Using Pseudo-Color Maps and Machine Learning Methods to Estimate Long-Term Salinity of Soils
Abstract
:1. Introduction
- A method of salinity assessment for cultivated and non-cultivated soils of arid zones based on long-term averaged values of vegetation indices and salinity indices is proposed;
- The method is based on remote sensing data of the optical spectrum range and machine learning algorithms;
- The method allows revealing the stable relations between characteristics of corresponding spectral ranges and salinity parameters. In this sense, it is relatively stable.
- The second section describes the research area, which serves as an example for testing the proposed model.
- The third section provides a literature review describing the methods of soil salinity assessment based on RS data and machine learning.
- In the fourth section, we describe the research methodology.
- In the fifth section, we presented the results obtained.
- In the sixth section, we discuss the results obtained.
2. Research Field
3. Related Works
4. Method
4.1. Building a Pseudo-Color Map
4.2. Sampling of Local Zones with a Simple Spatial Organization of the Target Feature
4.3. Formation of a 5-Class Representation of Salinity
4.4. Development and Training of the Classifier
4.5. Applying the Classifier to Specified Areas of the Earth’s Surface
- Cutting out part of the image;
- Segmentation of images by a given number of elements;
- Connecting image segments to form the final image;
- Converting the image fragments to one color;
- Color adjustment, which is necessary to exclude halftone pixels;
- Saving the prepared data sets and performing some additional functions related to obtaining the results and the application of machine learning models;
- Application of machine learning models.
5. Results
6. Discussion
6.1. Comparison with Expert Evaluation
6.2. Comparison with Laboratory Conductivity Measurements
6.3. Long-Term Salinity Map of the Maktaaral District and Method Restrictions
- The method based on taking into account the long-term salinization patterns demonstrates good correspondence to the actual salinization of fields in the Maktaaral region.
- Salinization in this area has a stable nature. The salinization pattern is repeated year after year with slight variations in the level of electrical conductivity.
- Although we have obtained a much more detailed salinity map, it is necessary to note the limitations of the proposed method.
- The method allows us to construct a map of long-term salinity trends, but its compliance with the current state of the field will not be complete due to both weather anomalies and long-term climate changes.
- Accurate verification of the obtained result is generally difficult. It requires many years of work on salinity assessment.
- The spatial resolution of the map is limited by the resolution of satellite images, which may not be sufficient in cases of small-scale salinity.
7. Conclusions
- Relatively high resistance to annual fluctuations in weather conditions;
- The possibility of extrapolating the results obtained on the relatively small areas of the earth’s surface to large areas and regions;
- The gradient of the relief, the amount of precipitation (water availability of the year) and the state of the irrigation system are indirectly taken into account in the process of constructing a pseudo-color composite and subsequent training of the machine learning.
- Significant weather changes and the conditions of a single year can make serious adjustments to the salinity of certain areas of the earth’s surface. Such rapid changes cannot be captured using the proposed method;
- The pseudo-color composite, which is formed at the Nth step of the method, essentially depends on the conditions in a particular area of the earth’s surface and requires a significant share of manual labor.
