil monitoring and
management activities. It provides multi-temporal images, enabling us to fully capture
dynamic changes in land and soil characteristics [193-195]. In addition, RS offers a wide
range of data sources with large amounts of information and high accuracy, providing
unprecedented possibilities for the accurate assessment of soil conditions [196]. The use
of advanced ML technology can achieve efficient and accurate processing and analysis
of RS data, realizing the automation of data processing and feature extraction. It is very
important to improve the efficiency and accuracy of soil and land management [197-199].

A survey found that the application of various types of RS data provides convenience
and opportunities for soil management [200]. At the same time, among the different
RS soil applications, multi-spectral RS is the most widely used [201]. Duan et al. used
the mean value of reflectivity and entropy texture parameters extracted from Landsat-8
images, combined with MLC, SVM, ANN, and RF ML, to identify soil groups in depth,
achieving good results. In 2024, Zhou et al. proposed a general ML method based on
spatiotemporal constraints using Sentinel-1 and Sentinel-2 data [202]. Through verification,
its accuracy and practicability have been fully affirmed [203]. In 2023, Musasa et al. con-
ducted a detailed review of soil problems in arid environments, clearly pointing out that
the Landsat-8 satellite mission plays an indispensable role in promoting soil assessment
and monitoring [204]. In addition, in view of the significant challenges such as insufficient
information acquisition and limited measurement accuracy in early soil moisture monitor-
ing technology [205], the introduction of ML technology is a revolutionary change, which
significantly compensates for these deficiencies [206,207]. In addition, high-resolution data
show significant applicability in soil applications, especially in soil resource estimation
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and mapping [208-211]. Moreover, UAVs show great potential for use in soil analysis and
evaluation, and many studies have fully proved its effectiveness in practical applications.
For example, Bertalan et al., through the mapping of soil moisture based on UAV images,
revealed the spatial heterogeneity of soil moisture and provided strong support for PA [212].
Menzies Pluer et al. used UAV to create the spatial distribution model of farmland soil
characteristics and nutrient concentration, which provided a novel and low-cost method
for soil management [213]. In addition, scholars also pointed out that the combination
of UAV data fusion and ML is very important for the accurate field estimation of soil
texture [214-216]. At the same time, in many studies on the integrated application of RS
and ML in soil management, we found that the discussion of soil organic carbon and
salinity is also an eye-catching research direction [217-221].

As one of the key factors in global ecological change, land use or land cover (LULC)
has a far-reaching impact on the balance of the ecosystem and the sustainable devel-
opment of human society [222]. It represents the different ways in which human be-
ings maximize the use of land resources and manage related resources, and it is very
important for land management and analysis [223]. Therefore, in the research field of
land management and analysis, we pay special attention to the temporal and spatial dis-
tribution of LULC and its applications. It goes without saying that the application of
ML to RS data is of great significance for efficient and accurate land management and
analysis [224]. On the one hand, traditional land management and analysis methods are
often time-consuming and costly, and it is difficult to provide up-to-date information
on various land use/land cover changes [225]. On the other hand, with its strong data
acquisition and processing ability, RS can extract high-resolution multispectral informa-
tion covering large areas that are difficult to access in real time, making land manage-
ment and classification more cost-effective and time-saving [226,227]. Figure 7 shows
the whole process of determining farming patterns using Landsat-8 and MODIS RS data,
greatly improving the efficiency of agricultural practices [228]. In recent years, with
the continuous development of ML technology, it is becoming more and more popular
for use in the mapping, analysis, and spatiotemporal land analysis of LULC changes
using RS data [229,230]. Examples of land management and analysis based on differ-
ent ML methods include: RF [100,101,231], SVM [102,103,232], DT [90,91,233], maximum
likelihood classification [234,235], ANN [97,99,236], CNN [237,238], and hybrid multiple
model [239,240].
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3.4. Prediction and Decision Making Regarding Crop Yield

