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Abstract: Fruit is a major source of vitamins, minerals, and dietary fiber in people’s daily lives. Leaf
diseases caused by climate change and other factors have significantly reduced fruit production.
Deep learning methods for segmenting leaf diseases can effectively mitigate this issue. However,
challenges such as leaf folding, jaggedness, and light shading make edge feature extraction difficult,
affecting segmentation accuracy. To address these problems, this paper proposes a method based
on EFS-Former. The expanded local detail (ELD) module extends the model’s receptive field by
expanding the convolution, better handling fine spots and effectively reducing information loss.
H-attention reduces computational redundancy by superimposing multi-layer convolutions, signifi-
cantly improving feature filtering. The parallel fusion architecture effectively utilizes the different
feature extraction intervals of the convolutional neural network (CNN) and Transformer encoders,
achieving comprehensive feature extraction and effectively fusing detailed and semantic information
in the channel and spatial dimensions within the feature fusion module (FFM). Experiments show
that, compared to DeepLabV3+, this method achieves 10.78%, 9.51%, 0.72%, and 8.00% higher scores
for mean intersection over union (mIoU), mean pixel accuracy (mPA), accuracy (Acc), and F_score,
respectively, while having 1.78 M fewer total parameters and 0.32 G lower floating point operations
per second (FLOPS). Additionally, it effectively calculates the ratio of leaf area occupied by spots.
This method is also effective in calculating the disease period by analyzing the ratio of leaf area
occupied by diseased spots. The method’s overall performance is evaluated using mIoU, mPA, Acc,
and F_score metrics, achieving 88.60%, 93.49%, 98.60%, and 95.90%, respectively. In summary, this
study offers an efficient and accurate method for fruit tree leaf spot segmentation, providing a solid
foundation for the precise analysis of fruit tree leaves and spots, and supporting smart agriculture for
precision pesticide spraying.

Keywords: H-attention; parallel fusion architecture; leaf diseases detection; smart agriculture; CNN

1. Introduction

With the global increase in agricultural productivity, fruit farming has become a signif-
icant component of modern agriculture. However, changes in climatic factors and frequent
disease outbreaks can damage photosynthesis through leaf diseases, weakening the vitality
of fruit trees, which affects yield and threatens the economic interests of fruit growers and
food safety for consumers [1]. The development of artificial intelligence has introduced
new methods for precise pesticide application, significantly reducing pesticide use and eco-
nomic costs for fruit farmers, while also decreasing chemical pollution of the land [2]. Thus,
accurate crop disease analysis is essential for timely prevention. Traditional methods for
detecting fruit diseases primarily rely on manual visual observation and judgment based on
extensive experience. In large orchards with diverse fruits, this method is time-consuming,
labor-intensive, and limited in accuracy by the inspector’s expertise [3]. Advances in
artificial intelligence have led to deep learning-based image processing technology, offering
new solutions for fruit disease detection.
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Computer image segmentation algorithms are widely used for analyzing leaves and
diseases in agronomy. Researchers frequently use clustering, threshold segmentation,
and region growing methods for leaf and disease segmentation. For instance, Febri-
nanto et al. [4] utilized the k-means clustering method for citrus leaf segmentation and
disease detection, providing initial clusters specific to citrus. Chodey et al. [5] applied the
fuzzy C-means method to segment target foreground and background, thereby identifying
agricultural pests. Chodey et al. [6] detected cluttered backgrounds using advanced inte-
grated color feature detection, which includes various color spaces, color indexes, and color
to grayscale dialogs with singular value decomposition (SVD), and eliminated cluttered
backgrounds by interactively selecting growing seeds in the advanced comprehensive color
feature (ACCF) atlas using the region growing method. Ma et al. [7] used the interactive re-
gion growing method in the comprehensive color feature (CCF) atlas to segment vegetable
foliar lesion images taken in greenhouses with complex backgrounds. Ma et al. [8] applied
non-local mean filtering and two-dimensional histograms to denoise maize disease images,
and improved the integrated particle swarm optimization (PSO) method with a new elite
strategy for precise segmentation of various maize leaf diseases. Z. Xie et al. [9] integrated
the Otsu method with the innovative dung beetle optimizer (DBO) to achieve excellent
performance in real and complex rubber image segmentation tasks. These methods are
often specific to certain diseases and rely on large amounts of high-quality data; they may
not perform well if there are insufficient or non-representative training data. Typically, these
methods perform poorly when applied to different crop diseases, limiting their broader
application in agriculture.

With ongoing advancements in deep learning technology, semantic segmentation has
become a crucial application. Fully convolutional network (FCN) was the first model to
utilize a fully convolutional network for semantic segmentation [10]. It achieves image-
to-image prediction by replacing the fully connected layer with a convolutional layer and
introducing skip connections to fuse different levels of information, enabling pixel-level
classification and establishing a solid foundation for semantic segmentation technology.
U-Net, originally designed for biomedical image segmentation, has a symmetric encoder–
decoder structure resembling the letter U. Its features are combined with decoder features
through skip connections. It performs well on small sample data by combining encoder
and decoder features through skip connections [11]. PSPNet fuses feature maps at different
scales using the pyramid pooling module to extract multi-scale contextual information,
enabling segmentation of targets at various scales [12]. Other CNN-based semantic seg-
mentation networks include DeepLab [13], SegNet [14], and Mask R-CNN [15]. Due to
their strong transferability and high accuracy, these models have been increasingly intro-
duced into agriculture, yielding good results. Jia et al. [16] improved Mask R-CNN to
effectively address fruit overlapping in real environments. ResNet and DenseNet reduce
the number of parameters and serve as backbone networks for feature extraction, then
are embedded into edge devices for field testing, supporting the development of picking
robots. Zou et al. [17] proposed a novel image enhancement method and a simplified
U-Net network for weed segmentation in complex field scenes. This method excelled in
single image processing speed and had an average intersection over union (IoU) ratio.
Kang et al. [18] proposed the method’s effectiveness in cotton root segmentation, and
demonstrated this by incorporating the attention mechanism into the DeepLabv3+ model
and comparing it with SegNet and U-Net. Azizi et al. [19] used the VGG16 deep model
for plot segmentation alongside the watershed segmentation method. C. Wang et al. [20]
divided the cucumber disease segmentation task into two parts: segmenting cucumber
leaves using DeepLabv3+ and extracting disease spots using U-Net. This method simplifies
the segmentation task and achieves higher point segmentation accuracy. Sunil et al. [21] ex-
tracted the features of healthy and diseased leaves of tomatoes through multilevel attention
from various aspects such as spatial, channel, and pixel, which in turn gave good results.
B.-Y. Liu et al. [22] used two-level CNNs, PSPNet and U-Net, to accurately segment apple
leaves and spots and accurately derive the severity of the disease through the area ratio
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between pixels. Dai et al. [23] used meteorological data enhancement methods to effectively
simulate the climatic conditions of a real orchard, while the use of multilevel attention
and gobal average pooling (GAP) layers reduced computational costs and achieved good
segmentation accuracy. Despite the success of previous research, limitations remain. Due
to receptive fields and shared parameters, CNNs excel at local feature extraction through
convolution and pooling operations but lack the ability to capture global information and
long-range dependencies. Some studies propose effective solutions, such as expanding
the receptive field or adopting deeper network architectures. However, deeper layers
exacerbate network degradation [24]. Thus, CNN-based segmentation networks struggle
to balance computational complexity and segmentation accuracy.

In recent years, the Transformer [25], based on the self-attention mechanism and fully
connected layers, has been introduced to computer vision, showing strong generalization
due to its global nature and ability to capture long-range dependencies. Some researchers
initially combined the attention mechanism with traditional convolution. For instance, X.
Wang et al. [26] proposed non-local neural networks (NLNs), which use non-local opera-
tions to capture long-range dependencies. H. Zhang et al. [27] introduced a self-attention
mechanism in generative adversarial networks, significantly enhancing the quality of
generated images. This approach combines the attention mechanism with convolutional
layers. Dosovitskiy et al. [28] first used the self-attention mechanism in place of traditional
convolution, significantly enhancing the performance of a pure attention model through
large-scale pre-training and slice embedding methods, making it feasible and efficient for
practical applications. Others have developed corresponding segmentation models, such as
Segmentation Transformer (SETR) [29], SegFormer [30], and Swin Transformer [31]. Com-
pared to CNN, Transformers divide images into equal-sized patches and use a self-attention
mechanism to capture long-range dependencies and spatial transformation relationships
that reflect global properties, enabling global modeling. Although Transformers perform
well in the above areas, they have shortcomings. For example, the self-attention mech-
anism in the encoder redundantly calculates neighboring pixel correlations and tends
to be inferior to CNN in extracting local details. Consequently, the decoder’s inability
to recover original information during up-sampling can degrade performance in tasks
requiring fine segmentation.

