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Abstract: The accurate prediction of soil moisture content helps to evaluate the quality of farmland.
Taking the black soil in the Nanguan District of Changchun City as the research object, this paper
proposes a stacking ensemble learning model integrating hybrid neural networks to address the issue
that it is difficult to improve the accuracy of inversion soil moisture content by a single model. First,
raw hyperspectral data are processed by removing edge noise and standardization. Then, the gray
wolf optimization (GWO) algorithm is adopted to optimize a convolutional neural network (CNN),
and a gated recurrent unit (GRU) and an attention mechanism are added to construct a hybrid neural
network model (GWO-CNN-GRU-Attention). To estimate soil water content, the hybrid neural
network model is integrated into the stacking model along with Bagging and Boosting algorithms
and the feedforward neural network. Experimental results demonstrate that the GWO-CNN-GRU-
Attention model proposed in this paper can better predict soil water content; the stacking method
of integrating hybrid neural networks overcomes the limitations of a single model’s instability and
inferior accuracy. The relative prediction deviation (RPD), root mean square error (RMSE), and
coefficient of determination (R?) on the test set are 4.577, 0.227, and 0.952, respectively. The average
R? and RPD increased by 0.056 and 1.418 in comparison to the base learner algorithm. The study
results lay a foundation for the fast detection of soil moisture content in black soil areas and provide
a data source for intelligent irrigation in agriculture.

Keywords: soil moisture content; remote sensing; predictive model; machine learning techniques

1. Introduction

Research on quick, precise, and reliable methods to determine soil composition is
essential for precision agriculture [1]. Adequate soil moisture is conducive to plant growth
and is one of the key indicators for evaluating soil fertility. However, too high or too
low moisture content can affect the uptake of nutrients in the soil by the plant roots, thus
affecting the yield and quality of crops. Remote sensing is an effective tool for tracking
both temporal and spatial variations in crop morphology and physiological conditions,
and it is one of the precision farming techniques. Hyperspectral imaging, a cutting-edge
method, can capture a precise spectral response of a target’s features [2]. Therefore, it is
crucial to precisely quantify the soil moisture content (SMC) and analyze the hyperspectral
response pattern of SMC.

Hyperspectral analysis detection can be conducted directly without destroying the
sample, which has the characteristics of easy detection and high efficiency. Nowadays,
hyperspectral detection has been widely used to detect the internal related content of soil,
food, crop plants, petroleum, etc. Hyperspectral remote sensing data have a high spatial
dimension and high correlation [3], and it can be used to obtain fine spectral profiles of soil
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in a certain range. It has a high spectral resolution that allows for a large number of bands
and leads to a dramatic increase in the amount of spectral data. Hyperspectral data contain
not only information on SMC but also a lot of redundant and invalid information, which
affects the model prediction. Feature wavelength selection algorithms reduce data redun-
dancy and multicollinearity by selecting the most informative wavelength combinations.
The use of characteristic wavelengths for quantile regression modeling can reduce model
complexity. Commonly used hyperspectral feature wavelength selection methods include
the successive projection algorithm [4], competitive adaptive reweighted sampling [5,6],
and uninformative variable elimination [7].

Many previous studies on the quantitative inversion of SMC chose linear models [8,9]
for training, and most of them were based on partial least squares regression (PLSR) [10-12],
multiple linear stepwise regression [13], support vector regression (SVR) [14], spectral
transformations [15-17], etc. However, the model’s robustness needs to be improved,
and model redundancy should be reduced. In recent years, with the rapid development
in machine learning and its superiority in solving nonlinear problems, researchers have
employed machine learning techniques to categorize or regress hyperspectral data, thereby
optimizing the inversion accuracy and model stability during the spectral inversion of soil
property components. For instance, SMC was predicted using a neural network, Random
Forest (RF), and extreme learning machine (ELM) [18], and the findings revealed that
all three machine learning techniques obtained better prediction results than PLSR. The
extremely randomized trees’ (Extra Trees) method was used to build a regression model
for SMC based on hyperspectral data [19], and the model obtained better prediction results
than SVR. There are also related studies using RF and Extra Trees to predict soil salinity
content, and good results have been obtained [20].

