Quantitative and Qualitative Relationships between Phospholipid Fatty Acid Analysis Biomarkers and Lignin in Soil from the Tibetan Plateau (China) under Laboratory Incubation Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Incubation Experiment
2.4. Pyrolysis Gas Chromatography–Mass Spectrometry
2.5. Phospholipid Fatty Acid Analysis
2.6. Statistical Analysis
3. Results
3.1. The Relative Abundance of Lignin in Alpine Grassland Soils
3.2. Phospholipid Fatty Acid Analysis
3.3. The Relationship between Lignin and Phospholipid Fatty Acids
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kubicek, C.; Druzhinina, I. Degradation of Plant Cell Wall Polymers by Fungi. Environmental and Microbial Relationships. Mycota 2007, 4, 325–340. [Google Scholar]
- Jönsson, A.S. 5-Membranes for lignin and hemicellulose recovery in pulp mills. In Membrane Technologies for Biorefining; Alberto Figoli, A., Cassano, A., Basile, A., Eds.; Woodhead Publishing: Cambridge UK, 2016; pp. 105–133. [Google Scholar]
- Otto, A.; Simpson, M.J. Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil. Biogeochemistry 2006, 80, 121–142. [Google Scholar] [CrossRef]
- Vancampenhout, K.; De Vos, B.; Wouters, K.; Van Calster, H.; Swennen, R.; Buurman, P.; Deckers, J. Determinants of soil organic matter chemistry in maritime temperate forest ecosystems. Soil Biol. Biochem. 2010, 42, 220–233. [Google Scholar] [CrossRef]
- Yassir, I.; Buurman, P. Soil organic matter chemistry changes upon secondary succession in Imperata Grasslands, Indonesia: A pyrolysis–GC/MS study. Geoderma 2012, 173–174, 94–103. [Google Scholar] [CrossRef]
- Thevenot, M.; Dignac, M.; Rumpel, C. Fate of lignins in soils: A review. Soil Biol. Biochem. 2010, 42, 1200–1211. [Google Scholar] [CrossRef]
- He, Y.C.; Li, X.L.; Ben, H.X.; Xue, X.Y.; Yang, B. Lipid production form Dilute Alkali Corn Stover Lignin by Strains. ACS Sustain. Chem. Eng. 2017, 5, 2302–2311. [Google Scholar] [CrossRef]
- Filley, T.R.; Cody, G.D.; Goodell, B.; Jellison, J.; Noser, C.; Ostrofsky, A. Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org. Geochem. 2002, 33, 111–124. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Zhao, X.Y.; Yang, J.J.; Li, S.K.; Lu, X.X.; Li, X. Research progress on lignin degradation mechanism and influencing factors during composting. Environ. Eng. 2021, 39, 128–136. (In Chinese) [Google Scholar]
- Bugg, T.D.H.; Ahmad, M.M.; Hardiman, E.; Singh, R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 2011, 22, 394–400. [Google Scholar] [CrossRef]
- Sánchez, C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 2009, 27, 185–194. [Google Scholar] [CrossRef]
- ten Have, R.; Teunissen, P.J.M. Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem. Rev. 2001, 101, 3397–3413. [Google Scholar] [CrossRef]
- Masai, E.; Katayama, Y.; Fukuda, M. Genetic and biochemical investigations on bacterial catabolic pathways for ligninderived aromatic compounds. Biosci. Biotechnol. Biochem. 2007, 71, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Taylor, C.R.; Pink, D.; Burton, K.; Eastwood, D.; Bending, G.D.; Bugg, T.D. Development of novel assays for lignin degradation: Comparative analysis of bacterial and fungal lignin degraders. Mol. Biosyst. 2010, 6, 815–821. [Google Scholar] [CrossRef]