Taking into account the overall generalization of the model and the accuracy of
segmentation in real-world environments (such as difficulty in extracting edges due to the
influence of light on fruit tree leaves, and the easy omission of local features due to the
small target size of disease points), this article proposes a complementary network that
integrates the Transformer and CNN, where CNN complements local feature extraction
and Transformer globally, and designs EFS-Former for the segmentation of various fruit
leaf diseases. Among them, the Transformer block performs position encoding and global
modeling to efficiently extract global and positional features of leaves and diseases. The
CNN module optimizes the local details and edge information, which improves the pixel
classification ability of the model, resulting in finer segmentation results of leaves and
spots, and extracts more information of tiny spots. In addition, we introduce a feature
fusion module that fuses the obtained feature information from both branches. A richer
feature representation is obtained through feature merging and subsequent refinement via
the remaining layers.

2. Materials and Methods
2.1. Dataset

In this work, four diseases of three fruit crops were collected, namely, apple spotted
leaf drop disease, pomegranate cercospora spot, grape brown spot, and black rot. We
classified grape brown spot and black rot into early and late stages of the disease using
the size of the leaf area occupied by disease spots; apple spotted leaf drop disease was
classified into indoor and outdoor scenarios for segmentation; images taken with different
light intensities and backgrounds were also collected to enrich the outdoor dataset. All the
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above datasets were obtained from Plant Village [32], a publicly available dataset for crop
pest and disease identification. They were collected and labeled by us. As the pixel size was
not uniform across the images when they were collected, the image size was subsequently
adjusted to 512 × 512 pixels, and the types of images included in this dataset are listed in
Table 1.

Table 1. Samples of four types of fruit and leaf diseases and hazards.

Fruit and
Leaf Type Type of Disease Original Image Hazards Challenges

Grape Brown spot

Agronomy 2024, 14, x FOR PEER REVIEW 4 of 26 
 

 

size of the leaf area occupied by disease spots; apple spotted leaf drop disease was classi-
fied into indoor and outdoor scenarios for segmentation; images taken with different light 
intensities and backgrounds were also collected to enrich the outdoor dataset. All the 
above datasets were obtained from Plant Village [32], a publicly available dataset for crop 
pest and disease identification. They were collected and labeled by us. As the pixel size 
was not uniform across the images when they were collected, the image size was subse-
quently adjusted to 512 × 512 pixels, and the types of images included in this dataset are 
listed in Table 1. 

Table 1. Samples of four types of fruit and leaf diseases and hazards. 

Fruit and Leaf Type Type of Disease Original Image Hazards Challenges 

Grape Brown spot 

 

Disrupts leaf 
photosynthesis 

and triggers 
early defolia-

tion. 

The image is disturbed by 
background noise (back-

ground blur), which blurs 
the blade edge infor-

mation, and can affect the 
segmentation of the 

model. 

Grape Black rot 

 

It will increase 
the population 
of pathogenic 

bacteria. 

Leaf blade edges are 
curled, resulting in poorly 

defined edge features. 

Pomegranate Cercospora spot 

 

It increases the 
rate of diseased 

leaves, and 
early leaf fall is 
obvious, which 
is unfavorable 
to flower bud 

differentiation. 

Darker lighting 
conditions result in spot 

features that are similar to 
the background 

information, making 
feature extraction 

difficult. 

Apple Spotted leaf drop 
disease 

 

Causes early de-
foliation, weak-
ens fruit trees 

and affects fruit 
production. 

Due to different lighting 
conditions during image 
acquisition, the reflected 

light on the surface of 
leaves or fruits may cause 

uneven brightness, in-
creasing the difficulty of 

segmentation. 

Disrupts leaf
photosynthesis and

triggers early
defoliation.

The image is disturbed by
background noise

(background blur), which
blurs the blade edge

information, and can affect
the segmentation of the

model.

Grape Black rot

Agronomy 2024, 14, x FOR PEER REVIEW 4 of 26 
 

 

size of the leaf area occupied by disease spots; apple spotted leaf drop disease was classi-
fied into indoor and outdoor scenarios for segmentation; images taken with different light 
intensities and backgrounds were also collected to enrich the outdoor dataset. All the 
above datasets were obtained from Plant Village [32], a publicly available dataset for crop 
pest and disease identification. They were collected and labeled by us. As the pixel size 
was not uniform across the images when they were collected, the image size was subse-
quently adjusted to 512 × 512 pixels, and the types of images included in this dataset are 
listed in Table 1. 

Table 1. Samples of four types of fruit and leaf diseases and hazards. 

Fruit and Leaf Type Type of Disease Original Image Hazards Challenges 

Grape Brown spot 

 

Disrupts leaf 
photosynthesis 

and triggers 
early defolia-

tion. 

The image is disturbed by 
background noise (back-

ground blur), which blurs 
the blade edge infor-

mation, and can affect the 
segmentation of the 

model. 

Grape Black rot 

 

It will increase 
the population 
of pathogenic 

bacteria. 

Leaf blade edges are 
curled, resulting in poorly 

defined edge features. 

Pomegranate Cercospora spot 

 

It increases the 
rate of diseased 

leaves, and 
early leaf fall is 
obvious, which 
is unfavorable 
to flower bud 

differentiation. 

Darker lighting 
conditions result in spot 

features that are similar to 
the background 

information, making 
feature extraction 

difficult. 

Apple Spotted leaf drop 
disease 

 

Causes early de-
foliation, weak-
ens fruit trees 

and affects fruit 
production. 

Due to different lighting 
conditions during image 
acquisition, the reflected 

light on the surface of 
leaves or fruits may cause 

uneven brightness, in-
creasing the difficulty of 

segmentation. 

It will increase the
population of

pathogenic bacteria.

Leaf blade edges are curled,
resulting in poorly defined

edge features.

Pomegranate Cercospora spot

Agronomy 2024, 14, x FOR PEER REVIEW 4 of 26 
 

 

size of the leaf area occupied by disease spots; apple spotted leaf drop disease was classi-
fied into indoor and outdoor scenarios for segmentation; images taken with different light 
intensities and backgrounds were also collected to enrich the outdoor dataset. All the 
above datasets were obtained from Plant Village [32], a publicly available dataset for crop 
pest and disease identification. They were collected and labeled by us. As the pixel size 
was not uniform across the images when they were collected, the image size was subse-
quently adjusted to 512 × 512 pixels, and the types of images included in this dataset are 
listed in Table 1. 

Table 1. Samples of four types of fruit and leaf diseases and hazards. 

Fruit and Leaf Type Type of Disease Original Image Hazards Challenges 

Grape Brown spot 

 

Disrupts leaf 
photosynthesis 

and triggers 
early defolia-

tion. 

The image is disturbed by 
background noise (back-

ground blur), which blurs 
the blade edge infor-

mation, and can affect the 
segmentation of the 

model. 

Grape Black rot 

 

It will increase 
the population 
of pathogenic 

bacteria. 

Leaf blade edges are 
curled, resulting in poorly 

defined edge features. 

Pomegranate Cercospora spot 

 

It increases the 
rate of diseased 

leaves, and 
early leaf fall is 
obvious, which 
is unfavorable 
to flower bud 

differentiation. 

Darker lighting 
conditions result in spot 

features that are similar to 
the background 

information, making 
feature extraction 

difficult. 

Apple Spotted leaf drop 
disease 

 

Causes early de-
foliation, weak-
ens fruit trees 

and affects fruit 
production. 

Due to different lighting 
conditions during image 
acquisition, the reflected 

light on the surface of 
leaves or fruits may cause 

uneven brightness, in-
creasing the difficulty of 

segmentation. 

It increases the rate of
diseased leaves, and

early leaf fall is
obvious, which is

unfavorable to flower
bud differentiation.

Darker lighting conditions
result in spot features that

are similar to the background
information, making feature

extraction difficult.

Apple Spotted leaf drop
disease

Agronomy 2024, 14, x FOR PEER REVIEW 4 of 26 
 

 

size of the leaf area occupied by disease spots; apple spotted leaf drop disease was classi-
fied into indoor and outdoor scenarios for segmentation; images taken with different light 
intensities and backgrounds were also collected to enrich the outdoor dataset. All the 
above datasets were obtained from Plant Village [32], a publicly available dataset for crop 
pest and disease identification. They were collected and labeled by us. As the pixel size 
was not uniform across the images when they were collected, the image size was subse-
quently adjusted to 512 × 512 pixels, and the types of images included in this dataset are 
listed in Table 1. 