Determining crop yield plays an indispensable role in crop field management, and
crop yield prediction is one of the important cornerstones to ensure food security [241,242].
Traditional crop yield prediction methods usually involve destructive sampling, which
not only wastes a lot of human and material resources in practical application, but also is
inefficient and cannot meet the needs of the development of modern PA [243]. In order
to overcome this bottleneck, we conducted an in-depth and systematic review of the
literature, which covered many aspects, such as RS data sources, biological and abiotic
factors, physical and chemical parameters, modeling methods, etc. The aim is to provide
a more accurate and efficient crop yield prediction scheme, as well as to provide strong
support for the sustainable development of yield prediction and decision making.

We have learned that there are differences in the applicability and accuracy of the op-
erational assessment of crop status and yield based on different ML algorithms and RS data
from different sources. Multi-spectral and medium-resolution RS represented by MODIS
data are widely used in early crop yield prediction, revealing potential uses [244,245]. Hy-
perspectral data, especially data from Landsat-8 satellites and hyperspectral imagers, offer
unique advantages in regards to prediction. Related studies have shown that they exhibit
great potential in regards to yield prediction for crops such as citrus, wheat, corn, sugar-
cane, etc. [246-250]. In addition, airborne LiDAR and high spatial and temporal resolution
images are more suitable for crop yield prediction in fine abundance models [251-254]. A
number of studies have shown that UAV data provide accurate and efficient support for PA
prediction, especially in crop yield estimation accuracy and phenotypic analysis [255-261].
As shown in Figure 8, Liu et al. predicted corn LAI based on UAV multispectral images
combined with ML technology, which provided support for improving the accuracy of
yield prediction and further revealed the great potential of UAV in yield prediction [262].

In addition, as an integral part of PA practice, yield forecasting usually does not exist
in isolation, but it is the result of the interweaving and interaction of climate, soil, water,
diseases and insect pests, management, and other factors. For example, in an in-depth
study, Anwar et al. revealed that Australian wheat yields are extremely sensitive to climatic
factors [263]. Bai et al. made it clear that assessing the impact of extreme weather on
crop production is a key prerequisite for exploring agronomic measures to address climate
change, and that fluctuations in climate variables closely related to crop production can
have a profound impact on regional and global food production [264]. The importance of
soil as a key factor affecting crop yield cannot be ignored. By combining RS data with ML,
we can evaluate soil properties more accurately and, taking into account cost-effectiveness
and time benefits, we can achieve the accurate prediction of crop yield [265,266]. Fry et al.
discussed the spatial variability between field soil properties and soybean yield and found
that there was a significant correlation between different soil properties and changes in
soybean yield, mainly affected by soil texture and organic carbon content in the topsoil (the
first 20 cm) rather than by surface topography [267]. In exploring the actual effect of water
on yield, Zain et al. failed to consider the adaptability of the model, which led to adverse
results [268]. In another study, Wang et al. developed an accurate polynomial function
model, which can effectively adapt to the characteristics of irrigation and application in
different areas, provides a scientific guidance strategy for water and fertilizer management,
and realizes the accurate prediction of crop yield combined with advanced ML [269]. In
addition, the impact of diseases and insect pests and management on yield estimates is also
of concern [270-272].
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Figure 8. Prediction framework of maize LAI based on UAV images and machine learning.

