Genetic Basis and Exploration of Major Expressed QTL qLA2-3 Underlying Leaf Angle in Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Investigation of Maize LA Phenotype
2.3. Data Analysis
2.4. QTL Mapping
2.5. Genome Re-Sequencing
2.6. Fine Mapping of qLA2-3
2.7. RNA-Seq and qPCR
3. Results
3.1. Phenotypic Variation in LA Traits
3.2. Identification of QTLs for LA
3.3. Validation and Fine Mapping of qLA2-3
3.4. Evaluation of the Influence of qLA2-3 on Upright Plant Architecture
3.5. Predicted Candidate Genes by Genome Re-Sequencing Analysis and Transcriptome Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duvick, D.N. The contribution of breeding to yield advances in maize (Zea mays L.). In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2005; Volume 86, pp. 83–145. [Google Scholar]
- Tian, J.; Wang, C.; Xia, J.; Wu, L.; Xu, G.; Wu, W.; Li, D.; Qin, W.; Han, X.; Chen, Q.; et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 2019, 365, 658–664. [Google Scholar] [CrossRef]
- Cao, Y.; Zhong, Z.; Wang, H.; Shen, R. Leaf angle: A target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnol. J. 2022, 20, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Mantilla-Perez, M.B.; Salas Fernandez, M.G. Differential manipulation of leaf angle throughout the canopy: Current status and prospects. J. Exp. Bot. 2017, 68, 5699–5717. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Smith, S.M.; Li, J. Genetic Regulation of Shoot Architecture. Annu. Rev. Plant Biol. 2018, 69, 437–468. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Wang, C.; Chen, F.; Qin, W.; Yang, H.; Zhao, S.; Xia, J.; Du, X.; Zhu, Y.; Wu, L.; et al. Maize smart-canopy architecture enhances yield at high densities. Nature 2024, 632, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Bauer, P.; Lubkowitz, M.; Tyers, R.; Nemoto, K.; Meeley, R.B.; Goff, S.A.; Freeling, M. Regulation and a conserved intron sequence of liguleless3/4 knox class-I homeobox genes in grasses. Planta 2004, 219, 359–368. [Google Scholar] [CrossRef]
- Walsh, J.; Waters, C.A.; Freeling, M. The maize geneliguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade–sheath boundary. Genes Dev. 1998, 12, 208–218. [Google Scholar] [CrossRef]
- Moreno, M.A.; Harper, L.C.; Krueger, R.W.; Dellaporta, S.L.; Freeling, M. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev. 1997, 11, 616–628. [Google Scholar] [CrossRef]
- Strable, J.; Wallace, J.G.; Unger-Wallace, E.; Briggs, S.; Bradbury, P.J.; Buckler, E.S.; Vollbrecht, E. Maize YABBY Genes drooping leaf1 and drooping leaf2 Regulate Plant Architecture. Plant Cell 2017, 29, 1622–1641. [Google Scholar] [CrossRef]
- Lewis, M.W.; Bolduc, N.; Hake, K.; Htike, Y.; Hay, A.; Candela, H.; Hake, S. Gene regulatory interactions at lateral organ boundaries in maize. Development 2014, 141, 4590–4597. [Google Scholar] [CrossRef]
- Makarevitch, I.; Thompson, A.; Muehlbauer, G.J.; Springer, N.M. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS ONE 2012, 7, e30798. [Google Scholar] [CrossRef] [PubMed]
- Best, N.B.; Hartwig, T.; Budka, J.; Fujioka, S.; Johal, G.; Schulz, B.; Dilkes, B.P. nana plant2 Encodes a Maize Ortholog of the Arabidopsis Brassinosteroid Biosynthesis Gene DWARF1, Identifying Developmental Interactions between Brassinosteroids and Gibberellins. Plant Physiol. 2016, 171, 2633–2647. [Google Scholar] [CrossRef] [PubMed]
- Mickelson, S.M.; Stuber, C.S.; Senior, L.; Kaeppler, S.M. Quantitative Trait Loci Controlling Leaf and Tassel Traits in a B73 × Mo17 Population of Maize. Crop Sci. 2002, 42, 1902–1909. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Shi, Y.; Song, Y.; Zhang, D.; Buckler, E.S.; Zhang, Z.; Wang, T.; Li, Y. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS ONE 2015, 10, e0121624. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, L.; Chen, J.; Li, X.; Li, Y.; Cheng, H.; Huang, R.; Zhou, B.; Li, Z.; Wang, J.; et al. Genomic Dissection of Leaf Angle in Maize (Zea mays L.) Using a Four-Way Cross Mapping Population. PLoS ONE 2015, 10, e0141619. [Google Scholar] [CrossRef]