At present, a hot research area in machine learning is deep learning, which simulates
the interaction between neurons in the human brain, recognizes patterns, and performs
classification and prediction by training with a large amount of data. With the continu-
ous advancement in deep learning technology and the improvement in data processing
capabilities, studies have been conducted to use deep learning for remote sensing image
classification [21-24], but there are very few applications in hyperspectral remote sens-
ing for predicting SMC. Using hyperspectral data from soil samples in Xinjiang, Wang
et al. [25] constructed a hybrid neural network model with a long short-term memory
(LSTM) convolutional neural network (CNN) to identify the moisture and organic matter
content; AHMED et al. [26] designed a hybrid model using GRU, adaptive noise full en-
semble empirical modal decomposition, and CNN for daily time-step surface soil moisture
forecasts. According to the investigation, convolutional neural networks and hybrid neural
networks may accurately predict soil moisture and quantitatively estimate it.

The swarm intelligence algorithm has been widely applied extensively to numerous
intricate optimization issues [27]. The optimization of neural network models using both
a genetic algorithm (GA) and particle swarm optimization (PSO) has been used on soil
moisture inversion problems [28,29]. In certain research, the GWO algorithm, however, is
more capable of adapting to the issue [30]. When compared to PSO and GA, GWO is more
adept at identifying the optimal solution, more robust, and less prone to falling into the local
optimal solution. A GWO-SVM model was developed by Zhang et al. [31] to differentiate
between the severity of cotton crown wilt. Better classification accuracy than the traditional
machine learning model was also shown in a hyperspectral image classification study when
the CNN model’s hyperparameters were optimized using GWO [32]. It is evident that
the GWO algorithm performs exceptionally well when it comes to image classification.
In previous studies, the hybrid neural network with the GWO algorithm has rarely been
utilized to forecast soil moisture, but this combination also has outstanding potential in
prediction issues.
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Ensemble learning, a recent development trend in machine learning, enhances a single
method’s generalization capacity by combining the findings of various learning approaches,
thereby enhancing prediction accuracy and improving generalization performance.

In the past two years, studies have been conducted to investigate the hyperspectral
remote sensing inversion of soil-related component content using Boosting and Bagging
models [33-37]. Among them, both AdaBoost and GBRT algorithms outperformed PLSR
and SVR in the inversion of soil fast-acting potassium [38]; The chlorophyll content of
mangrove canopy and spring maize leaves can be detected with the stacking model [39,40],
and remarkable results were obtained. Feng et al. [41] combined three commonly used
machine learning methods, RF, SVR, and k-nearest neighbor, to develop a stacking model
for alfalfa yield prediction. Ensemble learning has achieved high modeling accuracy and
good prediction results in all the above studies, and it is a proven method in hyperspectral
prediction models. Meanwhile, in the prediction of soil moisture, some studies have
combined PLSR and SVR or Boosting and Bagging models by stacking to predict soil
moisture in Vertisol soil [42] and grape-growing area soil [43]. Some studies have also
achieved a better prediction of the soil moisture content of over-partial-vegetation-covered
surfaces using CNN + LSTM [44], which also shows that deep learning can improve the
prediction of SMC.

Therefore, this paper combines the designed GWO-CNN-GRU-Attention with the
stacking model to build a model for estimating the SMC of the study area. Compared
with previous related studies, the model proposed in this paper, which incorporates a deep
learning model into the base learner, improves the type of base learner and enhances the
stacking model’s prediction ability. In particular, the approach used in this paper overcomes
the drawbacks of a single inversion model and improves the model’s generalizability as
compared to earlier related works. After comparing the results of a feedforward neural
network, GWO-CNN-GRU-Attention, and various Boosting and Bagging algorithms,
the validity and stability of the model proposed in this paper are confirmed. Finally, the
best prediction model for SMC in the study area is determined, further improving the
hyperspectral prediction accuracy and stability of SMC.

2. Materials and Methods
2.1. Study Area

This experimental study was conducted on the terrace of the Yitong River in the
hinterland of the Songliao Plain in Nanguan District, Changchun City, Jilin Province, China,
in the mid-latitude northern temperate zone of the Northern Hemisphere. The area has
a temperate continental semi-humid monsoon climate, characterized by a cold and dry
winter, a cool and brief summer, and frequent cold waves in the spring. The annual
average temperature is 4.9 °C, and the annual average precipitation is 593.8 mm. The
study area (125°24'19.04""-125°24'27.33" E, 43°49'24.50"-43°49'34.25" N and 125°24'34.58"-
125°24/39.45" E, 43°49'26.05""-43°49'34.91" N) is located at the teaching and research base
of Jilin Agricultural University (Figure 1). The soil type is meadow black soil, and the main
crops are corn, soybean, and rice.
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Figure 1. (a—c) The geographical location of Nanguan District, Changchun City, Jilin Province, China.
(d) The distribution of 162 sample points in the study area. (e) Soil sampling reality of soybean-planted
fields. (f) Soil sampling reality of corn-planted fields. (g) Five-point sampling method.