- Improving the accuracy of the method by using a wider spectral range of remote sensing data, including radar;
- Increasing the coverage of the method by collecting more field data on soil electrical conductivity;
- Increasing the spatial accuracy of the method.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Parameters of Convolution Neural Network
Appendix A.1. Fragment of Code That Creates a Convolution Neural Network
Appendix A.2. Model Params
Layer (Type) | Output Shape | Param # |
---|---|---|
conv2d_91 (Conv2D) | (None, 4, 4, 128) | 1664 |
max_pooling2d_67 (MaxPooling) | (None, 2, 2, 128) | 0 |
dropout_125 (Dropout) | (None, 2, 2, 128) | 0 |
conv2d_92 (Conv2D) | (None, 2, 2, 256) | 131,328 |
max_pooling2d_68 (MaxPooling) | (None, 1, 1, 256) | 0 |
dropout_126 (Dropout) | (None, 1, 1, 256) | 0 |
conv2d_93 (Conv2D) | (None, 1, 1, 512) | 524,800 |
dropout_127 (Dropout) | (None, 1, 1, 512) | 0 |
flatten_37 (Flatten) | (None, 512) | 0 |
dense_77 (Dense) | (None, 128) | 65,664 |
dropout_128 (Dropout) | (None, 128) | 0 |
dense_78 (Dense) | (None, 6) | 774 |
Appendix B. Results of Laboratory Testing of Soil Samples
NUM | Latitude | Longitude | Conductivity mS/cm |
---|---|---|---|
1 | 41.010863 | 68.164834 | 1.75 |
2 | 41.010946 | 68.164559 | 1.37 |
3 | 41.01112 | 68.164053 | 1.02 |
4 | 41.011298 | 68.163583 | 1.38 |
5 | 41.011423 | 68.163268 | 1.8 |
6 | 41.011566 | 68.162895 | 1.39 |
7 | 41.011567 | 68.162896 | 1.39 |
8 | 41.0113 | 68.162706 | 0.98 |
9 | 41.011174 | 68.163065 | 1.44 |
10 | 41.011007 | 68.163524 | 1.64 |
11 | 41.010718 | 68.16424 | 1.92 |
12 | 41.010542 | 68.164718 | 0.45 |
13 | 41.010247 | 68.164572 | 0.68 |
14 | 41.010422 | 68.164115 | 0.41 |
15 | 41.010631 | 68.163552 | 0.71 |
16 | 41.010877 | 68.162911 | 0.64 |
17 | 41.011125 | 68.162349 | 0.77 |
18 | 41.01135 | 68.161755 | 0.73 |
19 | 41.011538 | 68.161247 | 1.29 |
20 | 41.01182 | 68.160465 | 0.97 |
21 | 41.011508 | 68.160233 | 0.92 |
22 | 41.011308 | 68.160704 | 0.78 |
23 | 41.011133 | 68.161149 | 0.96 |
24 | 41.010936 | 68.161665 | 0.73 |
25 | 41.010765 | 68.162089 | 0.82 |
26 | 41.010616 | 68.16248 | 0.76 |
27 | 41.010409 | 68.163039 | 1.01 |
28 | 41.010199 | 68.163591 | 0.79 |
29 | 41.010012 | 68.164108 | 1.26 |
30 | 41.00933 | 68.164354 | 1.09 |
31 | 41.009483 | 68.163959 | 0.92 |
32 | 41.00967 | 68.163491 | 0.72 |
33 | 41.009895 | 68.162994 | 0.47 |
34 | 41.010064 | 68.162569 | 0.52 |
35 | 41.010298 | 68.161957 | 0.82 |
36 | 41.010501 | 68.16145 | 0.87 |
37 | 41.010788 | 68.160732 | 2.18 |
38 | 41.010974 | 68.160225 | 1.86 |
39 | 41.011201 | 68.159659 | 1.29 |
40 | 41.011398 | 68.159168 | 0.77 |
41 | 41.011575 | 68.158696 | 1.75 |
42 | 41.011106 | 68.158355 | 1.43 |
43 | 41.010904 | 68.158822 | 1.57 |
44 | 41.01068 | 68.159364 | 1.4 |
45 | 41.010514 | 68.159772 | 1.66 |
46 | 41.010396 | 68.160135 | 1.2 |
47 | 41.010198 | 68.160625 | 1.37 |
48 | 41.010013 | 68.161045 | 0.8 |
49 | 41.009829 | 68.161518 | 1.5 |
50 | 41.009655 | 68.161954 | 1.43 |
51 | 41.009508 | 68.162337 | 1.13 |
52 | 41.009337 | 68.162774 | 0.97 |
53 | 41.009147 | 68.163255 | 0.94 |
54 | 41.008949 | 68.163763 | 1.62 |
55 | 41.00878 | 68.164205 | 1.05 |
56 | 41.011259 | 68.165037 | 1.5 |
57 | 41.011336 | 68.164797 | 2.06 |
58 | 41.011448 | 68.164492 | 1.47 |
59 | 41.011538 | 68.164198 | 1.81 |