- Tian, F.; Bradbury, P.J.; Brown, P.J.; Hung, H.; Sun, Q.; Flint-Garcia, S.; Rocheford, T.R.; McMullen, M.D.; Holland, J.B.; Buckler, E.S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat. Genet. 2011, 43, 159–162. [Google Scholar] [CrossRef]
- Ren, Z.; Wu, L.; Ku, L.; Wang, H.; Zeng, H.; Su, H.; Wei, L.; Dou, D.; Liu, H.; Cao, Y.; et al. ZmILI1 regulates leaf angle by directly affecting liguleless1 expression in maize. Plant Biotechnol. J. 2020, 18, 881–883. [Google Scholar] [CrossRef]
- Cao, Y.; Zeng, H.; Ku, L.; Ren, Z.; Han, Y.; Su, H.; Dou, D.; Liu, H.; Dong, Y.; Zhu, F.; et al. ZmIBH1-1 regulates plant architecture in maize. J. Exp. Bot. 2020, 71, 2943–2955. [Google Scholar] [CrossRef]
- Zhang, J.; Ku, L.X.; Han, Z.P.; Guo, S.L.; Liu, H.J.; Zhang, Z.Z.; Cao, L.R.; Cui, X.J.; Chen, Y.H. The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.). J. Exp. Bot. 2014, 65, 5063–5076. [Google Scholar] [CrossRef]
- Ku, L.X.; Zhang, J.; Guo, S.L.; Liu, H.Y.; Zhao, R.F.; Chen, Y.H. Integrated multiple population analysis of leaf architecture traits in maize (Zea mays L.). J. Exp. Bot. 2012, 63, 261–274. [Google Scholar] [CrossRef]
- Ku, L.; Wei, X.; Zhang, S.; Zhang, J.; Guo, S.; Chen, Y. Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.). PLoS ONE 2011, 6, e20621. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Lu, F.; Chen, W.Y.; He, Y.H.; Liu, H.H.; Yin, Z.T. Mapping of growth period-related traits in maize. Jiangsu Agric. Sci 2022, 50, 63–68. (In Chinese) [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Shao, C.; Han, Y.; He, Y.; Yin, Z. Genetic Architecture of Maize Stalk Diameter and Rind Penetrometer Resistance in a Recombinant Inbred Line Population. Genes 2022, 13, 579. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Petroni, K.; Kumimoto, R.W.; Gnesutta, N.; Calvenzani, V.; Fornari, M.; Tonelli, C.; Holt, B.F.; Mantovani, R. The Promiscuous Life of Plant NUCLEAR FACTOR Y Transcription Factors. Plant Cell 2012, 24, 4777–4792. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Wang, J.; He, C.; Zhang, D.; Li, P.; Zhang, J.; Li, Z. Transcription factors ZmNF-YA1 and ZmNF-YB16 regulate plant growth and drought tolerance in maize. Plant Physiol. 2022, 190, 1506–1525. [Google Scholar] [CrossRef]
- Su, H.; Chen, Z.; Dong, Y.; Ku, L.; Abou-Elwafa, S.F.; Ren, Z.; Cao, Y.; Dou, D.; Liu, Z.; Liu, H.; et al. Identification of ZmNF-YC2 and its regulatory network for maize flowering time. J. Exp. Bot. 2021, 72, 7792–7807. [Google Scholar] [CrossRef]
- Lamberti, G.; Gügel, I.L.; Meurer, J.; Soll, J.; Schwenkert, S. The Cytosolic Kinases STY8, STY17, and STY46 Are Involved in Chloroplast Differentiation in Arabidopsis. Plant Physiol. 2011, 157, 70–85. [Google Scholar] [CrossRef]
- Park, M.Y.; Wu, G.; Gonzalez-Sulser, A.; Vaucheret, H.; Poethig, R.S. Nuclear processing and export of microRNAs in Arabidopsis. Proc. Natl. Acad. Sci. USA 2005, 102, 3691–3696. [Google Scholar] [CrossRef]
- Hunter, C.A.; Aukerman, M.J.; Sun, H.; Fokina, M.; Poethig, R.S. PAUSED Encodes the Arabidopsis Exportin-t Ortholog. Plant Physiol. 2003, 132, 2135–2143. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, P.; Jiang, F.; Chen, Q.; Zhang, Y.; Wang, X.; Wang, H. QTL mapping for leaf angle and leaf orientation in maize using a four-way cross population. J. China Agric. Univ. 2014, 19, 7–16. (In Chinese) [Google Scholar]
- Lu, M.; Zhou, F.; Xie, C.; Li, M.; Xu, Y.; Warburton, M.; Zhang, S. Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas 2007, 29, 1131–1138. (In Chinese) [Google Scholar] [CrossRef]