2.2. Soil Sample Collection and Determination

In the crop harvest period in October 2021, 162 soil samples were obtained by utilizing
a five-point sampling technique. The sample areas were divided evenly by taking 6 ridges
in each of the corn- and soybean-planting areas, with 13 sample points per ridge for corn
and 14 sample points per ridge for soybean. In total, 84 samples of soil were taken from the
soybean-planting region, and 78 soil samples were taken from the corn-planting region.
Specifically, the soil at a depth of 5-20 cm was taken, the sampling point and the four
corners of soil centered on it were mixed, and some of the soil was gathered and kept
in sealed bags. The soil samples were dried under air naturally in a ventilated room for
one week. The dried soil samples were placed in a mortar, then manually ground, and
finally filtered through a 100-mesh sieve. The sieved soil was divided into two portions
for soil spectral data collection and moisture determination (Figure 2). In the drying
and weighing process, the relative moisture content of the sample soil was obtained. The
samples’ estimated SMC ranged from 2.25 to 6.95 percent. The SMC of the soybean-planting
region was generally higher than that of the corn-planting region. This is because soybean
consumes less water and utilizes less water than corn [45], and this is consistent with the
findings of existing studies.
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Figure 2. Soil sample processing flow. (a) Dried soil samples are ground, filtered, and divided into
two portions. (b) Soil spectral data collection. (c) Soil moisture determination.

2.3. Measurement and Pre-Processing of Hyperspectral Data

The FieldSpec3 portable spectrometer, manufactured by ASD Inc. located in Santa
Clara, CA, USA, was used for the spectral measurement of soil samples. It is a passive
sensor. The wavelength range is 350-2500 nm. The indoor spectral measurements are
characterized by easy control and high-quality data results. The soil was placed in a Petri
dish with a black body, and a steel ruler was used to scrape the surface layer of the soil. In
the dark room, the light source was a 50 W halogen bulb, with the irradiation direction at an
angle of 45° from the vertical, and the soil sample’s surface was about 100 cm away from the
light source. The spectrometer probe was positioned vertically above the soil surface, and
the probe was approximately 10 cm from the soil sample. A standard white shift correction
was performed on every 5 samples during the measurement. The soil hyperspectral data
measured by the spectrometer were processed and output using ViewSpecPro5.6.8 software.
As illustrated in Figure 3, the spectral curves of each soil sample over five successive time
periods were taken to reduce measurement data errors and instability. Then, the average
spectrum was used as the soil’s original spectrum.

Due to the instrument and the inevitable influence of the test environment, sample
background, observation angle, sample roughness, stray light, and other factors in the
spectral acquisition process, the noise in the edge band of the spectral curve is relatively
large. To reduce the interference of external noise on the modeling inversion result, the
noisy fringe bands 350-399 nm and 2400-2500 nm were removed for each soil sample, and
the band from 400 to 2399 nm was reserved for the modeling analysis. Then, the data were
standardized so that they obeyed a normal distribution with a mean of 0 and a variance
of 1.



Agronomy 2024, 14, 2054

6 of 17

06

05r

04r

03r

Reflectance

02r

0.1r

350 550 750 950 1150 1350 1550 1750 1950 2150 2350 2550
Wavelength/nm

Figure 3. Original spectra. The red rectangles surround the noisy fringe bands 350-399 nm and
2400-2500 nm.

2.4. Research Methods
2.4.1. Overview of GWO-CNN-GRU-Attention Model

(1) Convolutional Neural Network

A convolutional neural network (CNN) is one of the most extensively studied and
applied models in the recent history of deep learning. It alternates convolutional and
pooling layers to provide effective representations of raw data using local connections and
shared weights. By automatically extracting the local features of the data, a dense and
comprehensive feature vector is created [46]. CNN is chosen in this paper to extract spectral
data features. After inputting the spectral data into the model, the data dimensions are
adjusted using a combination of convolution and pooling layers for deep feature extraction.