60 | 41.011605 | 68.163989 | 2.86 |
61 | 41.011715 | 68.163647 | 2.86 |
62 | 41.011835 | 68.163249 | 3.12 |
63 | 41.01199 | 68.162845 | 2.32 |
64 | 41.011876 | 68.162717 | 4.73 |
65 | 41.011734 | 68.163142 | 4.2 |
66 | 41.011557 | 68.163628 | 2.26 |
67 | 41.011408 | 68.164082 | 3.33 |
68 | 41.011304 | 68.164452 | 2.4 |
69 | 41.011145 | 68.164915 | 1.41 |
70 | 41.010912 | 68.165089 | 3.3 |
71 | 41.010506 | 68.164945 | 6.57 |
72 | 41.011267 | 68.165934 | 1.21 |
73 | 41.011165 | 68.166354 | 0.84 |
74 | 41.011077 | 68.166735 | 1.23 |
75 | 41.01095 | 68.167264 | 0.91 |
References
- Bernstein, L. Crop growth and salinity. Drain. Agric. 1974, 17, 39–54. [Google Scholar]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Hossain, M.S. Present scenario of global salt affected soils, its management and importance of salinity research. Int. Res. J. Biol. Sci. 2019, 1, 1–3. [Google Scholar]
- Li, X.; Wang, Z.; Song, K.; Zhang, B.; Liu, D.; Guo, Z. Assessment for salinized wasteland expansion and land use change using GIS and remote sensing in the west part of Northeast China. Environ. Monit. Assess. 2007, 131, 421–437. [Google Scholar] [CrossRef]
- Muhetaer, N.; Nurmemet, I.; Abulaiti, A.; Xiao, S.; Zhao, J. An efficient approach for inverting the soil salinity in Keriya Oasis, northwestern China, based on the optical-radar feature-space model. Sensors 2022, 22, 7226. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, Y.; Yano, T.; Honna, T.; Yamamoto, S.; Inosako, K. Causes of farmland salinization and remedial measures in the Aral Sea basin—Research on water management to prevent secondary salinization in rice-based cropping system in arid land. Agric. Water Manag. 2006, 85, 1–14. [Google Scholar] [CrossRef]
- Duan, Y.; Ma, L.; Abuduwaili, J.; Liu, W.; Saparov, G.; Smanov, Z. Driving factor identification for the spatial distribution of soil salinity in the irrigation area of the Syr Darya river, Kazakhstan. Agronomy 2022, 12, 1912. [Google Scholar] [CrossRef]
- Панкoва, Е.И.; Мазикoв, В.М.; Исаев, В.А.; Джамнoва, И.А. Опыт испoльзoвания аэрoфoтoснимкoв для характеристики засoленнoсти пoчв серoземных пoливных участкoв (Experience in the use of aerial photographs for the characteristics of soil salinity rainfed areas serozem area). Пoчвoведение 1978, 3, 82–85. [Google Scholar]
- Мамедoв, Э. Изучение засoленных земель и сoлoнчакoв с пoмoщью кoсмических метoдoв (Study of saline lands and salt marshes with the help of space methods). Исследoвание Земли Кoсмoса 1985, 1, 60–61. [Google Scholar]
- Singh, A.; Dwivedi, R. Delineation of salt-affected soils through digital analysis of Landsat MSS data. Remote Sens. 1989, 10, 83–92. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: A review. Adv. Remote Sens. 2013, 2013, 373–385. [Google Scholar] [CrossRef]
- Li, Y. Research Progress of Remote Sensing Monitoring of Soil Salinization. IOP Conf. Ser. Earth Environ. Sci. 2021, 692, 042007. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S.; Hussain, N.; Hanjra, M.A.; Akbar, S. Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Phys. Chem. Earth Parts A/B/C 2013, 55, 43–52. [Google Scholar] [CrossRef]