Table 1. Samples of four types of fruit and leaf diseases and hazards. 

Fruit and Leaf Type Type of Disease Original Image Hazards Challenges 

Grape Brown spot 

 

Disrupts leaf 
photosynthesis 

and triggers 
early defolia-

tion. 

The image is disturbed by 
background noise (back-

ground blur), which blurs 
the blade edge infor-

mation, and can affect the 
segmentation of the 

model. 

Grape Black rot 

 

It will increase 
the population 
of pathogenic 

bacteria. 

Leaf blade edges are 
curled, resulting in poorly 

defined edge features. 

Pomegranate Cercospora spot 

 

It increases the 
rate of diseased 

leaves, and 
early leaf fall is 
obvious, which 
is unfavorable 
to flower bud 

differentiation. 

Darker lighting 
conditions result in spot 

features that are similar to 
the background 

information, making 
feature extraction 

difficult. 

Apple Spotted leaf drop 
disease 

 

Causes early de-
foliation, weak-
ens fruit trees 

and affects fruit 
production. 

Due to different lighting 
conditions during image 
acquisition, the reflected 

light on the surface of 
leaves or fruits may cause 

uneven brightness, in-
creasing the difficulty of 

segmentation. 

Causes early
defoliation, weakens
fruit trees and affects

fruit production.

Due to different lighting
conditions during image
acquisition, the reflected

light on the surface of leaves
or fruits may cause uneven
brightness, increasing the
difficulty of segmentation.



Agronomy 2024, 14, 1992 5 of 25

As shown in Table 1, the data demonstrate the challenges when segmenting different
pathologies of various fruits. For fruits and leaves, the challenges are as follows: (1) poorly
defined leaf edges due to curling; (2) light affecting fruit and leaf edges, making edge
feature extraction difficult; and (3) multiple overlapping leaves in outdoor scenes create a
complex background, complicating global feature extraction and greatly affecting model
segmentation accuracy. For disease spots, the challenges are as follows: (1) targets are
too small and easily missed during local feature extraction; (2) diseased points are too
illuminated, complicating feature extraction; and (3) blurred contours of disease points or
pixel points close to leaves hinder model feature extraction.

2.2. Image Preprocessing

This work sums up the experience of previous work, using the Labelme annotation
software [33]; the original dataset annotation work was used here for model learning and
the evaluation of the model of the standard. The entire annotation dataset includes three
fruit crops of four diseases, totaling twelve categories. For grape black rot and grape brown
spot disease, the early and late disease stages are classified using the size of the disease spots
area. In the annotations of the apple spotted leaf drop disease outdoor images, not only
single leaves but diseased leaves are divided into separate annotation categories to ensure
that the model can be better adapted to the complex outdoor environment. The original
images of the dataset and the labeled images are displayed in Figure 1. Among them, (a)
shows apple spotted leaf drop disease, (b) and (c) show the early and late stages of grape
brown spot disease, (d) and (e) show the early and late stages of grape black rot disease,
and (f) shows pomegranate cercospora spot, respectively. The categories represented by
each color are shown separately in the figure.
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Figure 1. Original and annotated images: (a) apple spotted leaf drop disease, (b) early stage of grape
brown spot disease, (c) late stage of grape brown spot disease, (d) early stage of grape black rot
disease, (e) late stage of grape black rot disease, and (f) pomegranate cercospora spot.

Neural networks require a large amount of sample data for training. A small sample
size can lead to underfitting, preventing the network from completing training. Therefore,
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expanding the original dataset is essential. In this study, the dataset was expanded by a
ratio of 1:5. This included randomly flipping and zooming images, adjusting brightness and
contrast, and adding 20 × 20 white mask blocks. These enhancement methods simulated
issues such as varying light conditions and leaf overlapping that may occur during data
collection. Taking apple spotted leaf drop disease as an example, the enhanced images
are shown in Figure 2. The specific numbers of different categories of leaves are listed in
Table 2.
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Figure 2. Original image and enhanced image: (a) original image, (b) reduced brightness and
flipped, (c) randomly flipped, (d) random zoom, (e) white mask block added, (f) panning and
increasing brightness.

Table 2. Number of pictures per fruit condition.

Indoor Pictures Outdoor Pictures

Apple
Spotted Leaf Drop Disease

Grape
Black Rot

Pomegranate
Cercospora Spot

Grape
Brown Spot

Apple
Spotted Leaf Drop Disease

Original 157 677 271 866 335
Enhanced 785 3385 1355 4330 1675

Total 942 4062 1626 5196 2010

2.3. Methods

Inspired by the powerful representation capabilities of CNN and Transformer, we
propose the CNN and Transformer Complementary Network (EFS-Former). As shown in
Figure 3, the main difference between our approach and existing architectures is our design
of two different encoders to generate complementary features, along with cross-domain
complementary fusion and multi-scale feature fusion.

Our motivation for using both CNN and Transformer encoders is that they comple-
ment each other. CNN excels at local feature extraction, while Transformer efficiently
captures long-range dependencies. Due to the small traits of agricultural diseases, deeper
CNN architectures can lose these smaller traits. It is difficult for the decoder to recover these
lost small and narrow targets, resulting in failure. Conversely, the Transformer encoder can
capture more dependencies and efficiently recover many features in the decoder section.

Specifically, the input image for the network is sized 512 × 512 × 3. First, the image is
input to the backbone network for initial feature extraction, producing features mapped
to the original image size 1

2 , denoted as P0. This step effectively reduces the number of
initial parameters for the encoder stage. The entire encoder is divided into four stages,
each stacked four times using the same parallel fusion structure. This deepens the network
layers to continuously refine fine features, minimizing missed features. The feature map
from the backbone network is input to both CNN and Transformer encoders for extraction
in different regions. The Transformer stage captures fine features in the global context,
generating feature images G1, G2, G3, and G4. The CNN stage mainly captures local fine
features, obtaining multi-level feature maps P1, P2, P3, and P4. The feature maps generated
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by both encoders are of the original image’s { 1
4 , 1

8 , 1
16 , 1

32 } resolution. Each stage outputs {16,
32, 64, 160, 256} channel dimensions Ci (i = 1, 2, 3, 4, 5). In the decoder section, the feature
maps P1–P4 from the encoder, downsampled at a 2× rate, are fused and upsampled to
the original size, producing 512 × 512 × Ncls segmentation results. Ncls is the number of
categories, which is 3 in this paper.
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2.3.1. Expanded Local Detail (ELD) Module

The curled and jagged shape of leaf edges and shadows from different lighting angles
reduce leaf segmentation accuracy. Additionally, the similarity between the edges of
diseased points and leaf color makes extracting diseased points more difficult, leading to
loss of details and reduced segmentation accuracy. Furthermore, in most fruit and leaf
images, diseased pixels comprise a small proportion of the total image, making it harder
to extract features with small diseased spots. Therefore, this subsection leverages CNN’s
local feature extraction and designs an expanded local detail (ELD) module to optimize the
edge segmentation of leaves and spots and to extract more subtle spots. The ELD module
is shown in Figure 4.

While the Transformer module captures remote feature dependencies, it often loses
the relationship between local features. Conversely, CNN clearly obtains local feature
relationships through the translation of the convolutional kernel with a specific step size,
enabling feature extraction with a stronger dependency on texture features and effectively
protecting local feature extraction.
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As shown in Figure 4, the ELD module first uses 1 × 1 convolution with sigmoid
linear unit (SiLU) activation function to introduce non-linear transformations, change
the channel dimensions, and perform dimensionality upgrading operations to make the
network learn deeper features, and then uses the 3 × 3 convolution with an expansion rate
of 2 to reduce the computational volume of the network without increasing the number
of convolution kernels to expand the feeling of the module and capture the inputs better
in the global context. It then uses the 1 × 1 convolution to reorganize and integrate the
channel information of the input feature map. Finally, the 1 × 1 convolution is used to
reorganize and integrate the channel information of the input feature map, and, through
the batch normalization and SiLU activation functions, the network can introduce non-
linear transformations to improve the expression and differentiation of the features in the
model, and then finally downscale to the original dimensions to better adapt to the fusion
operation in the next stage. Assuming x as the input, the features that go through the ELD
layer (yi) each time can be expressed as follows:

yout = SiLU(concat(x, BN3(W3 ∗ (BN2(W2 ∗d (BN1(W1 ∗ x))))))) (1)

where yout denotes the feature output after the ELD layer, ∗ denotes the standard con-
volution operation, ∗d denotes the dilation convolution operation, BN1 (z) denotes the
BatchNorm operation at layer i, concat (x, y3) denotes the splicing operation in the channel
dimension, and SiLU denotes the SiLU activation function.