(2) Gray Wolf Optimization

The gray wolf optimization (GWO) algorithm involves information feedback mecha-
nisms and convergence factors that can be adaptively changed to strike a balance between
a local search and global search. Because of this, GWO in predicting soil moisture content
not only ensures the prediction accuracy, but also will enable the model to achieve faster
convergence. In this paper, GWO is used to determine the unit parameters and the number
of epochs.

(3) Gated Recurrent Unit

The GRU model is a type of recurrent neural network (RNN) that is widely used to
process sequential data. GRU mixes cell states and hidden states and adds some other
changes. In this study, the GRU model can be used for SMC prediction. It was found
experimentally that increasing the GRU network depth helps to improve the model’s
capacity for prediction, but it also increases the complexity of the model. Thus, the final
model proposed in this paper has two GRU network layers.

Figure 4 shows the structure of the GRU model, which is composed of the reset
gate and update gate. The reset gate (r;) controls how the new input data are merged
with the old memory and how much of the hidden state output from one moment goes
into the candidate hidden state for the next. As the reset gate’s value decreases, less
information enters, and more prior information is forgotten. The update gate (z;) controls
how much state data from the previous instant are brought into the present state by defining
the quantity of past memory saved to the current time step. As the update gate’s value
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increases, more state data from the previous moment are brought in. The specific calculation
of the GRU model is shown in (1), (2), (3), and (4):

re = o(wy - [hy—1, x¢] + br) 1
zt = o(wy - [Mp—1, x¢] + bz) 2)
hi=1—-2z)Oh 1420 Zt 3)
Zt = tanh (wz I730) ht,l,xt]> (4)

where o denotes the sigmoid function,  denotes the reset gate vector, z denotes the update
gate vector, tanh is the tanh activation function, ¢ is the moment, x is the input vector, and

it and I denote the hidden state and the candidate hidden state, respectively.

ht—1/ ® ®\ h¢

a>
® ®

Tt Zt h;

[ [ ]
\ /

Xt

Figure 4. The structure of the GRU model.

(4) GWO-CNN-GRU-Attention

Figure 5 shows the structure of the GWO-CNN-GRU-Attention model proposed in
this paper. The model mainly consists of a GRU and a CNN, where the CNN extracts
features from the data, and the GRU is primarily responsible for predicting SMC. The
two convolutional layers (Conv) of the CNN are configured with 32 and 64 convolutional
kernels, respectively. By mining pertinent data in accordance with the size of the kernels,
CNN can extract useful features from the input data. The activation function is ReLU, and
the convolution kernel size is 3. After mapping through the features in the convolution
layer, the output dimension size is reduced using maximum pooling. In the two pooling
layers (Pool), the pooling window is set to 2, the step size is set to 2, and the fill method
is selected with the input and output images of the same size. A 1 x 500 x 64 tensor is
obtained after 2 convolutions and pooling, where 64 is the number of channels.

Conv GRU Dropout GRU Attention  Full connection

Conv 7

Pool

Pool

Reshape Reshape Flatten

Output

0
400 600 800 1000 1200 1400 1600 1800 2000 2200
Wavelength/nm

Figure 5. GWO-CNN-GRU-Attention model.
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To avoid model overfitting, a random deactivation technique is applied between
the two GRU network layers. After the GRU network layer, an attention mechanism is
introduced to further extract features to enhance the precision of the prediction result. Next,
a one-dimensional vector array with a length of 50 is output using a flattening operation.
Finally, a fully connected layer outputs the predicted SMC.

2.4.2. Overview of the Stacking Model
(1) Boosting and Bagging algorithm

Boosting and Bagging algorithms in ensemble learning are widely used because
they can contribute to better generalization performance and reduce the error rate by
constructing multiple weak learners and combining multiple learners using some strategy.
In this study, two different forms of Bagging algorithms, namely, Random Forest (RF)
and Extra Trees, are employed. There are five different Boosting techniques in use: the
extreme Gradient Boosting (XGBoost) algorithm, the light Gradient Boosting Machine
(LightGBM) algorithm, the Gradient-Boosted regression tree (GBRT), and the Gradient
Boosting + Categorical Features (CatBoost).