- Furukawa, T.; Bello, F.O.; Horsfall, L. Microbial enzyme systems for Lignin degradation and their transcriptional regulation. Front. Biol. 2014, 9, 448–471. [Google Scholar] [CrossRef]
- Janusz, G.; Anna, P.; Justyna, S.; Urszula, W.B.; Anna, J.W.; Andrzej, P. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 2017, 6, 941–962. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wu, D.; Wei, D.; Zhao, Y.; Wu, J.; Xie, X.; Zhang, R.; Wei, Z. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities. Bioresour. Technol. 2019, 271, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Pourcher, A.; Bouchez, T.; Gelhaye, E.; Peu, P. Occurrence of lignin degradation genotypes and phenotypesamong prokaryotes. Appl. Microbiol. Biot. 2014, 98, 9527–9544. [Google Scholar] [CrossRef]
- Rashid, G.M.; Taylor, C.R.; Liu, Y.; Zhang, X.; Rea, D.; Fülöp, V.; Bugg, T.D. Identification of manganese superoxide dismutase fromSphingobacterium sp. T2 as a novel bacterial enzyme for lignin oxidation. ACS Chem. Biol. 2015, 10, 2286–2294. [Google Scholar] [CrossRef]
- Li, Y.; Dong, S.; Liu, S.; Zhou, H.; Gao, Q.; Cao, G.; Wang, X.; Su, X.; Zhang, Y.; Tang, L.; et al. Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China. Soil Biol. Biochem. 2015, 80, 306–314. [Google Scholar] [CrossRef]
- Guo, G.; Kong, W.; Liu, J.; Zhao, J.; Du, H.; Zhang, X.; Xia, P. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau. Appl. Microbiol. Biotechnol. 2015, 99, 8765–8776. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, T.; Rong, Z.; Hu, L.; Gu, Z.; Wu, Q. Population transcriptomes reveal synergistic responses of DNA polymorphism and RNA expression to extreme environments on the Qinghai-Tibetan Plateau in a predatory bird. Mol. Ecol. 2017, 26, 2993–3010. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.Y.; Ma, S.Q.; Chen, Y.C.; Degyi, Y.Z.; Jiang, H.M. Squalene found in alpine grassland soils under a harsh environment in the Tibetan Plateau, China. Biomolecules 2018, 154, 154. [Google Scholar] [CrossRef]
- Lu, X.Y.; Yan, Y.; Sun, J.; Zhang, X.; Chen, Y.C.; Wang, X.D. Carbon, nitrogen, and phosphorus storage in alpine grassland ecosystems of Tibet: Effects of grazing exclusion. Ecol. Evol. 2015, 5, 4492–4504. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Bibi, S.; Wang, L.; Li, X.; Zhou, J.; Chen, D.; Yao, T. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: A review. Int. J. Climatol. 2018, 38, 1–17. [Google Scholar] [CrossRef]
- Ma, S.Q.; Fan, J.H.; Chen, Y.C.; Lu, X.Y. Studying greenhouse gas emissions through interactions between phospholipid fatty acid content and soil properties of alpine grassland soil in Northern Tibet, China. Glob. Ecol. Conserv. 2021, 27, e01558. [Google Scholar] [CrossRef]
- Lin, X.; Wang, S.; Ma, X.; Xu, G.; Luo, C.; Li, Y.; Jiang, G.; Xie, Z. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biol. Biochem. 2009, 41, 718–725. [Google Scholar] [CrossRef]