- Bannari, A.; Guédon, A.; El-Ghmari, A. Mapping slight and moderate saline soils in irrigated agricultural land using advanced land imager sensor (EO-1) data and semi-empirical models. Commun. Soil Sci. Plant Anal. 2016, 47, 1883–1906. [Google Scholar] [CrossRef]
- Scudiero, E.; Corwin, D.L.; Anderson, R.G.; Yemoto, K.; Clary, W.; Wang, Z.; Skaggs, T.H. Remote sensing is a viable tool for mapping soil salinity in agricultural lands. Calif. Agric. 2017, 71, 231–238. [Google Scholar] [CrossRef]
- Wang, N.; Peng, J.; Xue, J.; Zhang, X.; Huang, J.; Biswas, A.; He, Y.; Shi, Z. A framework for determining the total salt content of soil profiles using time-series Sentinel-2 images and a random forest-temporal convolution network. Geoderma 2022, 409, 115–126. [Google Scholar] [CrossRef]
- Rukhovich, D.; Pankova, E.; Chernousenko, G.; Koroleva, P. Long-term salinization dynamics in irrigated soils of the Golodnaya Steppe and methods of their assessment on the basis of remote sensing data. Eurasian Soil Sci. 2010, 43, 682–692. [Google Scholar] [CrossRef]
- Lobell, D.; Lesch, S.; Corwin, D.; Ulmer, M.; Anderson, K.; Potts, D.; Doolittle, J.; Matos, M.; Baltes, M. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI. J. Environ. Qual. 2010, 39, 35–41. [Google Scholar] [CrossRef]
- Laiskhanov, S.U.; Otarov, A.; Savin, I.Y.; Tanirbergenov, S.I.; Mamutov, Z.U.; Duisekov, S.N.; Zhogolev, A. Dynamics of Soil Salinity in Irrigation Areas in South Kazakhstan. Pol. J. Environ. Stud. 2016, 25, 2469–2475. [Google Scholar] [CrossRef]
- Wei, G.; Li, Y.; Zhang, Z.; Chen, Y.; Chen, J.; Yao, Z.; Lao, C.; Chen, H. Estimation of soil salt content by combining UAV-borne multispectral sensor and machine learning algorithms. PeerJ 2020, 8, e9087. [Google Scholar] [CrossRef]
- Guan, Y.; Grote, K.; Schott, J.; Leverett, K. Prediction of soil water content and electrical conductivity using random forest methods with UAV multispectral and ground-coupled geophysical data. Remote Sens. 2022, 14, 1023. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, H.; Luo, G.; Chen, C.; Bao, A.; Liu, T.; Chen, X. Adaptive estimation of multi-regional soil salinization using extreme gradient boosting with Bayesian TPE optimization. Int. J. Remote Sens. 2022, 43, 778–811. [Google Scholar] [CrossRef]
- Hoa, P.V.; Giang, N.V.; Binh, N.A.; Hai, L.V.H.; Pham, T.-D.; Hasanlou, M.; Tien Bui, D. Soil salinity mapping using SAR sentinel-1 data and advanced machine learning algorithms: A case study at Ben Tre Province of the Mekong River Delta (Vietnam). Remote Sens. 2019, 11, 128. [Google Scholar] [CrossRef]
- Fan, X.; Weng, Y.; Tao, J. Towards decadal soil salinity mapping using Landsat time series data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 32–41. [Google Scholar] [CrossRef]
- Терехoв, А.; Сагатдинoва, Г.; Мурзабаев, Б. Принципы региoнальнoй oценки мнoгoлетней засoленнoсти пашни в Казахстанскoм сектoре дoлины реки Сырдарьи пo данным MODIS (Principles of regional assessment of perennial salinity of arable land in the Kazakhstan sector of the Syrdarya river valley based on MODIS data). Curr. Probl. Remote Sens. Earth Space 2022, 19, 169–179. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; US Government Printing Office: Washington, DC, USA, 1954.
- Measuring Soil Salinity. Available online: https://www.agric.wa.gov.au/soil-salinity/measuring-soil-salinity (accessed on 28 April 2023).