AdaBoost, GBRT, XGBoost, LightGBM, and CatBoost are all iterative Boosting-based
algorithms. A decision tree serves as the weak learner in the Boosting method, while least
squares is used as the loss function. AdaBoost and Gradient Boosting are the two primary
implementations. Specifically, AdaBoost trains many weak learners by varying the sample
weights; Gradient Boosting trains multiple weak learners by varying the objective function;
finally, the serial technique is used to transform the weak learners into strong learners.
GBRT, XGBoost, LightGBM, and CatBoost are all specific implementations of Gradient
Boosting algorithms.

In Bagging ensemble learning, this study builds multiple weak learners in parallel to
generate different training sets using sampling and thus train different models. Typically,
the weak learners use decision trees, but other nonlinear algorithms are also possible.
Finally, the results of multiple weak learners are combined for output. When a regression
task is the objective of the ensemble learning process, the output is the average of the
weak learner’s outputs. Essentially, Bagging exploits the model’s diversity to improve
the algorithm’s overall efficacy, and it focuses on the generation of different training
sets. In this study, a method called Bootstrap (i.e., repeated random sampling with put-
backs) is used, which generates different datasets. RF is fundamentally superior to single
decision trees because of its exceptionally powerful learning capability, high algorithm
complexity, and resistance to overfitting. The Extra Trees model introduces a greater degree
of randomness in node division. A subset of features is randomly selected for feature
selection for branching at each split or branching. Meanwhile, it does not need to choose
the optimal threshold, and it uses a random threshold for branching.

(2) Feedforward neural network

The feedforward neural network, commonly referred to as multilayer perceptron
(MLP), has input and output layers as well as one or more hidden layers.

A conventional MLP has a three-layer structure and only one hidden layer. The
neurons have nonlinear activation functions and connect the layers in all directions. In the
hidden layer, each neuron transmits parameters from the input layer to the output layer,
and its weights are adjusted backward by using the gradient descent approach and the
loss function to minimize the difference between the anticipated and actual values. The
activation function chosen in this study is tanh, the hidden layer contains 100 neurons, the
number of training iterations is 400, and the Adam gradient descent function is employed.
The calculation of each neuron is shown in Equation (5), where n denotes the amount of
input data, and I; denotes the input data; 8 i denotes the deviation, and wi ] denotes the
weight of the connection.

f(x); =) wijli + B (5)
i=
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The tanh activation function is shown below:
eX X
tanh(x) = —— 6
() = ©

(3) Stacking

Since a single model can have different degrees of variation in model structure and
prediction bias, and model prediction can be unstable, this study chooses the stacking
ensemble learning model. The degree of difference in the model structure and the prediction
bias of the combined learner are fully utilized to make up for the shortcomings of the base
learner and ensure the effectiveness of ensemble learning.

Stacking is an ensemble learning fusion strategy that has been proven to be effective
in improving model prediction accuracy. Multiple base learners are trained with the
original data, and the prediction results on the resultant training set and test set are,
respectively, used as the input training set and test set for the following layer of learners.
Finally, the strong learner with better prediction performance is trained. The base learners’
prediction results are compiled by the strong learner, also referred to as the meta-learner,
and proportional weights are given to the base learners to increase the model’s prediction
accuracy.

In most cases, stacking involves heterogeneous weak learners, indicating that many
machine learning methods are used as base learners. To create more precise and reliable
models, each base learner is trained with data using K-fold cross-validation techniques.

In this paper, a two-layer stacking ensemble learning model is constructed, and an
SMC inversion algorithm is designed with the above-mentioned Boosting, Bagging model,
MLP, and GWO-CNN-GRU-Attention as base learners and linear regression as the meta-
learner. The prediction of SMC is performed on the soil hyperspectral data of the study
area. Figure 6 shows the structure of the designed framework in detail.

Base learners Meta-learner

Base model 9
Base model 8 —
.i-....Base model 7

Base model 6 _—_ H

. s
Base model 5 I LI 3
B 14 L &
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Base model 3 H LM ‘g
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&
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Figure 6. Structure diagram of stacking model.

