Biofortification of Cucumbers with Iron Using Bio-Chelates Derived from Spent Coffee Grounds: A Greenhouse Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. SCG-Derived Bioproducts
2.2. Greenhouse Experiment
2.2.1. Greenhouse Conditions
2.2.2. Maintenance of Crops
2.2.3. Cucumber Sampling and Processing
2.3. Iron Determination (in Bio-Products and Cucumbers)
2.4. Efficiency Parameters
2.5. Statistical Analysis
3. Results
3.1. Total Cumulative Production
3.2. Iron Biofortification
3.2.1. Average per Treatment
3.2.2. Per Harvest
4. Discussion
4.1. Production and Phytotoxicity Effect
4.2. Effect on Iron Content in Cucumbers/Iron Biofortification
4.3. Scalability of the Procedure
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, V.; Sharma, L.; Sandhu, K.S. Chapter 17. Cucumber (Cucumis sativus L.). In Antioxidants in Vegetables and Nuts—Properties and Health Benefits; Springer: Singapore, 2020; ISBN 978-981-15-7470-2. [Google Scholar]
- FAOSTAT. Crops and Livestock Products. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 3 July 2024).
- Sallam, B.N.; Lu, T.; Yu, H.; Li, Q.; Sarfraz, Z.; Iqbal, M.S.; Khan, S.; Wang, H.; Liu, P.; Jiang, W. Productivity Enhancement of Cucumber (Cucumis sativus L.) through Optimized Use of Poultry Manure and Mineral Fertilizers under Greenhouse Cultivation. Horticulturae 2021, 7, 256. [Google Scholar] [CrossRef]
- Szerement, J.; Szatanik-Kloc, A.; Mokrzycki, J.; Mierzwa-Hersztek, M. Agronomic biofortification with Se, Zn, and Fe: An effective strategy to enhance crop nutritional quality and stress defense—A review. J. Soil. Sci. Plant Nutr. 2022, 22, 1129–1159. [Google Scholar] [CrossRef]
- Di Gioia, F.; Petropoulos, S.A.; Ozores-Hampton, M.; Morgan, K.; Rosskopf, E.N. Zn and iron agronomic biofortification of brassicaceae microgreens. Agronomy 2019, 9, 667. [Google Scholar] [CrossRef]
- Waters, B.M.; Troupe, G.C. Natural Variation in Iron Use Efficiency and Mineral Remobilization in Cucumber (Cucumis sativus). Plant Soil 2012, 352, 185–197. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, F. Soil and Crop Management Strategies to Prevent Iron Deficiency in Crops. Plant Soil 2011, 339, 83–95. [Google Scholar] [CrossRef]
- WHO. Micronutrient Deficiency: Iron Deficiency Anaemia; WHO: Geneva, Switzerland, 2007; Available online: https://www.who.int/health-topics/anaemia#tab=tab_1 (accessed on 7 September 2024).
- Cervera-Mata, A.; Pastoriza, S.; Rufián-Henares, J.Á.; Párraga, J.; Martín-García, J.M.; Delgado, G. Impact of Spent Coffee Grounds as Organic Amendment on Soil Fertility and Lettuce Growth in Two Mediterranean Agricultural Soils. Arch. Agron. Soil Sci. 2018, 64, 790–804. [Google Scholar] [CrossRef]
- Cruz, R.; Baptista, P.; Cunha, S.; Pereira, J.A.; Casal, S. Carotenoids of lettuce (Lactuca sativa L.) grown on soil enriched with spent coffee grounds. Molecules 2012, 17, 1535–1547. [Google Scholar] [CrossRef]
- Cruz, R.; Gomes, T.; Ferreira, A.; Mendes, E.; Baptista, P.; Cunha, S.; Pereira, J.A.; Ramalhosa, E.; Casal, S. Antioxidant activity and bioactive compounds of lettuce improved by espresso coffee residues. Food Chem. 2014, 145, 95–101. [Google Scholar] [CrossRef]
- Cruz, R.; Morais, S.; Mendes, E.; Pereira, J.A.; Baptista, P.; Casal, S. Improvement of vegetables elemental quality by espresso coffee residues. Food Chem. 2014, 148, 294–299. [Google Scholar] [CrossRef]
- Cruz, S.; Cordovil, C.S.C. Espresso coffee residues as a nitrogen amendment for small-scale vegetable. J. Sci. Food Agric. 2015, 95, 3059–3066. [Google Scholar] [CrossRef]