- Кузнецoв, В.В.; Дмитриева, Г.А. Физиoлoгия Растений (Plant Physiology). 2016, 742. Textbook for the academic Bachelor’s Degree, 4th ed.; revised and supplemented—M.: Publishing House Yurait: Ussuriisk, Russia, 2016; Volume 1 437 p., Volume 2 459 p., UMO and VO stamp; ISBN 978-5-9916-5644-3; 978-5-9916-5645-0. [Google Scholar]
- Isichenko, M.B. Percolation, statistical topography, and transport in random media. Rev. Mod. Phys. 1992, 64, 961. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Franceschini, M.H.; Kramer, H.; van Loo, E.N.; Roman, V.J.; Finkers, R. UAV based soil salinity assessment of cropland. Geoderma 2019, 338, 502–512. [Google Scholar] [CrossRef]
- Панкoва, Е.; Кoнюшкoва, М.; Гoрoхoва, И. О прoблеме oценки засoленнoсти пoчв и метoдике крупнoмасштабнoгo цифрoвoгo картoграфирoвания засoленных пoчв (On the problem of soil salinity assessment and methodology of large-scale digital mapping of saline soils). Экoсистемы Экoлoгия Динамика 2017, 1, 26–54. [Google Scholar]
- Elhag, M. Evaluation of different soil salinity mapping using remote sensing techniques in arid ecosystems, Saudi Arabia. J. Sens. 2016, 2016, 7596175. [Google Scholar] [CrossRef]
- Gorji, T.; Yıldırım, A.; Sertel, E.; Tanık, A. Remote sensing approaches and mapping methods for monitoring soil salinity under different climate regimes. Int. J. Environ. Geoinform. 2019, 6, 33–49. [Google Scholar] [CrossRef]
- Bannari, A.; Guedon, A.; El-Harti, A.; Cherkaoui, F.; El-Ghmari, A. Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor. Commun. Soil Sci. Plant Anal. 2008, 39, 2795–2811. [Google Scholar] [CrossRef]
- Saleh, A.M. Evaluation of different soil salinity mapping using remote sensing indicators and regression techniques, Basrah, Iraq. J. Am. Sci. 2017, 13, 85–97. [Google Scholar]
- Metternicht, G.I.; Zinck, J. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Popova, Y.; Kuchin, Y.; Zaitseva, E.; Kalimoldayev, A.; Symagulov, A.; Levashenko, V.; Abdoldina, F.; Gopejenko, V.; Yakunin, K. Review of artificial intelligence and machine learning technologies: Classification, restrictions, opportunities and challenges. Mathematics 2022, 10, 2552. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230, 1–8. [Google Scholar] [CrossRef]
- Ngabire, M.; Wang, T.; Xue, X.; Liao, J.; Sahbeni, G.; Huang, C.; Duan, H.; Song, X. Soil salinization mapping across different sandy land-cover types in the Shiyang River Basin: A remote sensing and multiple linear regression approach. Remote Sens. Appl. Soc. Environ. 2022, 28, 100847. [Google Scholar] [CrossRef]
- Zarei, A.; Hasanlou, M.; Mahdianpari, M. A comparison of machine learning models for soil salinity estimation using multi-spectral earth observation data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 3, 257–263. [Google Scholar] [CrossRef]
- Chen, Y.; Qiu, Y.; Zhang, Z.; Zhang, J.; Chen, C.; Han, J.; Liu, D. Estimating salt content of vegetated soil at different depths with Sentinel-2 data. PeerJ 2020, 8, e10585. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yang, S.; Yang, W.; Yang, X.; Jianli, D. Comparison of machine learning algorithms for soil salinity predictions in three dryland oases located in Xinjiang Uyghur Autonomous Region (XJUAR) of China. Eur. J. Remote Sens. 2019, 52, 256–276. [Google Scholar] [CrossRef]