The precise steps of the SMC inversion algorithm are as follows: (1) The initial dataset
is proportionally split into training and test sets. (2) Five-fold cross-validation is applied to
each base learner. One copy is used as the test set, and the remainder is used as the training
set for each base learner. Then, the prediction results of all base learners are taken as the
training set for the meta-learner. (3) A new test set is created by averaging the prediction
results using the previous test set and the base learner. (4) To obtain the final prediction
results, the new training set and the new test set are fed into the meta-learner for training.
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2.5. Evaluation Method

In this study, the performance of the prediction model is evaluated using the coefficient
of determination (R?), root mean square error (RMSE), and relative prediction deviation
(RPD). The calculation formulas of these evaluation metrics are shown in (7), (8), and
(9), respectively:

n

R2 =1 _ &i=l (yi — }A’i)z

@)
"y —7)
RMSE = \/ %2?:1 (vi — 9)° ®)
SD 1n _ 1n N
RPD = RM75E = \/nzi—l (Yi - y)z/\/nzi_1<Yi - Yi>2 (9)

where n represents the sample size; y; represents the measured value of the i-th sample; §;
and ¥ denote the model’s predicted value for sample i and the sample’s mean measured
value, respectively; and SD represents the standard deviation of the sample’s measured
values. The model fits the data better when the R? is close to 1, and the model is more
stable when the RMSE is smaller. When RPD is greater than 3.0, it indicates that the
model has very high reliability and excellent prediction performance; when RPD ranges
between 2.5 and 3.0, it indicates that the model has good prediction ability; when RPD
ranges between 2.0 and 2.5, it indicates that the model has prediction ability and can make
approximate predictions; when RPD ranges between 1.5 and 2.0, it indicates that the model
has the potential to distinguish between high and low values and can be improved by other
methods; when RPD is smaller than 1.5, it indicates that the model is unreliable, and the
prediction fails [47]. As a result, models that perform well in this study should have large
R? and RPD values along with small RMSE values.

3. Results
3.1. Sample Analysis

The collected 162 soil samples were randomly divided into a training set and a test
set at a ratio of 8:2 using the joint x-y distance (SPXY) approach, with 130 soil samples
in the training set and 32 soil samples in the test set. The moisture content of the soil at
each sampling site is shown in Figure 7. It can be seen that the SMC varies in a gradient.
The statistical characteristics of the SMC for the training set, the test set, and all samples
are presented in Table 1. Three of the sample sets have relatively similar means and
standard deviations, indicating that they have a similar data distribution. As a result,
the distributional features of the entire dataset can be accurately represented in both the
training and testing sets.

Distribution and water content of soil samples

~

(=]

soil moisture content(%)

Figure 7. The SMC at the sampling sites.
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Table 1. The statistical characteristics of the SMC for each dataset.

Dataset Number of Maximum Minimum Mean Standard Coefficient of
Samples (%) (%) (%) Deviation (%) Variation
Total 162 6.951 2.254 4.099 1.171 0.286
Training set 130 6.951 2.254 4.168 1.154 0.277
Testing set 32 5.800 2.489 3.817 1.201 0.315

3.2. Prediction Results of the GWO-CNN-GRU-Attention Model

To construct the hybrid neural network model, the fitting effects of CNN, GWO-
CNN, GWO-CNN-GRU, GWO-CNN-Attention, and GWO-CNN-GRU-Attention were
compared and analyzed in the experiments, and the fitting plots of the prediction results
were drawn using the predicted and measured values of the model (Figure 8).

GWO-CNN

5.5

5.0 4

454

4019

3.5+

3.0

254

5.5

5.0 4

4.5

4019

354

3.0 4

2.5

5.5

5.0 X Axis: Sample point number

451 Y Axis: Soil moisture content(%o)

4.0 — Measured soil moisture content

%31 —-= Predicted soil moisture content

3.0

251

Figure 8. The predicted and measured values of GWO-CNN-GRU-Attention and ablation models.
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Table 2 presents the prediction results for each model’s estimation of SMC. On the
test set, the prediction accuracies for the CNN and GWO-CNN models were 79.4% and
89.7%, respectively; the GWO-CNN model performed better than the CNN model. The
GWO-CNN model’s prediction accuracy increased to 91.4% after the GRU model was in-
cluded. The GWO-CNN model’s prediction accuracy increased to 91.6% after the attention
mechanism was included. It can be seen that the model’s performance was improved with
the inclusion of the GRU model or the attention mechanism. Finally, when both the GRU
and attention mechanism were included, the accuracy of the GWO-CNN model on the test
set was 92.9%. The GWO-CNN-GRU-Attention model obtained the highest R2 and RPD
as well as the lowest RMSE when compared to the other four models. It demonstrates that
the GWO-CNN-GRU-Attention model developed in this study has improved precision
and accuracy for SMC prediction.