- Cruz, R.; Mendes, E.; Torrinha, Á.; Morais, S.; Pereira, J.A.; Baptista, P.; Casal, S. Revalorization of spent coffee residues by a direct agronomic approach. Food Res. Int. 2015, 73, 190–196. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Cervera-Mata, A.; Fernández-Arteaga, A.; Pastoriza, S.; Rufián-Henares, J.Á.; Delgado, G. Why Should We Be Concerned with the Use of Spent Coffee Grounds as an Organic Amendment of Soils? A Narrative Review. Agronomy 2022, 12, 2771. [Google Scholar] [CrossRef]
- Ciesielczuk, T.; Rosik-Dulewska, C.; Poluszyńska, J.; Sławińska, I. Acute toxicity of experimental fertilizers made of blood meal, spent coffee ground and biomass ash. J. Water Land Develop. 2017, 34, 95–102. [Google Scholar] [CrossRef]
- He, M.; Xu, Z.; Hou, D.; Gao, B.; Cao, X.; Ok, Y.S.; Rinklebe, J.; Bolan, N.S.; Tsang, D.C.W. Waste-Derived Biochar for Water Pollution Control and Sustainable Development. Nat. Rev. Earth Environ. 2022, 3, 444–460. [Google Scholar] [CrossRef]
- Sharma, H.B.; Vanapalli, K.R.; Bhatia, D.; Singh, S.; Arora, G.; Panigrahi, S.; Dubey, B.K.; Ramamurthy, P.C.; Mohanty, B. Engineered Biochar/Hydrochar Derived from Organic Wastes for Energy, Environmental, and Agricultural Applications; Springer: Berlin/Heidelberg, Germany, 2024; ISBN 1009802402. [Google Scholar]
- Xiao, L.P.; Shi, Z.J.; Xu, F.; Sun, R.C. Hydrothermal Carbonization of Lignocellulosic Biomass. Bioresour. Technol. 2012, 118, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Afolabi, O.O.D.; Sohail, M.; Cheng, Y.L. Optimisation and Characterisation of Hydrochar Production from Spent Coffee Grounds by Hydrothermal Carbonisation. Renew. Energy 2020, 147, 1380–1391. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.; Bae, D.; Park, K.Y. Characterizations of Biochar from Hydrothermal Carbonization of Exhausted Coffee Residue. J. Mater. Cycles Waste Manag. 2017, 19, 1036–1043. [Google Scholar] [CrossRef]
- Cervera-Mata, A.; Lara, L.; Fernández-Arteaga, A.; Ángel Rufián-Henares, J.; Delgado, G. Washed Hydrochar from Spent Coffee Grounds: A Second Generation of Coffee Residues. Evaluation as Organic Amendment. Waste Manag. 2021, 120, 322–329. [Google Scholar] [CrossRef]
- Lara-ramos, L.; Cervera-mata, A.; Navarro-alarc, M.; Delgado, G.; Fern, A. Hydrochars Derived from Spent Coffee Grounds as Zn Bio-Chelates for Agronomic Biofortification. Sustainability 2023, 15, 10700. [Google Scholar] [CrossRef]
- Morikawa, C.K.; Saigusa, M. Recycling Coffee and Tea Wastes to Increase Plant Available Fe in Alkaline Soils. Plant Soil 2008, 304, 249–255. [Google Scholar] [CrossRef]
- Zhao, A.; Yang, S.; Wang, B.; Tian, X. Effects of ZnSO4 and Zn-EDTA Applied by Broadcasting or by Banding on Soil Zn Fractions and Zn Uptake by Wheat (Triticum aestivum L.) under Greenhouse Conditions. J. Plant Nutr. Soil Sci. 2019, 182, 307–317. [Google Scholar] [CrossRef]
- Gregory, P.J.; Wahbi, A.; Adu-Gyamfi, J.; Heiling, M.; Gruber, R.; Joy, E.J.M.; Broadley, M.R. Approaches to Reduce Zinc and Iron Deficits in Food Systems. Glob. Food Sec. 2017, 15, 1–10. [Google Scholar] [CrossRef]
- Mohammadi, P.; Khoshgoftarmanesh, A.H. The Effectiveness of Synthetic Zinc(Zn)-Amino Chelates in Supplying Zn and Alleviating Salt-Induced Damages on Hydroponically Grown Lettuce. Sci. Hortic. 2014, 172, 117–123. [Google Scholar] [CrossRef]