- Chang, L.; He, K.; Liu, J.; Xue, J. Mapping of QTLs for leaf angle in maize under different environments. J. Maize Sci. 2016, 24, 49–55. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, M.; Zheng, H.; Jin, L.; Xing, L.; Zou, J.; Zhang, L.; Liu, C.; Chu, J.; Xu, M.; Wang, L. miR169o and ZmNF-YA13 act in concert to coordinate the expression of ZmYUC1 that determines seed size and weight in maize kernels. New Phytologist 2022, 235, 2270–2284. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Cao, Y.; Ku, L.; Yao, W.; Cao, Y.; Ren, Z.; Dou, D.; Wang, H.; Ren, Z.; Liu, H.; et al. Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize. J. Exp. Bot. 2018, 69, 5177–5189. [Google Scholar] [CrossRef]
- Mei, X.; Nan, J.; Zhao, Z.; Yao, S.; Wang, W.; Yang, Y.; Bai, Y.; Dong, E.; Liu, C.; Cai, Y. Maize transcription factor ZmNF-YC13 regulates plant architecture. J. Exp. Bot. 2021, 72, 4757–4772. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Parida, S.K.; Agarwal, P.; Tyagi, A.K. Transcription factor OsNF-YB9 regulates reproductive growth and development in rice. Planta 2019, 250, 1849–1865. [Google Scholar] [CrossRef]
- Ito, Y.; Thirumurugan, T.; Serizawa, A.; Hiratsu, K.; Ohme-Takagi, M.; Kurata, N. Aberrant vegetative and reproductive development by overexpression and lethality by silencing of OsHAP3E in rice. Plant Sci. 2011, 181, 105–110. [Google Scholar] [CrossRef]
Environment | Parents | RIL Population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
YS501 | LDC-1 | t-Test p Value | Mean ± SD | Range | Kurtosis | Skewness | CV (%) | F Value | H2 | |
E1 | 11.83 | 28.87 | 3.56 × 10−30 | 20.33 ± 4.84 | 9.22–35.02 | −0.043 | 0.331 | 23.81 | 8.216 ** | 89.15% |
E2 | 10.25 | 26.97 | 1.01 × 10−8 | 19.96 ± 6.41 | 9.07–37.54 | −0.389 | 0.429 | 32.11 | ||
E3 | 11.34 | 23.89 | 3.48 × 10−7 | 22.50 ± 5.09 | 9.62–38.69 | 0.15 | 0.109 | 22.62 |
Trait | QTL | Chr | Position (cM) | Physical Location (bp) | E1 | E2 | E3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOD | Add | R2 | LOD | Add | R2 | LOD | Add | R2 | |||||
LA | qLA1-1 | 1 | 115.1~135.1 | 39490381~53752442 | 7.21 | 2.33 | 12.64 | ||||||
qLA1-2 | 1 | 193.0~209.4 | 105544639~166628038 | 4.50 | 1.32 | 7.22 | |||||||
qLA1-3 | 1 | 349.7~371.2 | 281040428~292905589 | 3.45 | 1.20 | 5.27 | |||||||
qLA2-1 | 2 | 55.8~67.6 | 12495796~16391990 | 3.86 | 1.30 | 6.98 | |||||||
qLA2-2 | 2 | 144.5~152.5 | 187673664~191462633 | 4.83 | 1.46 | 7.09 | |||||||
qLA2-3 | 2 | 180.1~196.6 | 214012471~225807350 | 6.88 | 1.65 | 10.90 | 7.03 | 2.37 | 12.31 | 4.30 | 1.39 | 6.25 | |
qLA3-1 | 3 | 13~18.9 | 2050621~3087150 | 3.08 | 1.12 | 4.87 | |||||||
qLA3-2 | 3 | 147.2~153.8 | 181135621~184419019 | 3.12 | 1.09 | 4.57 | |||||||
qLA4-1 | 4 | 180.4~195.1 | 208732552~236286534 | 3.69 | 1.67 | 6.25 | |||||||
qLA5-1 | 5 | 113.3~116.6 | 61422142~67028398 | 3.27 | −1.07 | 4.34 | |||||||
qLA6-1 | 6 | 82.6~95.0 | 116217531~136571957 | 5.31 | 1.47 | 7.94 | |||||||
qLA7-1 | 7 | 231.3~238.7 | 177668009~179104806 | 2.70 | −1.02 | 3.93 | |||||||
qLA10-1 | 10 | 53.8~69.6 | 15031133~90669531 | 5.97 | −1.54 | 9.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Wang, C.; Hu, X.; Han, Y.; Lu, F.; Liu, H.; Zhang, X.; Yin, Z. Genetic Basis and Exploration of Major Expressed QTL qLA2-3 Underlying Leaf Angle in Maize. Agronomy 2024, 14, 1978. https://doi.org/10.3390/agronomy14091978
He Y, Wang C, Hu X, Han Y, Lu F, Liu H, Zhang X, Yin Z. Genetic Basis and Exploration of Major Expressed QTL qLA2-3 Underlying Leaf Angle in Maize. Agronomy. 2024; 14(9):1978. https://doi.org/10.3390/agronomy14091978
Chicago/Turabian StyleHe, Yonghui, Chenxi Wang, Xueyou Hu, Youle Han, Feng Lu, Huanhuan Liu, Xuecai Zhang, and Zhitong Yin. 2024. "Genetic Basis and Exploration of Major Expressed QTL qLA2-3 Underlying Leaf Angle in Maize" Agronomy 14, no. 9: 1978. https://doi.org/10.3390/agronomy14091978
APA StyleHe, Y., Wang, C., Hu, X., Han, Y., Lu, F., Liu, H., Zhang, X., & Yin, Z. (2024). Genetic Basis and Exploration of Major Expressed QTL qLA2-3 Underlying Leaf Angle in Maize. Agronomy, 14(9), 1978. https://doi.org/10.3390/agronomy14091978