Therefore, the ELD module effectively enhances the perception of leaf and spot edge
features by locally optimizing patches embedded in the output feature layer. It interacts
with the global Seg-Blok module to perform coarse and fine feature fusion in the feature
fusion module, thus improving the extraction of tiny diseases and segmentation of leaf and
spot edges.

2.3.2. Seg-Block

In image segmentation tasks, the receptive field is crucial as it reflects the perceptual
range of the convolutional kernel on the feature map. A small receptive field can only
capture unilateral local information. In agricultural disease segmentation, where diseases
are small and leaf edges can be blurred, researchers focus on these challenges. Our network
enhances the encoder with a parallel Transformer and an attention mechanism using
selective convolution, aiming to increase the receptive field while preserving detailed
features. The Transformer uses an attention mechanism to perform a dot product (or other
similarity measure) between the query and key vectors to calculate attention scores, which
represent the correlation between the query and key, thereby enabling global modeling.
However, the attention mechanism is computationally intensive and inevitably leads to
computational redundancy. Additionally, due to close attention scores, certain features
may be lost, negatively impacting segmentation results. To address these issues, this paper
proposes a Transformer module (Seg-Block) that integrates H-attention, a feedforward
neural network (FNN), and a patch merging module. This module aims to enhance the
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performance and computational efficiency of traditional Transformer models by combining
global and local feature extraction capabilities.

As shown in Figure 5, H-attention helps the model to be more flexible and accurate in
processing information with different spatial resolutions by incorporating convolutional
layers with different sizes of convolutional kernels in the multi-attention module. To further
enhance the feature representation capability, the input features are reshaped, and then
multiple convolutional layers with different kernel sizes are passed through for multi-scale
feature extraction. These convolutional layers use different convolutional kernel sizes (e.g.,
1 × 1, 3 × 3, 5 × 5, 7 × 7) to capture spatial information at different scales.
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The output features of each convolutional layer are accumulated to obtain an overall
feature map, which is compressed through a fully connected layer to generate a feature
vector that is used to compute selective weights. The feature vector is reprojected back to
the original dimension through a series of fully connected layers, and these projections
are used to generate selective attentional weights for multiscale features. The weights
are normalized by a softmax function and multiplied by the corresponding convolutional
output features, and, finally, the features at different scales are weighted and summed
to generate an enhanced feature map. After a series of fine-grained operations on the
H-attention input features, the output feature map retains more useful information, while
improving the processing capability for complex visual tasks. The overall operation flow is
as follows:

The raw image input first-stage attention mechanism is as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (2)

where Q is the query matrix, K is the key matrix, V is the value matrix, and dk is the
dimension of each header.

The second stage of the operation is the input features after multiple convolutions
and operations; the convolution output features are obtained and the convolution stack
is summed. Subsequently, the channel attention weights are calculated and, finally, the
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weights are multiplied with the convolution output in a multiplication operation. The
overall computational procedure for the second stage is as follows:

X(i)
conv = Conv(i)(X), i = 1, . . . , k (3)

U = ∑k
i=1 X(i)

conv (4)

S = 1
HW ∑H

h=1 ∑W
w=1 Uhw (5)

Z = ReLU(W1S) (6)

w(i)
conv = So f tmax

(
W(i)

2 Z
)

, i = 1, . . . , k (7)

V = ∑k
i=1 w(i)

conv ⊙ X(i)
conv (8)

X f inal = Attention = (Q, K, V) (9)

X f inal = H − Attention(Q, K, V) + V (10)

where, after the convolutional output of the ith convolutional kernel, k is the number
of convolutional kernels, U is the summation of all the convolutional outputs, H is the
feature height, W is the feature width, S represents the global average pooling result of
the feature map after the selective convolutional attention module, Z is the intermediate
feature after activation of rectified linear unit(ReLU), W1 is the weight of the first fully
connected layer, w(i)

conv is the ith convolutional kernel channel attentional weights, and W(i)
2

is the ith convolution kernel second fully connected layer weights.
The FNN first processes the input features using a linear transformation (fully con-

nected layer). The linear transformation maps them to a higher dimensional space, typically
extending the dimensionality by 4×. This expansion operation allows the network to per-
form complex feature learning in higher dimensions. The features activated by GELU are
then subjected to a second linear transformation that reduces the feature dimensions to
the original ones. This reduction operation ensures that the output of the FNN has the
same dimensions as the input, allowing it to be seamlessly integrated with subsequent
operational modules. Residual connection and layer normalization are also introduced in
the FNN. Residual connection allows the input features to be directly added to the output
of the FNN, thus enhancing gradient flow. Layer normalization provides better stability of
the model across training batches by normalizing each layer of the input features.

Patch merging progressively reduces the spatial resolution of the feature map by
merging neighboring image chunks, merging adjacent 2 × 2 chunks, and mapping the
merged features to a new feature space through a linear projection layer. By merging
neighboring chunks, the model can aggregate more feature information while reducing
computational effort. This is important for capturing multi-scale contextual information
and reducing computational complexity.

2.3.3. Feature Fusion Module

Since Transformer and CNN encoders are designed for different tasks, they employ
distinct feature extraction methods and have different application purposes. Transformer
and CNN encoders have different intervals of interest or receptive fields for the same input.
In order to obtain complementary information, we design a lightweight feature fusion
module (FFM), as shown in Figure 6 and the following calculation formula. The feature
maps output from the Transformer and CNN encoders are first spliced in the channel
dimension to obtain a combined feature map. This feature map contains complementary
information from the two encoders and provides the basis for subsequent fusion operations,
as follows:

XT ∈ RB×CT×H×W (11)

XC ∈ RB×CC×H×W (12)
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Xconcat = Concat(XT , XC) ∈ RB×(CT+CC)×H×W (13)

where XT represents the feature map obtained from the Transformer encoder, and B is
the batch size. CT represents the number of channels output by the Transformer encoder.
W is the height and width of the feature map. The feature map CC obtained from the
CNN encoder is the number of channels output by the encoder. Xconcat is the concatenated
feature map.
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Subsequently, spatial fusion through 3 × 3 convolution can extract more complex and
diverse local features while preserving the information of the original image. The 3 × 3
convolution extracts local information in the spatial dimension of the feature map through
a sliding window operation, while preserving the spatial structure of the original features.
The output feature map X3×3 has Cout channels, reflecting the fusion and extraction of
spatial features, as follows:

X3×3 = BN(Conv3×3(Xconcat)) ∈ RB×Cout×H×W (14)

where X3×3 refers to the feature map after 3 × 3 convolution. Cout is the number of channels
in the 3 × 3 convolution output, which is usually an adjustable parameter to control the
dimension of the output features.

The final 1 × 1 convolution acts on the channel dimension of the feature map, which
corresponds to a linear combination of channels for each pixel point. This operation enables
features between different channels to be recombined and weighted, resulting in a richer
representation of channel features. The combination of batch normalization and ReLU
activation function enables the 1 × 1 convolution to perform a non-linear transformation of
the features, which improves the expressive power of the model, as follows:

X1×1 = BN(Conv1×1(X3×3)) ∈ RB×Cout×H×W (15)

Xres1×1 = BN(Conv1×1(Xconcat)) ∈ RB×(CT+CC)×H×W (16)

Xconcat1 = Concat(Xres1×1, X1×1) ∈ RB×Cout×H×W (17)

Xout = ReLu(Xconcat1) (18)
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X1×1 is the feature map after a 1 × 1 convolution, Xres1×1 refers to the feature map con-
nected by residuals, and Xconcat1 represents the feature map after the second concatenation.

2.4. Experimental Platform and Experimental Evaluation Indices

To verify the performance of the EFS-Former and its various modules proposed in this
article, all experiments were conducted under the same software and hardware conditions,
with the following operating conditions. The software platform was based on Python
3.8.19, with its main libraries including PyTorch 2.2.2 for model construction and training,
OpenCV 4.1.2 for image processing and segmentation, and NumPy 1.24.4 for mathematical
computation. These library versions were chosen for their compatibility and stability
on the hardware platform. Experiments were conducted on Ubuntu 22.04.4 Long-Term
Support (LTS) with an 11th Gen Intel® Core™ i5-11400F @ 2.60 GHz × 12 and an NVIDIA
GeForce Ray Tracing Texel eXtreme (RTX) 2080 Ti graphics card. The optimal training
hyperparameters were selected after repeated experiments: the optimizer was AdamW
with weight decay, using a cosine learning rate decay strategy, with momentum of 0.9, a
weight decay of 10−2, and a batch size of 6200 epochs. For faster convergence to a more
refined convergence process, we set the initial learning rate to be 10−4 and the minimum
learning rate to be 10−7. This range allowed for larger weight updates in the initial phase so
that the model quickly approached the optimal solution, and then progressively refined the
updates to ensure final convergence. To prevent overfitting from occurring, we set the drop
path rate to 0.1. For training weights, we used self-training weights for our experiments.