- Nurmemet, I.; Ghulam, A.; Tiyip, T.; Elkadiri, R.; Ding, J.-L.; Maimaitiyiming, M.; Abliz, A.; Sawut, M.; Zhang, F.; Abliz, A. Monitoring soil salinization in Keriya River Basin, Northwestern China using passive reflective and active microwave remote sensing data. Remote Sens. 2015, 7, 8803–8829. [Google Scholar] [CrossRef]
- Tripathi, A.; Tiwari, R.K. A simplified subsurface soil salinity estimation using synergy of SENTINEL-1 SAR and SENTINEL-2 multispectral satellite data, for early stages of wheat crop growth in Rupnagar, Punjab, India. Land Degrad. Dev. 2021, 32, 3905–3919. [Google Scholar] [CrossRef]
- Taghadosi, M.M.; Hasanlou, M.; Eftekhari, K. Soil salinity mapping using dual-polarized SAR Sentinel-1 imagery. Int. J. Remote Sens. 2019, 40, 237–252. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Teng, D.; He, B.; Chen, X.; Ge, X.; Zhang, Z.; Wang, Y.; Yang, X. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci. Total Environ. 2020, 707, 136092. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Ding, J.; Han, L.; Zhang, Z.; Ran, S. Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms. Reg. Sustain. 2021, 2, 177–188. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Wei, L.; Yuan, Z.; Yu, M.; Huang, C.; Cao, L. Estimation of arsenic content in soil based on laboratory and field reflectance spectroscopy. Sensors 2019, 19, 3904. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Merembayev, T.; Kuchin, Y.; Malakhov, D.; Zaitseva, E.; Levashenko, V.; Popova, Y.; Symagulov, A.; Sagatdinova, G.; Amirgaliyev, Y. Soil Salinity Estimation for South Kazakhstan Based on SAR Sentinel-1 and Landsat-8, 9 OLI Data with Machine Learning Models. Remote Sens. 2023, 15, 4269. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Zhu, C.; Ding, J.; Zhang, Z.; Wang, Z. Exploring the potential of UAV hyperspectral image for estimating soil salinity: Effects of optimal band combination algorithm and random forest. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121416. [Google Scholar] [CrossRef]
- Hu, J.; Peng, J.; Zhou, Y.; Xu, D.; Zhao, R.; Jiang, Q.; Fu, T.; Wang, F.; Shi, Z. Quantitative estimation of soil salinity using UAV-borne hyperspectral and satellite multispectral images. Remote Sens. 2019, 11, 736. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Metwaly, M.M.; Metwalli, M.R.; AbdelRahman, M.A.; Badreldin, N. Integrating active and passive remote sensing data for mapping soil salinity using machine learning and feature selection approaches in arid regions. Remote Sens. 2023, 15, 1751. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; De Sousa, L. Global mapping of soil salinity change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Wang, D.-Y.; Chen, H.-Y.; Wang, G.-F.; Cong, J.-Q.; Wang, X.-F.; Wei, X.-W. Salinity inversion of severe saline soil in the yellow river estuary based on UAV multi-spectra. Sci. Agric. Sin. 2019, 52, 1698–1709. [Google Scholar]
- Guan, X.; Wang, S.; Gao, Z.; Lv, Y. Dynamic prediction of soil salinization in an irrigation district based on the support vector machine. Math. Comput. Model. 2013, 58, 719–724. [Google Scholar] [CrossRef]
- Yu, H.-F.; Huang, F.-L.; Lin, C.-J. Dual coordinate descent methods for logistic regression and maximum entropy models. Mach. Learn. 2011, 85, 41–75. [Google Scholar] [CrossRef]
- Santosa, F.; Symes, W.W. Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Stat. Comput. 1986, 7, 1307–1330. [Google Scholar] [CrossRef]
- Svozil, D.; Kvasnicka, V.; Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 1997, 39, 43–62. [Google Scholar] [CrossRef]