- Du, Z.Y.; Wang, X.D.; Liu, X.P.; Cai, J.J. Effects of rock fragments on yak dung greenhouse gas emissions on the Qinghai-Tibetan Plateau. J. Mt. Sci. 2016, 13, 2006–2014. [Google Scholar] [CrossRef]
- Chen, Y.C.; Ma, S.Q.; Jiang, H.M.; Degyi, Y.Z.; Cheng, G.W.; Lu, X.Y. Decomposition time, chemical traits and climatic factors determine litter-mixing effects on decomposition in an alpine steppe ecosystem in Northern Tibet. Plant Soil 2021, 459, 23–34. [Google Scholar] [CrossRef]
- Gai, J.P.; Christie, P.; Cai, X.B.; Fan, J.Q.; Zhang, J.L.; Feng, G.; Li, X.L. Occurrence and distribution of arbuscular mycorrhizal fungal species in three types of grassland community of the Tibetan Plateau. Ecol. Res. 2009, 24, 1345–1350. [Google Scholar] [CrossRef]
- Zhang, S.W.; Gong, W.; Wan, X.; Li, J.Y.; Li, Z.G.; Chen, P.; Xing, S.; Li, Z.; Liu, Y. Influence of organic matter input and temperature change on soil aggregate-associated respiration and microbial carbon use efficiency in alpine agricultural soils. Soil Ecol. Lett. 2024, 6, 230220. [Google Scholar] [CrossRef]
- Chen, Y.C.; Ma, S.Q.; Jiang, H.M.; Hu, Y.; Lu, X.Y. Influences of litter diversity and soil moisture on soil microbial communities in decomposing mixed litter of alpine steppe species. Geoderma 2020, 377, 114577. [Google Scholar] [CrossRef]
- Dorado, J.; Almendros, G.; González-Vila, F.J. Response of humic acid structure to soil tillage management as revealed by analytical pyrolysis. J. Anal. Appl. Pyrol. 2016, 117, 56–63. [Google Scholar] [CrossRef]
- Ma, S.Q.; Chen, Y.C.; Lu, X.Y.; Wang, X.D. Soil organic matter chemistry: Based on pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Mini-Rev. Org. Chem. 2018, 15, 389–403. [Google Scholar] [CrossRef]
- Yang, B.; Pang, X.Y.; Hu, B.; Bao, W.K.; Tian, G.L. Does thinning-induced gap size result in altered soil microbial community in pine plantaton in eastern Tibetan Plateau? Ecol. Evol. 2017, 7, 2986–2993. [Google Scholar] [CrossRef]
- Jilkova, V.; Cajthaml, T.; Frouz, J. Relative importance of honeydew and resin for the microbial activity in wood ant nest and forest floor substrate—A laboratory study. Soil Biol. Biochem. 2018, 117, 1–4. [Google Scholar] [CrossRef]
- Grunewald, G.; Kaiser, K.; Jahn, R.; Guggenberger, G. Organic matter stabilization in young calcareous soils as revealed by density fractionation and analysis of lignin-derived constituents. Org. Geochem. 2006, 37, 1573–1589. [Google Scholar] [CrossRef]
- Vancampenhout, K.; De Vos, B.; Wouters, K.; Swennen, R.; Buurman, P.; Deckers, J. Organic matter of subsoil horizons under broadleaved forest: Highly processed or labile and plant-derived? Soil Biol. Biochem. 2012, 50, 40–46. [Google Scholar] [CrossRef]
- Huang, X.F.; Santhanam, N.; Badri, D.V.; Hunter, W.J.; Manter, D.K.; Decker, S.R.; Vivanco, J.M.; Reardon, K.F. Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol. Bioeng. 2013, 110, 1616–1626. [Google Scholar] [CrossRef]