In recent years, the combination of RS technology and ML for crop yield estimation
and decision making has become a research direction with great potential and prospect. The
integration of this method into the agricultural field not only improves the accuracy and
efficiency of crop yield estimation but also provides strong technical support for the precise
management of agricultural production [259]. In this process, the selection of crop physical
and chemical parameters is particularly important, as it is directly related to the accuracy
and reliability of the yield prediction model. Commonly used physiochemical parameters
include vegetation coverage (FVC) [273], photosynthetically active radiation absorption
(FPAR) [274-276], evapotranspiration (ET) [277-279], leaf area index (LAI) [245,280,281],
chlorophyll content [282-284], and various vegetation indices (VIs), such as the normal-
ized difference vegetation index (NDVI) [285-287] and the enhanced vegetation index
(EVI) [288]. These physical and chemical parameters and indexes are not only widely used
in actual agricultural production, but are also closely related to yield estimation.
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In addition, the crop yield prediction model is also constantly adapting to a variety
of new situational changes. For example, although the early traditional ground survey
methods and sampling statistics methods based on empirical knowledge have been sig-
nificantly researched and practiced, they cannot meet the needs for improved production
prediction accuracy and reduced costs [289]. With the application of crop growth and data
assimilation models, the yield prediction accuracy will be significantly improved [290]. For
example, Zhang et al. and Kheir et al. have made yield predictions based on the APSIM
crop model, achieving remarkable results [291,292]. In addition, the WOFOST model also
performs well in regards to crop yield prediction, and a number of studies have revealed
its potential use in forecasting [293,294]. The SAFY model provides a new perspective
and method for the estimation of crop yield in a large area [295]. However, crop models
are not perfect. They may be limited in large-scale applications, they easily accumulate
errors, and problems such as over-fitting are possible [296]. Similarly, ML models may
encounter fitting problems in the training process, especially in the case of small datasets
or improper feature selection. Fortunately, ML and data assimilation methods provide new
solutions to the problems inherent in crop models and ML [297]. By combining RS data
and crop models, and with the help of ML optimization, we can not only make up for the
shortcomings of the model in some aspects but also significantly improve the prediction
accuracy and enhance the applicability. This innovative method is gradually becoming
widely considered and favored by researchers [298-300].

4. Discussion
4.1. Current Challenges
4.1.1. Acquisition and Processing of Multi-Source RS Data

Although there are free and open source media and low resolution data resources,
such as MODIS, which provide the basis for scientific research and application, the scarcity
of high-quality and high-resolution RS data is still a significant problem. This scarcity
mainly stems from the multiple complexities in the process of data acquisition, including
the unpredictability of meteorological conditions, the limitations of equipment perfor-
mance, and the impact of complex terrain on the signal. These factors work together to
impact data quality and increase the difficulty and cost of data acquisition. The accessibility,
real-time, integrity, and privacy protection of RS data are also important factors restricting
the sustainable development of agricultural RS [301,302]. In addition, for the processing of
RS data, their highly specialized and technology-intensive characteristics cannot be ignored.
In data preprocessing, multi-source data fusion, and subsequent data interpretation and
application, each link requires fine technical operations and profound professional knowl-
edge. Improper handling will not only reduce the accuracy and reliability of data but also
lead to unnecessary waste of resources and loss of efficiency [303,304]. For example, Zhao
et al. proposed a framework for the robust classification of multi-view RS images under
the condition of missing data, effectively reducing the practical costs. This research not
only improves the classification accuracy but also reduces the uncertainty and deviation in
the process of data processing, helping to achieve more efficient agricultural management
decision making [305].

It is worth noting that the construction of an RS database system, as one of the effective
strategies to alleviate the above problems, has become increasingly important. For example,
studies have shown that the development of a strong and publicly accessible RS water
quality database system can effectively improve the efficiency of water resource manage-
ment and monitoring [306]. In addition, it can not only provide rich and standardized
data resources to meet the needs of ML models for large amounts of data, but it can also
promote rapid data retrieval and scientific research sharing, injecting new vitality into agri-
cultural RS research and application. At the same time, with the continuous improvement
of the database system, the long-standing problems in the field of agricultural RS, such
as insufficient data standardization, the limited scale of datasets, different data quality,
etc., are expected to be solved gradually [307]. The research shows that the application of
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multi-source RS fusion technology and high-resolution sensors may bring revolutionary
changes to the field of agricultural RS. The progress of these technologies will greatly enrich
the data dimensions, improve the monitoring accuracy, and provide strong data support
for the practice of PA based on ML [308]. For example, by combining multi-source RS
technology, Joshi et al. have achieved rapid and large-scale early warnings and accurate
control of wheat diseases and insect pests [309]. Based on hyperspectral reflectance and
satellite multispectral images, Wu et al. significantly improved the accuracy of wheat grain
water content estimation and successfully reduced the risk of grain loss and additional
drying costs [310].