We used eight evaluation metrics to assess the proposed model’s effectiveness: mean in-
tersection over union (mIoU), mean pixel accuracy (mPA), accuracy (Acc), F_score, recall, pre-
cision, FLOPs, and total parameters. These metrics evaluate the model from various aspects.

mIoU: In image segmentation tasks, the model assigns each pixel to a predefined
category. mIoU measures the overlap between model predictions and true labels, calculated
as follows:

IoU = TPi
TPi+FPi+FNi

(19)

mIoU = 1
N

N
∑

i=1

TPi
TPi+FPi+FNi

(20)

where N is the number of categories, TP is the true positive (pixels correctly predicted
as positive), TN is the true negative (pixels correctly predicted as negative), FP is the
false positive (pixels incorrectly predicted as positive), and FN is the false negative (pixels
incorrectly predicted as negative).

mPA is calculated by making a binary classification judgment for each pixel and
dividing the number of correctly predicted pixels by the total number of pixels. It measures
the proportion of correctly classified pixels, as follows:

mPA = ∑N
i=1 TPi

∑N
i=1(TPi+FPi)

(21)

Accuracy is the ratio of the number of samples correctly predicted by the model across
all samples to the total number of samples. It measures the overall classification accuracy
of the model, i.e., the number of samples correctly predicted by the model as a proportion
of the total number of samples. The specific formula is as follows:

Accuracy = TP+TN
TP+TN+FP+FN (22)

F_score combines precision and recall to evaluate binary or multiclassification models.
It is calculated as a weighted average of precision and recall. Including F_score as a metric
provides a comprehensive view of model performance, especially when precision and recall
are equally important. The calculations are as follows:

Precision = TP
TP+FP (23)
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Recall = TP
TP+FN (24)

Fscore =
(
1 + β2) · Precision·Recall

β2·Precision+Recall (25)

where β is a parameter used to regulate the relative importance of precision and recall.
When β = 1, it is the common F1-score, which balances the weights of precision and recall.

3. Results and Discussion

In this study, we will validate the fruit tree leaf spot segmentation model based on
the EFS-Former method, aiming to address the limitations of traditional deep learning
methods when facing complex leaf features. The hypotheses are as follows: (1) The EFS-
Former method can effectively improve the segmentation accuracy of the model for fruit
tree leaf spots by introducing the ELD (expanded local detail) module and the H-attention
mechanism. (2) The parallel fusion architecture can combine the advantages of the two
encoders, CNN and Transformer, to achieve the accurate extraction of the edge features
of fruit tree leaves, to reduce the impact of leaf folding, jaggedness, light shading, and
other factors on the segmentation accuracy. (3) By calculating the proportion of leaf area
occupied by diseased spots, this method can accurately determine the period of disease
and provide key data support for fruit tree disease management.

3.1. Analysis of Experimental Results
3.1.1. Different Models

This subsection compares the models presented in this paper with several current state-
of-the-art and classical semantic segmentation methods, including PSPNet, HRNetV2 [34],
U-Net, DeepLabv3+ [35], SegFormer, and FCN. Our focus is on the clarity of the contour
between the leaves and the target lesion points, as well as the segmentation of small target
points. Each method was trained and tested on indoor and outdoor datasets containing four
diseases of three fruits. Eight metrics, namely mIoU, mPA, recall, F_score, Acc, precision,
FLOPs, and total parameters, were used to measure the feasibility and effectiveness of our
proposed models. The details are shown in Tables 3–5.

Table 3. Indicators for early and late assessment of grape brown spot under different models (in the
table, (early stage) and (end stage) represent the period of leaf disease).

Method

Grape Brown Spot

mIoU mPA Precision Recall

Early
Stage

End
Stage

Disease
Spot

EARLY
STAGE

End
Stage

Disease
Spot

Early
Stage

End
Stage

Disease
Spot

Early
Stage

End
Stage

Disease
Spot

PSPNet 91.0% 92.0% 40.0% 95.0% 97.0% 48.0% 95.0% 95.0% 95.0% 95.0% 97.0% 48.0%
HRNetV2 95.0% 94.0% 77.0% 97.0% 97.0% 85.0% 97.0% 97.0% 89.0% 97.0% 97.0% 85.0%

U-Net 90.0% 90.0% 77.0% 94.0% 96.0% 85.0% 95.0% 94.0% 89.0% 94.0% 96.0% 85.0%
DeepLabv3+ 93.0% 92.0% 80.0% 95.0% 97.0% 88.0% 98.0% 95.0% 89.0% 95.0% 97.0% 88.0%
SegFormer 90.0% 91.0% 73.0% 94.0% 93.0% 79.0% 96.0% 97.0% 90.0% 95.0% 97.0% 80.0%

FCN 93.0% 93.0% 78.0% 98.0% 96.0% 50.0% 94.0% 90.0% 88.0% 95.0% 94.0% 55.0%
Ours 96.0% 96.0% 85.0% 98.0% 98.0% 89.0% 98.0% 98.0% 94.0% 98.0% 98.0% 89.0%

Table 3 shows that the method exhibits good segmentation performance for both early
and late periods of grape brown spot. It divides the disease stages by the proportion of
leaf area occupied by diseased spots and performs significantly better than other models in
this aspect. Compared to SegFormer, the mIoU for early and late leaf segmentation and
spot segmentation were 6%, 5%, and 7% higher, respectively. The mIoU for early and late
leaf segmentation and spot segmentation by HRNetV2 were 1%, 2%, and 8% lower than
the proposed method, respectively. The above results indicate that this method accurately
divides the early and late stages of grape brown spot disease, and shows significant
advantages in comparing different models. These results indicate that this method has
great potential in practical applications and is of great significance for the precise spraying
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of pesticides in orchards. It can help improve agricultural production efficiency and reduce
pesticide use, providing strong support for scientific management during disease periods.

Table 4. Indicators for the assessment of pomegranate cercospora spot and apple spotted leaf drop
disease under different models.

Method

Pomegranate Cercospora Spot Apple Spotted Leaf Drop Disease

mIoU
mPA Precision Recall

mIoU
mPA Precision Recall

Leaf Disease Leaf Disease

PSPNet 65.00% 29.00% 51.00% 80.00% 51.00% 83.00% 39.00% 62.50% 84.00% 64.50%
HRNetV2 96.00% 72.00% 89.50% 92.50% 89.50% 97.00% 72.00% 90.50% 91.00% 90.50%

U-Net 86.00% 67.00% 89.00% 89.00% 79.00% 82.00% 65.00% 85.00% 89.50% 85.00%
DeepLabv3+ 96.00% 68.00% 90.50% 88.50% 90.50% 86.00% 65.00% 86.50% 85.50% 86.50%
SegFormer 95.00% 73.00% 90.00% 92.50% 90.00% 95.00% 69.00% 88.00% 91.00% 88.00%

FCN 95.00% 66.00% 82.00% 96.50% 82.00% 86.00% 70.00% 72.00% 91.50% 72.00%
Ours 97.00% 82.00% 93.50% 95.00% 93.50% 97.00% 83.00% 94.50% 95.00% 94.50%

According to Table 4, the proposed method performed well compared to other methods
in indoor pomegranate cercospora spot and indoor and outdoor apple spotted leaf drop
disease. For example, in the case of pomegranate cercospora spot, the segmentation
accuracies of models such as HRNetV2, SegFormer, and U-Net in leaf and spot segmentation
are far inferior to the proposed method. SegFormer performs best among the models
compared, but not as well as the method proposed in this paper. In terms of segmentation
mIoU for leaves and spots, the proposed method outperforms SegFormer by 2% and
9%, respectively. HRNetV2 is less accurate than the proposed method for target point
segmentation. The mIoU for leaf segmentation was 1% lower, and for spot segmentation, it
was 10% lower than the proposed method. PSPNet performed the worst in all comparative
trials. The pyramid pooling module in PSPNet may be better in global contexts but is
not suitable for agricultural diseases requiring both local and global feature attention.
Statistical analysis shows that this method can effectively overcome the challenges of
light problems, leaf curling, leaf overlapping, etc., that exist in real environments and
can meet the requirements of detecting leaf diseases of apples, and pomegranate in real
agricultural scenarios.