- Nosair, A.M.; Shams, M.Y.; AbouElmagd, L.M.; Hassanein, A.E.; Fryar, A.E.; Abu Salem, H.S. Predictive model for progressive salinization in a coastal aquifer using artificial intelligence and hydrogeochemical techniques: A case study of the Nile Delta aquifer, Egypt. Environ. Sci. Pollut. Res. 2022, 29, 9318–9340. [Google Scholar] [CrossRef]
- Akramkhanov, A.; Vlek, P.L. The assessment of spatial distribution of soil salinity risk using neural network. Environ. Monit. Assess. 2012, 184, 2475–2485. [Google Scholar] [CrossRef]
- Yang, N.; Yang, S.; Cui, W.; Zhang, Z.; Zhang, J.; Chen, J.; Ma, Y.; Lao, C.; Song, Z.; Chen, Y. Effect of spring irrigation on soil salinity monitoring with UAV-borne multispectral sensor. Int. J. Remote Sens. 2021, 42, 8952–8978. [Google Scholar] [CrossRef]
- Cui, X.; Han, W.; Zhang, H.; Cui, J.; Ma, W.; Zhang, L.; Li, G. Estimating soil salinity under sunflower cover in the Hetao Irrigation District based on unmanned aerial vehicle remote sensing. Land Degrad. Dev. 2023, 34, 84–97. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, B.; Li, X.; Kang, X.; Hu, Z. Estimation and Dynamic Analysis of Soil Salinity Based on UAV and Sentinel-2A Multispectral Imagery in the Coastal Area, China. Land 2022, 11, 2307. [Google Scholar] [CrossRef]
- Shahabi, M.; Jafarzadeh, A.A.; Neyshabouri, M.R.; Ghorbani, M.A.; Valizadeh Kamran, K. Spatial modeling of soil salinity using multiple linear regression, ordinary kriging and artificial neural network methods. Arch. Agron. Soil Sci. 2017, 63, 151–160. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Mukhamediev, R.; Amirgaliyev, Y.; Kuchin, Y.; Aubakirov, M.; Terekhov, A.; Merembayev, T.; Yelis, M.; Zaitseva, E.; Levashenko, V.; Popova, Y. Operational mapping of salinization areas in agricultural fields using machine learning models based on low-altitude multispectral images. Drones 2023, 7, 357. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, C.; Zhou, C.; Ma, H.; Wang, Z. Soil salinity inversion model of oasis in arid area based on UAV multispectral remote sensing. Remote Sens. 2022, 14, 1804. [Google Scholar] [CrossRef]
- Yu, X.; Chang, C.; Song, J.; Zhuge, Y.; Wang, A. Precise monitoring of soil salinity in China’s Yellow River Delta using UAV-borne multispectral imagery and a soil salinity retrieval index. Sensors 2022, 22, 546. [Google Scholar] [CrossRef]
- Абаев, Н.; Терехoв, А.; Тиллакарим, Т.; Елтай, А. Спутникoвый мoнитoринг малoвoдных сoстoяний в китайскoй части бассейна реки или в сезoне 2020 гoда (Satellite monitoring of low-water conditions in the Chinese part of the river basin or in the 2020 season). In Proceedings of the Всерoссийская Научнo-Практ. Кoнф. с Междунарoд. Участием «Трансграничные Вoдные Объекты: Испoльзoвание, Управление, Охрана», Sochi, Russia, 20–25 September 2021; Лик: Novocherkassk, Russia, 2021; pp. 13–17. [Google Scholar]
- Терехoв, А. Вoзмoжнoсти спутникoвых данных в прoблеме oценки сезoннoгo сoстoяния вoды в китайскoй части бассейна реки Или (Possibilities of satellite data in the problem of estimating seasonal water conditions in the Chinese part of the Ili River Basin). Гидрoметеoрoлoгия Экoлoгия 2019, 4, 184–189. [Google Scholar]