4.1.2. Interpretability and Generalization of the Model

Generally speaking, the ML model is easier to explain than is the DL model, due to the
complexity of the model structure. Although some newer models may improve accuracy,
understanding and accepting these models will also be challenging for agricultural practi-
tioners. For example, although the DL model performs well for many tasks, because of its
black box nature, it may be difficult for agricultural workers to understand the decision
logic behind it [311]. Therefore, in the application of PA, a DT or rule-based model is
often easier for agricultural practitioners to understand and accept because of its relatively
simple structure. For example, Marin et al. used multiple decision tree models to quickly
understand the types of vegetation diseases using spatially continuous monitoring, thus
improving the efficiency of decision making [312]. In addition, the interpretable model can
not only promote the transparency of agricultural decision-making but also accelerate the
knowledge transfer from technical experts to front-line producers, which is very important
for improving the science and efficiency of agricultural practice. For example, in a study of
precision irrigation, the use of a rule-based ML model greatly promoted water resource
management and agricultural policy decision making. Typically, providing information
about the features, variables, and algorithms that affect the results of the model is an
effective way to enhance the interpretability of the model [313]. For example, Hao et al.
realized the high-precision prediction of wheat yield by analyzing the key variables of the
APSIM-Wheat model through Sobol sensitivity analysis [314]. Under the influence of many
factors, such as crop growth environment, varieties, soil state, and climatic conditions, the
model shows insufficient ability to extract fine features in the face of new data. It is often
necessary to optimize the generalization ability of the model through data enhancement,
model integration, and the introduction of regularization technology in order to effectively
prevent overfitting and maintain stable performance in the face of new data. For exam-
ple, Fawakheriji et al. used a data enhancement strategy for improved segmentation to
significantly improve the accuracy of the model for crop and weed segmentation [315].
In addition, regularization technology can help reduce the complexity of the model, thus
improving the generalization ability of the model. For example, by applying L2 regular-
ization in the process of model training, the dependence of the model on training data
can be effectively reduced, and its performance in the face of new data can become more
stable [316].

4.2. Prospects for the Future
4.2.1. Trend of Intelligence and Automation

With the application of intelligent and automation technology in PA, many problems
existing in traditional agricultural models, such as insufficient datasets, inaccurate analysis,
and untimely decision making, have been solved. This is due to the use of high-precision
multi-source RS data, further enhancement of data preprocessing to improve data quality,
expansion of data sample diversity, and integration of expert knowledge, all of which
improve the accuracy of intelligent decision making. For example, based on expert dialogue
and multi-standard decision-making technology, Goodridge et al. proposed an expert
system that can intelligently diagnose plant diseases, significantly improving the accuracy
of plant disease detection [317]. In addition, the development of intelligent agricultural
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equipment and the promotion of farmers’ training have lowered the technical threshold
and promoted the wide application of new technologies. One study points out that by
developing easy-to-operate smart agricultural equipment, farmers can more easily master
new technologies, save water, and reduce labor demand by promoting the cultivation of
different crop types, improving the profitability of each farm [318].