- Leifa, F.; Pandey, A.; Soccol, C.R. Solid State Cultivation—An Efficient Method to Use Toxic Agro-Industrial Residues. J. Basic Microbiol. 2000, 40, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, S.; Kyomugasho, C.; Celus, M.; Hendrickx, M.E.G.; Grauwet, T. Barriers Impairing Mineral Bioaccessibility and Bioavailability in Plant-Based Foods and the Perspectives for Food Processing. Crit. Rev. Food Sci. Nutr. 2020, 60, 826–843. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. Metal Ions, Metal Chelators and Metal Chelating Assay as Antioxidant Method. Processes 2022, 10, 132. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Regolo, L.; Alvarez-Suarez, J.M.; Navarro-Hortal, M.D.; Xiao, J.; Quiles, J.L.; Battino, M.; Giampieri, F. The Reciprocal Interaction between Polyphenols and Other Dietary Compounds: Impact on Bioavailability, Antioxidant Capacity and Other Physico-Chemical and Nutritional Parameters. Food Chem. 2022, 375, 131904. [Google Scholar] [CrossRef]
- McGee, E.J.T.; Diosady, L.L. Prevention of Iron-Polyphenol Complex Formation by Chelation in Black Tea. LWT 2018, 89, 756–762. [Google Scholar] [CrossRef]
- MAPA. Avance Anuario Estadístico, 2023; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2023. [Google Scholar]
- MITECO. Emisiones de Gases de efecto Invernadero en ESPAÑA. Año 2019; Ministerio para la Transición Ecológica y el reto Demográfico: Madrid, Spain, 2022. [Google Scholar]
- Romero-Gámez, M.; Audsley, E.; Suárez-Rey, E.M. Life Cycle Assessment of Cultivating Lettuce and Escarole in Spain. J. Clean. Prod. 2014, 73, 193–203. [Google Scholar] [CrossRef]
- Romero-Gámez, M.; Suárez-Rey, E.M. Environmental Footprint of Cultivating Strawberry in Spain. Int. J. Life Cycle Assess. 2020, 25, 719–732. [Google Scholar] [CrossRef]
- Thompson, R.B.; Martínez-Gaitan, C.; Gallardo, M.; Giménez, C.; Fernández, M.D. Identification of Irrigation and N Management Practices That Contribute to Nitrate Leaching Loss from an Intensive Vegetable Production System by Use of a Comprehensive Survey. Agric. Water Manag. 2007, 89, 261–274. [Google Scholar] [CrossRef]
Treatment | Description |
---|---|
Control | No bio-product |
Control-Fe | Commercial chelate (EDDHA-Fe, 6%) |
ASCG | Activated spent coffee grounds |
AH160 | Activated hydrochar obtained at 160 °C |
ASCG-Fe | Activated spent coffee grounds functionalized with Fe |
AH160-Fe | Activated hydrochar obtained at 160 °C functionalized with Fe |
Utilization Efficiency (%) | |||
---|---|---|---|
Treatment | Harvest 1 | Harvest 2 | Harvest 3 |
Control-Fe | 0.396 | 0.336 | 0.086 |
ASCG | −27.44 | 19.14 | 1.119 |
AH160 | −34.21 | 2.750 | 11.17 |
ASCG-Fe | 0.175 | 0.056 | 0.051 |
AH160-Fe | 0.127 | 0.088 | 0.115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervera-Mata, A.; Lara-Ramos, L.; Rufián-Henares, J.Á.; Fernández-Bayo, J.; Delgado, G.; Fernández-Arteaga, A. Biofortification of Cucumbers with Iron Using Bio-Chelates Derived from Spent Coffee Grounds: A Greenhouse Trial. Agronomy 2024, 14, 2063. https://doi.org/10.3390/agronomy14092063
Cervera-Mata A, Lara-Ramos L, Rufián-Henares JÁ, Fernández-Bayo J, Delgado G, Fernández-Arteaga A. Biofortification of Cucumbers with Iron Using Bio-Chelates Derived from Spent Coffee Grounds: A Greenhouse Trial. Agronomy. 2024; 14(9):2063. https://doi.org/10.3390/agronomy14092063
Chicago/Turabian StyleCervera-Mata, Ana, Leslie Lara-Ramos, José Ángel Rufián-Henares, Jesús Fernández-Bayo, Gabriel Delgado, and Alejandro Fernández-Arteaga. 2024. "Biofortification of Cucumbers with Iron Using Bio-Chelates Derived from Spent Coffee Grounds: A Greenhouse Trial" Agronomy 14, no. 9: 2063. https://doi.org/10.3390/agronomy14092063
APA StyleCervera-Mata, A., Lara-Ramos, L., Rufián-Henares, J. Á., Fernández-Bayo, J., Delgado, G., & Fernández-Arteaga, A. (2024). Biofortification of Cucumbers with Iron Using Bio-Chelates Derived from Spent Coffee Grounds: A Greenhouse Trial. Agronomy, 14(9), 2063. https://doi.org/10.3390/agronomy14092063