To better validate the performance of the proposed method in different scenarios,
Table 5 shows the performance comparison of the method proposed in this paper and
the comparison methods. Table 5 lists in detail the performance of all the methods when
mIoU, mPA, total parameters, FLOPS, Acc, and F_score are used as evaluation metrics,
and, compared to other models, our proposed method performs well. DeepLabV3+ has
shown the best performance among other models, but its segmentation accuracy is 10.78%,
9.51%, 0.72%, and 8.00% lower than the proposed methods mIoU, mPA, Acc, and F-score,
respectively. PSPNet and U-Net have the worst overall segmentation performance, with
a decrease of 28.48% and 19.86% in mIoU compared to this method. It is possible that
their directionality is too single and they cannot adapt to agricultural disease tasks. In
the other evaluation metrics, the proposed method does not achieve the best performance.
SegFormer outperforms other methods in total parameters and FLOPS, while our method
demonstrates a moderate performance, with total parameters and FLOPS being 2.85 M,
1.78 M, 70.08 G, and 0.32 G lower than U-Net and DeepLabV3+, respectively. Compared
to PSPNet, our method has 2.95 M more total parameters but 9.81 G fewer FLOPS. The
proposed method outperforms other models by approximately 10% on average, in terms of
mIoU and mPA. Although it does not achieve the best results in total parameters and FLOPS,
it ranks among the top, meeting the computational requirements for deployment on cloud
servers. In summary, these results fully demonstrate the effectiveness and applicability of
our method in the field of agricultural fruit leaf disease image segmentation, providing
strong support and reference for future precision disease management in smart agriculture.
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Table 5. Performance of different models for multi-fruit samples.

Method mIoU mPA Acc F_Score Total
Parameters/M FLOPs/G

PSPNet 60.12% 65.83% 96.25% 70.80% 19.08 42.73
HRNetV2 79.04% 84.52% 98.10% 89.20% 22.77 29.54

U-Net 68.74% 75.67% 95.58% 79.60% 24.89 103.00
DeepLabv3+ 77.82% 83.98% 97.88% 87.90% 23.81 33.24
SegFormer 77.35% 84.52% 96.25% 70.80% 3.72 3.41

FCN 70.49% 74.93% 89.11% 85.30% 18.88 30.23
Ours 88.60% 93.49% 98.60% 95.90% 22.03 32.92

Figure 7 shows the resultant images of four different diseases of three fruits using
different models. The segmentation results from PSPNet are unsatisfactory, failing to
clearly segment the edge parts and spots of each leaf. This is mostly due to the multi-scale
pyramid pooling structure, which loses more details during downsampling, resulting in
poor segmentation results. For example, PSPNet loses too much edge information in the
case of the serrated blade of grape leaves, resulting in smooth leaf edges. In Figure 7a, apple
spotted leaf drop disease is shown in a real environment. In the real environment with
overlapping leaves and a complex background, the comparison of different methods shows
the superiority of EFS-Former, which can solve the above problems by properly segmenting
the shape of the leaves after shading, and accurately extracting the edge information of the
diseased spots. In the case of U-Net, although U-Net effectively segments the spots com-
pared to PSPNet, U-Net mistakenly segments the other leaves in the complex background
of the real environment. In Figure 7b, the target is mainly changed to grape leaves affected
by shadows only, and DeepLabV3+ and FCN are slightly improved compared to PSPNet,
which can segment most of the jagged shapes of leaves but cannot accurately distinguish
the edges of spots from the edges. As shown in Figure 7c, this method effectively segments
the blurred leaf edges that are affected by shadows. SegFormer, which lacks local feature
extraction, also fails to accurately segment the serrations of the leaf and is not precise
enough to distinguish the edge contours of the target spots. In Figure 7d, all models except
PSPNet can clearly segment the leaf blade. However, for diseased spot adherence, all
comparative models lost this local information. The proposed method accurately extracts
this information, demonstrating its ability to capture detail. In summary, the proposed
method can accurately extract the fuzzy edge information of diseased spots, accurately
segment the shape of diseased spots, and accurately calculate the area occupied by each
target point, which can provide support for subsequent severity assessment work.

Figure 8 presents the segmentation results of different models on this study dataset.
These include apple leaves in a real environment under strong light, which test the

performance of the model in complex situations. Grape leaves at different disease periods
verify the accuracy of the model in determining the disease period. Pomegranate leaves
in a low-light environment verify the effectiveness of the model under different light
conditions. Figure 8a shows apple spotted leaf drop disease in a complex field environment,
subjected to bright light, weakening the spot features and causing confusion with the
leaves, as well as diseased leaves adhering to other healthy leaves, thereby blurring the
edge features of the leaves. Our method accurately segments the jagged edges of the
leaves and the shape of the diseased spots, thus outperforming other methods. Models
such as U-Net, HRNetV2, and SegFormer can accurately extract spots, but, in complex
backgrounds, the segmentation of leaf edges is imprecise due to overlapping leaves and
illumination, often mistaking healthy leaves for diseased ones. Deeplabv3+ is ineffective
at extracting spots and fails to identify the features of apple spotted leaf drop disease in
complex field environments. Figure 8b,c use different colors to represent the early and
late disease stages of grape black rot. Our model accurately segments diseased leaf edges
under light influence, overcomes the confusion between spot edges and leaves, accurately
distinguishes diseased spots, and classifies the disease by the proportion of spot area. In
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contrast, U-Net and SegFormer can segment roughly and clearly, but the edges of diseased
spots are imprecise due to light influence and shading, leading to misclassification. U-Net
mistakes shaded parts for diseased leaves and misclassifies late-stage disease as early-stage
disease in segmentation. PSPNet, Deeplabv3+, and FCN can accurately locate the disease
stage of grapes, but their segmentation of leaves and diseased spots is subpar. Light effects
make the diseased spots similar in color to leaves, complicating feature extraction. In
Figure 8d, U-Net, FCN, HRNetV2, and SegFormer struggle with leaf folding, especially
under shadows, where the edges of diseased spots become blurred and cannot be accurately
segmented. PSPNet poorly extracts leaves and diseased spots. In Figure 8e, the original
leaf has rotting holes and disease spots, both indoors and outdoors, affecting segmentation
and testing the model’s feature extraction ability. FCN mistakenly treats the background
as a leaf during segmentation, leading to inaccurate contextual feature extraction due to
the restricted receptive field. In contrast, U-Net, Deeplabv3+, HRNetV2, and PSPNet can
accurately segment leaf edges, but rot holes affect lesion extraction. SegFormer accurately
extracts features of leaves and rot holes due to its global contextual advantage, but the
lack of local features leads to detail loss. In Figure 8f, darker light blurs the spots. PSPNet
fails to extract the spots despite accurately segmenting the leaves. U-Net, Deeplabv3+,
and HRNetV2 miss smaller spots, while SegFormer segments each spot but loses more
edge features. In summary, our method can still accurately capture local and global
features under the influence of leaf folding, lighting changes, leaf edge shadows, complex
backgrounds, etc. This is thanks to FFM’s ability to integrate local and global contextual
information, effectively overcoming real and simulated lighting conditions, achieving
precise segmentation of leaves and lesions, and demonstrating strong robustness.

Agronomy 2024, 14, x FOR PEER REVIEW 16 of 26 
 

 

apple spotted leaf drop disease is shown in a real environment. In the real environment 
with overlapping leaves and a complex background, the comparison of different methods 
shows the superiority of EFS-Former, which can solve the above problems by properly 
segmenting the shape of the leaves after shading, and accurately extracting the edge in-
formation of the diseased spots. In the case of U-Net, although U-Net effectively segments 
the spots compared to PSPNet, U-Net mistakenly segments the other leaves in the com-
plex background of the real environment. In Figure 7b, the target is mainly changed to 
grape leaves affected by shadows only, and DeepLabV3+ and FCN are slightly improved 
compared to PSPNet, which can segment most of the jagged shapes of leaves but cannot 
accurately distinguish the edges of spots from the edges. As shown in Figure 7c, this 
method effectively segments the blurred leaf edges that are affected by shadows. Seg-
Former, which lacks local feature extraction, also fails to accurately segment the serrations 
of the leaf and is not precise enough to distinguish the edge contours of the target spots. 
In Figure 7d, all models except PSPNet can clearly segment the leaf blade. However, for 
diseased spot adherence, all comparative models lost this local information. The proposed 
method accurately extracts this information, demonstrating its ability to capture detail. In 
summary, the proposed method can accurately extract the fuzzy edge information of dis-
eased spots, accurately segment the shape of diseased spots, and accurately calculate the 
area occupied by each target point, which can provide support for subsequent severity 
assessment work. 