- Kriegler, F.J. Preprocessing transformations and their effects on multspectral recognition. In Proceedings of the Sixth International Symposium on Remote Sesning of Environment, Ann Arbor, MI, USA, 13–16 October 1969; pp. 97–131. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Kholdorov, S.; Gopakumar, L.; Katsura, K.; Jabbarov, Z.; Jobborov, O.; Shamsiddinov, T.; Khakimov, A. Soil salinity assessment research using remote sensing techniques: A special focus on recent research. IOP Conf. Ser. Earth Environ. Sci. 2022, 1068, 012037. [Google Scholar] [CrossRef]
- Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar]
Salinity Class | EC1:5 Range for Loams (dS/m) | Impact on Crop Growth | Types of Crops Growing at a Given Level of Salinity |
---|---|---|---|
Non-saline | 0–0.18 | Minor | Cereals other than corn: vetch, alfalfa |
Slightly saline | 0.19–0.36 | The yield of crops that are sensitive to salinity is reduced. | Cotton, timothy, cocksfoot, sweet clover, wheat |
Moderately saline | 0.37–0.72 | The yield of most crops is decreasing. | Fodder swede, fodder cabbage, wheatgrass, sorghum |
Highly saline | 0.73–1.45 | Only salt-tolerant crops give a satisfactory harvest. | Sugar beets, sunflowers, western wheatgrass, French ryegrass, awnless brome |
Severely saline | 1.46–2.90 | Most salt-tolerant crops can produce satisfactory yields. | Forage grasses: tall wheatgrass, brome grass, Canadian hair grass, tall fescue |
Extremely saline | >2.90 | Unsatisfactory yield | Fitting varieties |
Regressor | Abbreviation | Refs. |
---|---|---|
XGBoost [48] | XGB | [40,47,49,50] |
Random forest [51] | RF | [20,40,41,42,52,53,54,55] |
Support vector machines [56] | SVM | [41,45,54,57,58] |
Linear regression [59] | LR | [39] |
Lasso regression [60] | Lasso | [42] |
Feed forward neural networks [61] | FFNN | [41,54,62,63,64,65,66,67] |
Extreme learning machine [68] | ELM | [41] |
Machine Learning Model | F1_Score Macro Average | Accuracy |
---|---|---|
XGBoost classifier | 0.83 | 0.89 |
Convolution neural network | 0.84 | 0.89 |
Random forest classifier | 0.76 | 0.84 |
KneighborsClassifier | 0.76 | 0.84 |
SVC (kernel = “linear”, C = 0.025) | 0.71 | 0.74 |
DecisionTreeClassifier (max_depth = 36) | 0.66 | 0.77 |
GaussianNB | 0.62 | 0.72 |
AdaBoostClassifier | 0.60 | 0.60 |
MLP | 0.59 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhamediev, R.I.; Terekhov, A.; Amirgaliyev, Y.; Popova, Y.; Malakhov, D.; Kuchin, Y.; Sagatdinova, G.; Symagulov, A.; Muhamedijeva, E.; Gricenko, P. Using Pseudo-Color Maps and Machine Learning Methods to Estimate Long-Term Salinity of Soils. Agronomy 2024, 14, 2103. https://doi.org/10.3390/agronomy14092103
Mukhamediev RI, Terekhov A, Amirgaliyev Y, Popova Y, Malakhov D, Kuchin Y, Sagatdinova G, Symagulov A, Muhamedijeva E, Gricenko P. Using Pseudo-Color Maps and Machine Learning Methods to Estimate Long-Term Salinity of Soils. Agronomy. 2024; 14(9):2103. https://doi.org/10.3390/agronomy14092103
Chicago/Turabian StyleMukhamediev, Ravil I., Alexey Terekhov, Yedilkhan Amirgaliyev, Yelena Popova, Dmitry Malakhov, Yan Kuchin, Gulshat Sagatdinova, Adilkhan Symagulov, Elena Muhamedijeva, and Pavel Gricenko. 2024. "Using Pseudo-Color Maps and Machine Learning Methods to Estimate Long-Term Salinity of Soils" Agronomy 14, no. 9: 2103. https://doi.org/10.3390/agronomy14092103
APA StyleMukhamediev, R. I., Terekhov, A., Amirgaliyev, Y., Popova, Y., Malakhov, D., Kuchin, Y., Sagatdinova, G., Symagulov, A., Muhamedijeva, E., & Gricenko, P. (2024). Using Pseudo-Color Maps and Machine Learning Methods to Estimate Long-Term Salinity of Soils. Agronomy, 14(9), 2103. https://doi.org/10.3390/agronomy14092103