- Yang, S.; Yao, F.; Ye, J.; Fang, S.; Wang, Z.; Wang, R.; Zhang, Q.; Ma, R.; Wang, X.; Jiang, Y.; et al. Latitudinal pattern of soil lignin/cellulose content and the activity of their degrading enzeymes across a temperate forest ecosystem. Ecol. Indic. 2019, 102, 557–568. [Google Scholar] [CrossRef]
- Nierop, K.G.J.; Pulleman, M.M.; Marinissen, J.C.Y. Management induced organic matter differentiation in grassland and arable soil: A study using pyrolysis techniques. Soil Biol. Biochem. 2001, 33, 755–764. [Google Scholar] [CrossRef]
- Lützow, M.V.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Abelenda, M.S.; Buurman, P.; Camps Arbestain, M.; Kaal, J.; Martinez-Cortizas, A.; Gartzia-Bengoetxea, N.; Macías, F. Comparing NaOH-extractable organic matter of acid forest soils that differ in their pedogenic trends: A pyrolysis-GC/MS study. Eur. J. Soil Sci. 2011, 62, 834–848. [Google Scholar] [CrossRef]
- Martin, J.P.; Haider, K. Effect of concentration on decomposition of some 14C-labeled phenolic compounds, benzoic acid, glucose, cellulose, wheat straw, and Chlorella protein in soil. Soil Sci. Soc. Am. J. 1979, 43, 917–920. [Google Scholar] [CrossRef]
- Martin, J.P.; Haider, K. Microbial degradation and stabilization of 14C-labeled lignins, phenols, and phenolic polymers in relation to soil humus formation. In Lignin Biodegradation: Microbiology, Chemistry and Applications; Kirk, T.K., Higuchi, T., Chang, H.-M., Eds.; CRC Press: Boca Raton, FL, USA, 1980; Volume I, pp. 77–100. [Google Scholar]
- Osono, T.; Takeda, H. Effects of organic mineral chemical quality and mineral nitrogen addition on lignin and holocellulose decomposition of beech leaf litter by Xylaria sp. Eur. J. Soil Biol. 2001, 37, 17–23. [Google Scholar] [CrossRef]
- Dignac, M.F.; Bahri, H.; Rumpel, C.; Rasse, D.P.; Bardoux, G.; Balesdent, J.; Girardin, C.; Chenu, C.; Mariotti, A. Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: An appraisal at the Closeaux experimental field (France). Geoderma 2005, 128, 3–17. [Google Scholar] [CrossRef]
- Heim, A.; Schmidt, M.W.I. Lignin turnover in arable soil and grassland analysed with two different labelling approaches. Eur. J. Soil Sci. 2007, 58, 599–608. [Google Scholar] [CrossRef]
- Bracewell, J.M.; Robertson, G.W. Quantitative comparison of the nitrogen-containing pyrolysis products and amino acid composition of soil humic acids. J. Anal. Appl. Pyrolysis 1984, 6, 19–29. [Google Scholar] [CrossRef]
- Buurman, P.; Roscoe, R. Different chemical compostion of free light, occluded light and extractable SOM fractions in soils of Cerrade and tilled and untilled fields, Minas Gerais Brazil, a pyrolysis-GC/MS study. Ruropean J. Soil Sci. 2011, 62, 253–266. [Google Scholar] [CrossRef]
- Kögel, I. Estimation and decomposition pattern of the lignin component in forest humus layers. Soil Biol. Biochem. 1986, 18, 589–594. [Google Scholar] [CrossRef]
- Kiem, R.; Kögel-Knabner, I. Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biol. Biochem. 2003, 35, 101–118. [Google Scholar] [CrossRef]