Table 2. The prediction results of GWO-CNN-GRU-Attention and ablation models.

Training Set Testing Set

Model
R? RMSE RPD R? RMSE RPD
CNN 0.502 0.706 1.416 0.794 0.472 2.205
GWO-CNN 0.814 0.431 2.321 0.897 0.333 3.122
GWO-CNN-GRU 0.784 0.466 2.149 0.914 0.305 3.409
GWO-CNN-Attention 0.784 0.465 2.153 0.916 0.302 3.445
GWO-CNN-GRU-Attention 0.872 0.373 2.792 0.929 0.270 3.779

3.3. Prediction Results of the Stacking Model

In our experiments, the stacking model containing the hybrid neural network is called
Stacking?, which has nine base learners. The stacking model that does not contain the
hybrid neural network is called Stackingl, and it has eight base learners. Table 3 presents
the prediction results for each base learner and stacking technique.

Table 3. The prediction results for stacking and each base learner.

Training Set Testing Set

Model
R? RMSE RPD R? RMSE RPD
XGBoost 0.999 0.013 79.478 0.895 0.338 3.082
MLP 0.863 0.370 2.702 0.915 0.303 3.430
RF 0.967 0.181 5.531 0.908 0.316 3.292
LightGBM 0.987 0.115 8.692 0.870 0.376 2.772
GBRT 0.999 0.003 35,718.721 0.849 0.405 2.571
AdaBoost 0.896 0.322 3.093 0.916 0.302 3.450
CatBoost 0.998 0.037 27.043 0.905 0.321 3.245
Extra Trees 1.0 0.001 7.417 x 104 0.873 0.371 2.807
GWO-CNN-GRU-Attention 0.872 0.373 2.792 0.929 0.270 3.779
Stacking1 0.892 0.328 3.047 0.920 0.294 3.536
Stacking? 0.923 0.301 3.590 0.952 0.227 4577

According to the prediction results of the Stacking2 model, the R? of the nine base
learner models on the test set are ranked in descending order: GWO-CNN-GRU-Attention,
AdaBoost, MLP, RE, CatBoost, XGBoost, Extra Trees, LightGBM, and GBRT. GWO-CNN-
GRU-Attention achieves the largest R? of 0.929 and GBRT obtains the smallest R? of 0.849.
Stacking?2 achieves the highest goodness of fit with an R? of 0.952 compared to the nine
base learner models.

Among the nine base learner models, GWO-CNN-GRU-Attention obtains the small-
est RMSE of 0.270 and is the only model with RMSE below 0.3, while GBRT obtains the
largest RMSE. The RMSE of the Stacking2 model is 0.227, which is lower than that of the
other models. Through the analysis of the RPD, it can be seen that only the LightGBM,
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GBRT, and Extra Trees models have RPD values between 2.5 and 3.0, indicating the good
prediction ability of these models. The RPD values of other models are above 3.0, and the
Stacking? model has excellent prediction ability with an RPD value of 4.577. The average
R? and RPD of the Stacking2 model were improved by 0.056 and 1.418, respectively, and
its average RMSE decreased by 0.107 compared with that of the nine base learner models
on the test set. The prediction performance of Stacking? is significantly improved, and it
shows a strong prediction capability in this experiment.

The prediction results of Stackingl and Stacking?2 outperform the base learners in all
three evaluation metrics, indicating that the stacking ensemble learning method used in
this study is effective and improves the prediction accuracy. However, the Stacking? model
demonstrates a stronger enhancement effect. Compared with the Stackingl model, Stack-
ing2 improves R% and RPD by 3.2% and 1.041 and reduces RMSE by 0.067. It can be seen
that adding GWO-CNN-GRU-Attention to stacking greatly improves the performance of
the stacking model.

Figure 9 illustrates the comparison between the predicted and measured values of
the two stacking models. Also, scatter plots were plotted for the two stacking models
in Figure 9. The curve fit of the predicted and measured values is best for the Stacking?2
model. Furthermore, the points created using the Stacking2 model’s projected values are
substantially closer to the grey regression line, indicating the model’s higher predictive
power. Figure 10 intuitively shows that Stacking? obtains the highest R2 and RPD and
lowest RMSE values, indicating that this model performs best in SMC prediction.
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Figure 9. Measured and predicted values of stacking model.
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Figure 10. Comparison of evaluation indexes of each prediction model.