The intelligent fusion of multi-source RS data effectively solves many problems inher-
ent in agricultural data, such as ensuring the consistency of data formatting, optimizing
processing speed, improving the stability of the algorithm, and enhancing the generaliza-
tion ability and interpretability of the model. As a result, the uncertainty in the whole
process of agricultural production is reduced. For example, Zhou et al. enhanced the
generalization ability through the deep migration learning classification model constructed
by integrating ground sensor data and UAV data, realizing the intelligent RS recognition
of corn straw type [319]. In the future, RS technology and ML are expected to achieve
cross-border integration with advanced technologies such as the Internet of things (IoT),
human—computer interaction visualization, data assimilation, and blockchains. This will
further promote comprehensive monitoring, yield forecasting, and disease surveillance in
PA and provide more accurate, efficient, and sustainable solutions for agricultural produc-
tion. For example, intelligent systems that use the Internet of things to track and schedule
accurate irrigation have been studied to help farmers effectively plan irrigation and make
informed decisions [320].

4.2.2. Data Sharing and Multidisciplinary Interaction

In the context of global connectivity, international cooperation and data sharing
mechanisms are constantly strengthening, and the application of PA should go beyond
geographical restrictions. Different countries and regions should work together to share
more accurate RS data and smarter ML algorithms to address global agricultural issues
such as climate change, food safety, and other challenges [321]. In addition, ML algorithms
are closely combined with RS technology, and automatic machinery and intelligent robots
are used to realize the intelligence and refinement of field management. At the same time,
experts in many fields such as agricultural economy, ecology, and physics are integrated
to form a comprehensive agricultural management system. For example, a cloud-based
intelligent irrigation system was introduced in one study to optimize irrigation water use
through comprehensive big data collection, storage, and analysis, significantly promoting
informed decisions regarding water resource management [322]. In addition, strength-
ening the cooperative research of RS and ML can not only effectively reduce the use of
chemical fertilizers and pesticides, accelerate the transformation of agricultural scientific
and technological achievements, protect the ecological environment, and promote the
green transformation of agriculture, but it also is very important to promote the research
results of PA to significantly benefit farmers and realize the transformation from theoretical
knowledge to scientific and technological practice. For example, different countries and
regions should use their market channels and technical support capabilities to popularize
new technologies by establishing partnerships with agricultural research institutions and
by working with agribusinesses to encourage farmers to adopt new technologies through
policy guidance and support and to participate in the application of new technologies
through peasant groups [323]. In addition, combining this science and technology with the
United Nations Sustainable Development goals (SDGs) can not only broaden the scope
of science but also promote the development of practice from a broader perspective, i.e.,
by improving agricultural production efficiency and implementing the sustainable de-
velopment agenda to contribute to the “zero hunger” goal [324]. Although it still faces
technical, economic, and social challenges, with the continuous updating of the application
of RS technology and ML in agriculture, its potential to promote the modernization and
sustainable development of the agricultural industry will be further tapped.
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5. Conclusions

The comprehensive application of RS and ML algorithms can not only promote the
development and progress of PA but also provide a possible solution to the challenges
of global population growth, resource shortage, and climate change. In some fusion
applications of PA, there are significant differences in different types of RS data, among
which hyperspectral RS data is the most widely used type, accounting for more than 30%,
while the application of UAV technology has the most potential, accounting for about
24%, of the data used. It is expected to play a more important role in PA in the future.
In addition, the most widely used ML algorithm is SVM, accounting for more than 20%,
followed by the RF algorithm, accounting for about 18%, of the algorithms used. It is
worth noting that in the future, the rapid development of the DL integrated platform, the
multimodal fusion algorithm, cloud computing, and edge computing is expected to further
promote the progress of PA. The monitoring and identification of crop growth status, pest
detection, land or soil management, and crop yield prediction are still the main aspects of
the comprehensive application of RS technology and ML. However, in regards to obtaining
and processing high-quality RS data and improving the interpretability and generalizability
of the model, considering the uncertainty of integration development, we need to continue
to explore new algorithms and technologies to promote interdisciplinary cooperation
and the integration of multi-domain knowledge, further promoting the intelligence and
automation of PA and the development of more intelligent agricultural robots, automation
equipment, and expert systems to promote the sustainable development of PA.
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