- Dao, T.T.; Mikutta, R.; Sauheitl, L.; Gentsch, N.; Shibistova, O.; Wild, B.; Schnecker, J.; Bárta, J.; Čapek, P.; Gittel, A.; et al. Lignin Preservation and Microbial Carbohydrate Metabolism in Permafrost Soils. J. Geophys. Res-Biogeo. 2022, 127, e2020JG006181. [Google Scholar] [CrossRef]
- Grandy, A.S.; Neff, J.C.; Weintraub, M.N. Carbon structure and enzyme activities in alpine and forest ecosystems. Soil Biol. Biochem. 2007, 39, 2701–2711. [Google Scholar] [CrossRef]
- Xu, C.F.; Su, X.; Wang, J.H.; Zhang, F.Z.; Shen, G.N.; Yuan, Y.; Yan, L.; Tang, H.Z.; Song, F.Q.; Wang, W.D. Characteristics and functional bacteria in a microbial consortium for rice straw lignin-degrading. Bioresour. Technol. 2021, 331, 125066. [Google Scholar] [CrossRef]
- Atiwesh, G.; Parrish, C.C.; Banoub, J.; Le, T.T. Lignin degradation by microorganisms: A review. Biotechnol. Progr. 2021, 38, e3226. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.Y.; Fan, Z.; Peng, W.X.; Du, H.; Hu, P.L. Source to Sink of Lignin Phenols in a Subtropical Forest of Southwest China. Forests 2023, 14, 1701. [Google Scholar] [CrossRef]
- Abdellatif Aya, A.M.; Gebily Doha, A.S.; Maissara, E. Transforming Roles of Actinobacteria in Sustainable Agriculture: From Soil Health and Plant Productivity Perspective; Sahu, P.K., Thakur, B., Kaur, S., Eds.; Springer Nature: Singapore, 2024; pp. 299–338. [Google Scholar]
- Song, A.; Zhang, J.; Xu, D.; Wang, E.; Bi, J.; Asante-Badu, B.; Njyenawe, M.C.; Sun, M.; Xue, P.; Wang, S.; et al. Keystone microbial taxa drive the accelerated decompositions of cellulose and lignin by long-term resource enrichments. Sci. Total Environ. 2022, 842, 156814. [Google Scholar] [CrossRef]
- Nagaraju, Y.; Mahadevaswamy; Gowder, S.B.; Triveni, S. Lignin-Degrading Microorganisms from Organic Soils. Int. J. Plant Soil Sci. 2021, 33, 78–85. [Google Scholar] [CrossRef]
- Thitinun, S.; Esther, A.; Surang, C.; Tanaporn, P.; Wethaka, L.; Puey, O.; Phurt, H. Evaluating lignin degradation under limited oxygen conditions by bacterial isolates from forest soil. Sci. Rep. 2024, 14, 13350. [Google Scholar]
- San-Emeterio, L.M.; Hidalgo-Galvez, M.D.; de la Rosa, J.M.; P’erez-Ramos, I.; González-Pérez, J.A. Impact of future scenarios of climate change on lignin dynamics in soil: A case study in a Mediterranean savannah. Sci. Total Environ. 2024, 946, 174317. [Google Scholar] [CrossRef]
Sample Sites | East Longitude | North Latitude |
---|---|---|
Alpine meadow site 1 | 91.1115° | 30.7499° |
Alpine meadow site 2 | 91.9799° | 31.3774° |
Alpine meadow site 3 | 92.0694° | 31.7286° |
Alpine meadow site 4 | 91.7296° | 31.7164° |
Alpine meadow site 5 | 88.6991° | 30.9571° |
Alpine steppe site 1 | 90.7768° | 31.3887° |
Alpine steppe site 2 | 88.6999° | 31.1236° |
Alpine steppe site 3 | 87.4833° | 31.5048° |
Alpine steppe site 4 | 86.5031° | 31.9320° |
Alpine steppe site 5 | 85.3560° | 32.0315° |
Grassland Type | Alpine Meadow | Alpine Steppe |
---|---|---|
Before | 4.71% ± 1.04% Aa | 1.66% ± 1.39% Ba |
After | 1.32% ± 0.58% Ab | 1.56% ± 2.42% Aa |
Component/% | Alpine Meadow | Alpine Steppe | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AM1 | AM2 | AM3 | AM4 | AM5 | AS1 | AS2 | AS3 | AS4 | AS5 | ||