In the experiments, in addition to the stacking model’s strong practical application
capability, the base learners also obtained good prediction results, among which GWO-
CNN-GRU-Attention and MLP both have potent predictive power. However, the use
of the neural network model may somewhat hamper the performance due to the single
soil type and the limited sampling area. The effectiveness of the neural network model
lies in its requirement for a large amount of training data. Therefore, there is still a great
opportunity for advancement in the prediction of SMC using neural networks, particularly
CNNs and hybrid neural networks.

4. Discussion

In recent years, soil moisture inversion based on hyperspectral remote sensing has
become a hot research topic [44,48-50]. One part of the study by Zhang et al. [51] is very
similar to ours, which demonstrated the effectiveness of the IDCNN model in predicting
soil properties. Similar to what KARA et al. [52] found, combining RNN with an attention
mechanism and utilizing optimization techniques to tune the hyperparameters is a great
way to predict soil moisture. As envisioned in the above-mentioned article, this study inte-
grates CNN with this method to achieve excellent performance in soil moisture prediction.

Prior research has also focused a great deal of attention on the stacking model em-
ployed in this work. Wang et al. [53] demonstrated in their article that the stacking model
outperformed the single GBRT model. In addition, Ge et al. [54] used a hyperspectral sensor
carried by a UAV to acquire hyperspectral images of the study area, and used Boosting
and Bagging algorithms to construct a soil moisture prediction and analysis model for the
70 pieces of data acquired. Using R? and RPD as evaluation metrics, the model achieved
an excellent performance of 92.6% and 2.556. In related works, the stacking method is
utilized to incorporate machine learning models to predict soil moisture content and is
also gaining popularity. The stacking approach was used to integrate CatBoost, RF, and
GBRT models to predict the soil of planted grapes [43], and the R2 reached 0.86, which is a
superior prediction compared to other models. However, GWO-CNN-GRU-Attention is a
deep learning model, and the deep learning model added to the stacking model design
in this study enriches the type of base learner, retains richer spectral properties in the
prediction, and is a more robust model. A more advanced moisture prediction model
was constructed for more than 160 data values and significantly outperformed the above
methods in terms of R?> and RPD. This result is attributed to the hybrid neural network
and the design approach of using it as one of the stacking model-based learners in this
paper, which effectively reduces the risk of overfitting in a single model and enhances the
tolerance to noise and anomalous data.

In addition, Wang et al. [55] proposed an innovative method of SSA-CNN to invert soil
moisture in farmland areas using 200 multi-source remote sensing data values. There is also
a study that designed an SCSANet deep learning network combined with a self-attention
mechanism for hyperspectral feature extraction, and established a prediction model for soil
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metal content for 500 spectral data values [56]. In contrast, although the method proposed
in this study yielded more reliable results, it should be noted that this paper is not as
adequate as the above studies in terms of the amount of data, which also constitutes a
limitation of this paper. And the efficiency of the deep learning model is also an issue
worth exploring and improving. This is because the inclusion of a hybrid neural network
increases the computational load.

5. Conclusions

Based on the field collection of soil samples and various modeling approaches, this
study focused on using soil reflectance spectra to realize the better inversion of soil moisture
content, and the conclusions are presented below:

(1) The GWO-CNN-GRU-Attention method improves the accuracy of hyperspectral
soil water content inversion, compared to CNN, GWO-CNN, GWO-CNN-GRU, and
GWO-CNN-Attention.

(2) Nine models from Boosting, the Bagging ensemble learning algorithm, the feed-
forward neural network, and GWO-CNN-GRU-Attention are utilized as the base
learners of the stacking model. This model exhibits strong stability and predictive
performance in this study. The R?, RMSE, and RPD values of the stacking model on
the test set are 0.952, 0.227, and 4.577, respectively. It achieves the best evaluation
index and the highest inversion accuracy when compared with other models. In
conclusion, the stacking ensemble learning model incorporating the hybrid neural
network greatly improves the prediction of hyperspectral soil moisture content.

The findings demonstrate that the stacking model proposed in this study can meet
actual prediction needs, significantly increase the precision of soil moisture content inver-
sion using hyperspectral data, and serve as a foundation for the inversion of soil moisture
content in areas with black soil. In future work, we will research multi-region and multi-
species soil moisture content prediction models to provide technical support for large-scale
irrigation monitoring on farmland.
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