 
Figure 7. Images of results generated in different models for four disease conditions of three fruits: 
(a) apple spotted leaf drop disease, (b) grape brown spot disease, (c) grape black rot disease, and (d) 
pomegranate cercospora spot. 

Figure 8 presents the segmentation results of different models on this study dataset. 
These include apple leaves in a real environment under strong light, which test the 

performance of the model in complex situations. Grape leaves at different disease periods 
verify the accuracy of the model in determining the disease period. Pomegranate leaves 
in a low-light environment verify the effectiveness of the model under different light 

Figure 7. Images of results generated in different models for four disease conditions of three fruits:
(a) apple spotted leaf drop disease, (b) grape brown spot disease, (c) grape black rot disease, and
(d) pomegranate cercospora spot.



Agronomy 2024, 14, 1992 17 of 25Agronomy 2024, 14, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 8. Visualization of segmentation results for different methods. (a) Apple spotted leaf drop 
disease, (b,c) late and early stages of grape black rot disease, (d,e) early and late stages of grape 
brown spot disease, and (f) pomegranate cercospora spot. 

Figures 9 and 10 contain data samples that confuse the edge of diseased spots with 
those of the leaf, due to being subjected to different lighting conditions. To validate the 
accuracy of the feature extraction of diseased spots’ edges in this paper, the effective re-
gions of interest of the FCN, SegFormer, U-Net, and EFS-Former methods for the leaf and 
diseased spots were visualized, respectively. Figure 9a,b contain samples from both in-
door and outdoor conditions, respectively, and, in (b), the blurring of the diseased spots 
and leaf features due to the excessive light definitely causes difficulties in feature extrac-
tion. Compared with other methods, EFS-Former has a stronger and more complete focus 
area on the overall focus area of the leaf; U-Net does not have a complete focus area in 
grape and apple leaves, mostly due to the influence of disturbances in the environment 
on U-Net, and therefore cannot accurately notice the target leaves. FCN, although it can 
efficiently focus on the overall portion of the leaf, confuses the leaf with the disease spots, 
and does not effectively delineate the diseased spot area when the target of attention is 
the leaf. For smaller pomegranate leaves in Figure 9c, EFS-Former demonstrates the ability 
to extract features with detailed, edge information that is focused on the leaf edges. In 
contrast, most of the other methods ignore the edges between the spots and the lesions. In 
Figure 10a,b, the focus of each method on the spots is mainly shown; FCN and SegFormer 
miss some lesion areas due to the high light intensity and the presence of pixels in the 
background similar to the color of the disease. In Figure 10c, other methods fail to accu-
rately focus on the edge area of the diseased spots, which blurs the edge information of 
the spots, the method proposed in this paper can effectively focus on the blurred edge 
information and can accurately differentiate the characteristic information of the leaf and 
the diseased spots. In summary, the EFS-Former proposed in this paper can accurately 
focus on leaves and spots under different conditions. Because the ELD module and H-
attention mechanism of the model accurately control the attention interval, it can 

Figure 8. Visualization of segmentation results for different methods. (a) Apple spotted leaf drop
disease, (b,c) late and early stages of grape black rot disease, (d,e) early and late stages of grape
brown spot disease, and (f) pomegranate cercospora spot.

Figures 9 and 10 contain data samples that confuse the edge of diseased spots with
those of the leaf, due to being subjected to different lighting conditions. To validate the
accuracy of the feature extraction of diseased spots’ edges in this paper, the effective
regions of interest of the FCN, SegFormer, U-Net, and EFS-Former methods for the leaf and
diseased spots were visualized, respectively. Figure 9a,b contain samples from both indoor
and outdoor conditions, respectively, and, in (b), the blurring of the diseased spots and
leaf features due to the excessive light definitely causes difficulties in feature extraction.
Compared with other methods, EFS-Former has a stronger and more complete focus area
on the overall focus area of the leaf; U-Net does not have a complete focus area in grape
and apple leaves, mostly due to the influence of disturbances in the environment on U-Net,
and therefore cannot accurately notice the target leaves. FCN, although it can efficiently
focus on the overall portion of the leaf, confuses the leaf with the disease spots, and does
not effectively delineate the diseased spot area when the target of attention is the leaf. For
smaller pomegranate leaves in Figure 9c, EFS-Former demonstrates the ability to extract
features with detailed, edge information that is focused on the leaf edges. In contrast, most
of the other methods ignore the edges between the spots and the lesions. In Figure 10a,b,
the focus of each method on the spots is mainly shown; FCN and SegFormer miss some
lesion areas due to the high light intensity and the presence of pixels in the background
similar to the color of the disease. In Figure 10c, other methods fail to accurately focus
on the edge area of the diseased spots, which blurs the edge information of the spots, the
method proposed in this paper can effectively focus on the blurred edge information and
can accurately differentiate the characteristic information of the leaf and the diseased spots.
In summary, the EFS-Former proposed in this paper can accurately focus on leaves and
spots under different conditions. Because the ELD module and H-attention mechanism of
the model accurately control the attention interval, it can effectively solve the problem of
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blurring the edges of light blurred spots and fine spots in a real environment, and achieve
better segmentation results.
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3.1.2. Different Attention Mechanisms

In this summary, we discuss the effect of different attention mechanisms on model per-
formance and compare five popular attention mechanisms, namely CBAM Attention [36],
SK Attention [37], SE Attention [38], CoAttention [39], and Global Attention [40], with the
proposed H-attention. H-attention is compared and evaluated using mIoU, mPA, Acc, and
F_score metrics. The experimental results, shown in Table 6, indicate that our proposed
H-attention achieves the best results, with 88.60% mIoU, 93.49% mPA, 98.60% Acc, and
95.90% F_score. It enhances feature extraction for leaf and spot edges by superimpos-
ing different-sized convolutions, increasing the model’s interest interval, and reducing
computational redundancy. Thus, the model performs well in all evaluation metrics.

Table 6. The impact of different attention levels on model performance.

Method mIoU mPA Acc F_Score

CBAM 65.72% 70.52% 95.74% 88.40%
SK Attention 70.48% 72.87% 96.37% 90.40%
SE Attention 70.49% 74.93% 96.25% 89.40%
CoAttention 72.90% 76.25% 97.27% 90.80%

Global Context Attention 72.76% 76.28% 97.08% 90.60%
Multi-Head Attention 82.88% 96.98% 96.98% 90.90%

H-Attention 88.60% 93.49% 98.60% 95.90%

In comparison, SE and Global are slightly inferior to the proposed approach. Although
the SE module enhances the model’s representational ability by recalibrating the channels,
and Multi-Head improves its attention capturing ability by processing multiple attention
distributions in parallel, enhancing expressive ability and learning efficiency, the Global
module improves perceptual ability by capturing remote dependencies. However, they still
need to improve their ability to handle complex scenes and feature interactions compared
to the H-attention module. CBAM has the lowest values in all evaluation metrics, proba-
bly due to unwanted deformations and distortions introduced during its transformation
process, leading to degraded model performance. However, it is worth noting that CBAM
significantly enhances feature perception at specific spatial and channel locations using
channel attention and spatial attention, potentially performing better in tasks requiring
specific spatial transformations.

Taken together, the good performance of H-attention is attributed to the fact that,
by choosing different convolution kernel sizes, the model can adapt to different scales
of features. The model also makes full use of the global information extraction ability
of self-attention and the local feature extraction advantage of convolution to improve its
ability to extract features of leaf and spot edges. Secondly, the selective convolution module
reduces computational complexity through global average pooling, while maintaining
attention to important features, thus showing good performance in all evaluation metrics.

3.2. Ablation Experiment

This section presents four sets of ablation experiments to validate the effectiveness
of the proposed ELD module, Seg-Block, parallel fusion architecture, and feature fusion
module for segmentation of leaf diseases in agricultural fruit trees. The overall idea is
to gradually remove the modules from the proposed EFS-Former model. As shown in
Table 7, Method 1 is the baseline model without any module, and Method 4 is the complete
model proposed in this study. In Method 2, we first remove H-Attention from the proposed
Seg-Block and conduct parallel experiments by combining the ELD module through the
proposed parallel fusion architecture. The results of the four evaluation metrics, mIoU, Acc,
F_score, and mPA, show that, compared to Method 1, this experiment rises by 8.67%, 1.13%,
5.20%, and 7.11%, respectively. The results show that the ELD module and H-attention
have good adaptability when improving segmentation accuracy and other aspects. In
contrast to Method1, using separate Seg-Block and running serial architecture in Method 3
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improves the metric scores by 8.09%, 0.99%, 4.90%, and 7.31%, respectively. It can be seen
that our proposed attention mechanism brings the most substantial overall improvement
in attention to relevant features in the data, confirming its key role in segmenting fruit
and vegetable leaf diseases. Compared to the benchmark model, the synergistic effect of
our proposed H-attention mechanism and other modules ultimately leads to peak model
performance. EFS-Former shows significant improvements in evaluation metrics, especially
in mIoU and mPA, which increased by 11.25% and 10.16%, respectively, emphasizing its
role in refining segmentation granularity. Regardless of the design of the encoder, the
introduction of the ELD module and H-attention can provide good evaluation metrics
in the leaf disease segmentation task, which can effectively improve the performance of
leaf and spot segmentation. A comparison of Method 4 with other schemes shows that
the proposed method provides the best performance for leaf and lesion segmentation.
The combined results show that using ELD and H-attention as single modules results in
excellent performance, proving the effectiveness of the proposed model, and, in the case
of the complete model compared to the single modules, both have improved. Therefore,
all the improvements can significantly improve the segmentation performance of the leaf
disease segmentation model.