Before | 1-Butanol, 2-ethyl- | 4.34 | 4.78 | 5.71 | 9.20 | 3.29 | 6.10 | 11.04 | 12.85 | 12.12 | 6.92 |
1-Pentanol, 2-methyl- | 40.63 | 29.17 | 30.15 | 33.03 | 24.63 | 24.99 | 19.44 | 18.60 | 18.13 | 4.81 | |
3-Hexyne-2,5-diol | 0.00 | 22.59 | 26.12 | 27.39 | 28.33 | 26.80 | 18.21 | 18.41 | 19.15 | 16.89 | |
3,5-hexadien-2-ol | 2.88 | 5.56 | 2.57 | 4.08 | 3.61 | 4.08 | 2.81 | 2.99 | 4.06 | 2.97 | |
2-Methoxy-4-vinylphenol | 9.35 | 11.37 | 3.20 | 6.14 | 14.90 | 12.04 | 2.15 | 1.97 | 2.18 | 8.33 | |
Ethanol, 2-[2-(2-butoxyethoxy)ethoxy]- | 4.56 | 4.33 | 2.70 | 4.45 | 5.12 | 5.44 | 3.29 | 2.47 | 4.63 | 2.80 | |
Benzenemethanol, α-ethyl-4-methoxy- | 38.24 | 22.19 | 29.55 | 15.71 | 20.12 | 20.55 | 43.06 | 42.70 | 39.74 | 57.28 | |
After | 1-Butanol, 2-ethyl- | 58.59 | 0.00 | 43.81 | 32.42 | 34.14 | 24.90 | 29.14 | 7.06 | 10.59 | 38.96 |
1-Pentanol, 2-methyl- | 0.00 | 0.00 | 32.28 | 26.18 | 23.29 | 18.79 | 31.50 | 23.45 | 18.52 | 18.19 | |
3-Hexyne-2,5-diol | 0.00 | 0.00 | 3.46 | 2.66 | 2.85 | 9.12 | 3.62 | 30.59 | 28.59 | 17.49 | |
3,5-hexadien-2-ol | 7.22 | 0.00 | 0.00 | 5.23 | 4.66 | 5.41 | 6.93 | 12.07 | 7.48 | 2.98 | |
2-Methoxy-4-vinylphenol | 13.03 | 52.54 | 3.96 | 8.20 | 13.12 | 7.59 | 3.23 | 4.62 | 7.48 | 5.21 | |
Ethanol, 2-[2-(2-butoxyethoxy)ethoxy]- | 14.81 | 47.46 | 11.40 | 20.30 | 15.84 | 28.92 | 20.83 | 15.84 | 23.01 | 6.10 | |
Benzenemethanol, α-ethyl-4-methoxy- | 6.35 | 0.00 | 5.08 | 5.01 | 6.09 | 5.26 | 4.74 | 6.36 | 4.34 | 11.06 |
PLFA Biomarkers/nmol g−1 | Grassland Type | |
---|---|---|
Alpine Meadow | Alpine Steppe | |
Bacteria | 23.64 ± 3.06 a | 11.50 ± 1.51 b |
Fungal | 3.70 ± 0.54 a | 2.03 ± 0.31 b |
Actinibacteria | 1.96 ± 0.27 a | 1.22 ± 0.15 b |
Gram-positive bacteria | 10.92 ± 1.29 a | 5.26 ± 0.63 b |
Gram-negative bacteria | 6.14 ± 0.86 a | 3.14 ± 0.43 b |
Total PLFAs | 46.37 ± 5.16 a | 23.96 ± 3.07 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yangzom, D.; Ma, S.; Lu, X. Quantitative and Qualitative Relationships between Phospholipid Fatty Acid Analysis Biomarkers and Lignin in Soil from the Tibetan Plateau (China) under Laboratory Incubation Conditions. Agronomy 2024, 14, 1980. https://doi.org/10.3390/agronomy14091980
Yangzom D, Ma S, Lu X. Quantitative and Qualitative Relationships between Phospholipid Fatty Acid Analysis Biomarkers and Lignin in Soil from the Tibetan Plateau (China) under Laboratory Incubation Conditions. Agronomy. 2024; 14(9):1980. https://doi.org/10.3390/agronomy14091980
Chicago/Turabian StyleYangzom, Degyi, Shuqin Ma, and Xuyang Lu. 2024. "Quantitative and Qualitative Relationships between Phospholipid Fatty Acid Analysis Biomarkers and Lignin in Soil from the Tibetan Plateau (China) under Laboratory Incubation Conditions" Agronomy 14, no. 9: 1980. https://doi.org/10.3390/agronomy14091980
APA StyleYangzom, D., Ma, S., & Lu, X. (2024). Quantitative and Qualitative Relationships between Phospholipid Fatty Acid Analysis Biomarkers and Lignin in Soil from the Tibetan Plateau (China) under Laboratory Incubation Conditions. Agronomy, 14(9), 1980. https://doi.org/10.3390/agronomy14091980