Table 7. Impact of different modules on performance.

H-Attention
(Seg-Block)

Structure
(FFM) ELD mIoU Acc F_Score mPA

Method 1 - - - 77.35% 97.22% 88.60% 83.31%
Method 2 -

√ √
86.02% 98.35% 93.80% 90.42%

Method 3
√

- - 85.44% 98.21% 93.50% 90.62%
Method 4

√ √ √
88.60% 98.60% 95.90% 93.49%

3.3. Disease Severity Assessment

To better illustrate the process of disease severity assessment, we list four fruit leaves
with different severity levels, as shown in Table 8. Disease coverage can clearly reflect
the degree of disease proliferation and provide an intuitive indicator for assessing disease
severity, which can help growers achieve precise disease control. Disease ratio is calculated
as follows:

Disease Ratio = SDisease
SDisease+SLea f

(26)

Table 8. Assessment of disease severity of different fruit leaves.

Original Image Visualized Image Label Value Ratio Disease Ratio
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3.4. Discussion

The detection of leaf diseases in fruit trees is one of the commonly used methods
for fruit disease detection, which can provide a practical basis for the prevention and
control of early diseases. However, traditional leaf detection mainly relies on manual visual
observation and long-term experience accumulation for judgment, and, for large orchards
containing multiple fruits, this is not only time-consuming and laborious, but also limited
in accuracy by the skill level of the detection personnel. Although deep learning methods
have been widely used in leaf disease detection, they have the following shortcomings:
(1) most leaf disease detection algorithms can only detect and locate diseases on leaves [41],
but cannot evaluate the severity of diseases; (2) most algorithms based on leaf disease
segmentation are limited to simple backgrounds or single leaf situations [42], ignoring the
interference of complex backgrounds and multiple leaves in real scenes; (3) unclear leaf
edges caused by leaf curling; and (4) the target disease spots are too small, which makes it
easy to cause omissions when performing local feature extraction. The above limitations
cause difficulties of most leaf disease detection algorithms when applying leaf disease
detection in real scenarios.

This paper presents a parallel fusion model, fusing CNN and Transformer encoders,
for the segmentation of leaf diseases in apple, grape, and pomegranate in complex environ-
ments. The CNN and Transformer branches in the model correspond to extracting local
features and capturing global information, respectively, and fuse these two types of feature
information through the FFM. The interference of complex background and multiple leaves
in the real scene is effectively solved. In this paper, we propose the ELD module and
H-attention mechanism. The ELD module expands the receptive field of the model by
expanding convolution, and selective convolution in H-attention effectively focuses on the
local region and reduces computational redundancy while extracting the global context,
both of which effectively solve the problem of unclear leaf edges caused by the target
diseased spots being too small and the leaves curling. Ultimately, the severity of fruit and
vegetable diseases was determined by the area ratio of diseased spots to fruit tree leaf
pixels. It can effectively help growers to accurately grasp the severity of the disease and
realize the precise spraying of pesticides.

Some studies in plant leaf disease segmentation usually use a single CNN or Trans-
former architecture. Due to the different focus of these models, certain key features may be
overlooked when dealing with different types of diseases and leaves. X. Zhang et al. [43]
investigated the complementary nature of CNN and Transformer in image segmentation to
simulate complex real-world environments by changing the original image background,
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and achieved an IoU of more than 88.04% on the processed grape disease dataset. However,
it is possible that most of the selected datasets are mainly from laboratory environments
or that some of the details are lost in the fusion of global and local information, so they
are prone to some fluctuations in the evaluation metrics. Jinhai Wang et al. [44] presented
DualSeg, an image processing model based on two different branches of Swin Transformer
and ResNet models, which segmented grapes in real vineyards with a mIoU of more
than 83.7%. However, the model parameters are much higher than for the other models,
probably due to the problem caused by the selection of a parallel encoder that is too large,
which leads to difficulties in deployment. Also, the generalization of the model needs to
be improved, since the whole experiment only involves one species, grapes, which is not
applicable to large multi-species orchards. The results of these studies show that integrating
the CNN and Transformer structures led to different degrees of accuracy improvement,
in comparison to the above methods. This study achieved an overall improvement in
the generalization of the model by targeting different species of multiple fruits from both
laboratory environments and real conditions and reached 88.60% in terms of mIoU, which
is significantly better than the single-crop study. At this stage, the main focus should be on
improving the model’s accuracy while enhancing the generalization of the model to fit the
requirements in real-world environments.

Regarding its limitations, the EFS-Former implementation currently only concentrates
on single-image processing. However, in real complex agricultural scenarios, it would
be more practical to employ the continuity of surveillance video. The performance of the
model on such real-time video streams, its ability to handle temporal coherence, and the
computational challenges posed by this change remain to be explored. In this work, only
three typical fruit diseased leaves were selected for the experiments, and the ability of EFS-
Former to generalize to other fruit diseased leaves or other classes of fruit diseased leaves
needs to be further validated and optimized. In future research work, we will continue to
improve the EFS-Former model based on the deep learning tuning method, to improve the
accuracy and reduce the overall computing cost. In addition, we will further investigate the
feature samples of other kinds of fruit-like leaves and diseases, further test and validate the
proposed EFS-Former in other fruit tree diseased leaf datasets and different environments,
and extend it to diseased leaf segmentation and diagnosis of other crops to enhance the
model’s generalization ability. In summary, this work is an important attempt to apply the
Transformer and CNN fusion network for leaf disease segmentation and diagnosis of fruit
crops, and the methodology proposed in this paper provides a reference.

4. Conclusions

The main challenge of this work is how to address issues like small disease spots,
unclear leaf edges, and the confusion between disease spots and leaf colors under varying
lighting conditions and occlusions in real-world environments. This study proposes the
EFS-Former model, which uses a parallel fusion architecture capable of efficiently extracting
both local and global features. The encoder utilizes both CNN and Transformer encoders
to target local features and global context features, respectively. Additionally, the H-
attention mechanism is introduced, to enhance the model’s ability to capture global context
information by obtaining the network’s attention interval through convolutions of different
sizes. This effectively improves the segmentation accuracy of disease spots, particularly
when dealing with complex features like folded leaves or serrated edges, allowing for
more precise extraction of disease spot boundaries and shapes, thereby increasing overall
segmentation accuracy while reducing computational redundancy and complexity. By
utilizing a lightweight ELD module as the encoder, this approach effectively expands
the local receptive field, enhancing the ability to capture fine features and addressing the
challenge of extracting edge features of leaves and spots. This enables the extraction of
more micro-spots. The FFM effectively integrates two different types of features, reducing
the loss of small disease spot information in leaves by combining various semantic features.
The lightweight MLP (multilayer perceptron) layer, serving as the decoder, accurately
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reconstructs the image by merging rich shallow features and edge information with high-
level semantic features through multi-scale feature fusion. In terms of results, the proposed
method achieved a mIoU of 88.60%, mPA of 93.49%, Acc of 98.60%, and an F_score of
95.90%, representing an improvement of 11.25% and 10.16% in mIoU and mPA, respectively,
compared to the baseline models. Additionally, this method accurately assessed the severity
of three types of fruit leaf diseases by calculating the ratio of disease spot pixels to leaf area.
Overall, the proposed EFS-Former demonstrates strong generalization and robustness,
assisting farmers in the early detection of diseases through pathological image analysis of
fruit leaves, enabling precise disease control and pesticide application while significantly
reducing labor and material costs. In the future, we plan to conduct further experiments
on a wide variety of diseased crop leaves to enhance the model’s generalization capability.
We also aim to adopt lightweight techniques and consider adjusting the model’s depth
to reduce the number of parameters. These strategies are intended to advance effective
disease diagnosis across more crops and promote deployment on mobile platforms.
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