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Abstract: Drip irrigation with a fertilizer application could effectively alleviate the soil
pollution caused by excessive phosphorus fertilizer. Phosphate fertilizer was dissolved
in water and produced a chemical reaction with the ions in irrigation water. The new
precipitates were generated, which caused more severe and complex blockage of drip
irrigation emitters. Songhua River water was selected as the irrigation water. The experi-
ment investigated the effects of three types of phosphorus fertilizers (urea phosphate, UP;
potassium dihydrogen phosphate, PDP; ammonium polyphosphate, APP) and the concen-
trations (0.2, 0.3, and 0.4 g/L) on the blockage of drip irrigation emitter. The results showed
that three types of phosphorus fertilizers intensified the degree of blockage compared
with no fertilization, the order from small to large being UP < PDP < APP. The degree of
blockage was directly proportional to the concentration of phosphate fertilizer. The system
discharge variation ratio (Dra) under UP, PDP, and APP treatments decreased by an aver-
age of 6.2~27.7%, 13.8~33.8%, and 21.5~44.6%, respectively. The Christiansen coefficient
of uniformity (CU) decreased by an average of 5.9~23.5%, 10.3~27.9%, and 19.1~38.2%.
The UP was superior to PDP and APP from the perspective of drip irrigation evaluation
indicators. The main reason was that UP reduced the pH value of the water source and
inhibited the generation of carbonates. The APP was unable to lower the pH value and had
the most serious blockage. The APP was coupled with three concentrations of Mn2+ (1, 2,
and 3 mg/L) for drip irrigation, which could optimize the blockage problem and explore
the efficacy of Mn2+. The 2 mg/L Mn2+ could maximize the drip irrigation efficiency of the
APP. The average increase in Dra and CU was 24.57% and 18.54% macroscopically. Mn2+

could alter the lattice parameters of carbonates and had a certain impact on their size and
morphological distribution on a microscopic level. The results showed that fertilization
with UP at a concentration of 0.2 g/L did not significantly exacerbate clogging. The drip
irrigation effect of Songhua River water combined with 0.2 g/L concentration UP was the
best. Moreover, 2 mg/L of Mn2+ was proposed to alleviate the clogging characteristics
of APP4. This study could provide reference for improving the efficiency of the Songhua
River drip irrigation system.

Keywords: drip irrigation emitter; phosphate fertigation; Mn2+; blocking substances

1. Introduction
Phosphorus (P) is an important element in all living organisms. Phosphorus promotes

photosynthesis in plants that ensures better development of plant roots and stems [1].
The total phosphorus concentration should be 0.1% to 0.5% of the dry weight of plants.
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The evaluation of plant uptake of available phosphorus mainly focuses on physical and
chemical processes. These processes include adsorption and precipitation dissolution;
the cumbersome absorption method reduces the efficiency of phosphorus fertilizer uti-
lization [2,3]. The excessive application of phosphorus fertilizer has caused serious land
pollution and increased the risk of phosphorus loss to surface water [4]. The pollution of
phosphate fertilizers on ecosystems and phosphorus utilization rate has become one of the
most important issues for sustainable development.

Drip irrigation emitters utilize the unique flow channel structure to drip soluble
phosphorus fertilizer into the root zone of plants, which has the advantages of water-
saving, controllability, and high precision [5,6]. The flow channel structure (only about
1 mm) and drip irrigation fertilization measures (a mixture of soluble fertilizer and drip
irrigation water source) causes chemical precipitation blockage inside the drip irrigation
emitters [7,8]. The irrigation water contains a large amount of Ca2+, Mg2+ and phosphate
fertilizer contained other ions (HPO4

2−, etc.) that react with Ca2+ and Mg2+ [9]. The
chemical reactions are promoted and form blocking substances in fertilized water, which
causes the blockage of drip irrigation emitters and triggers a series of chain reactions. This
includes the reduced uniformity of drip irrigation, uneven distribution of phosphorus
in the plant root zone, frequent replacement of drip irrigation emitters, and increased
maintenance costs of drip irrigation systems. The main challenge for the drip irrigation
with fertilizer application was to alleviate the problem of blockage.

Previous studies had shown that drip irrigation technology improved the utiliza-
tion efficiency of phosphorus fertilizer compared to conventional fertilization. Although
the efficiency varies, drip irrigation had been proven to be an effective technology for
improving phosphorus availability [10,11]. Zhou et al. [12] conducted drip irrigation ex-
periments by mixing high sedimentation water with potassium dihydrogen phosphate.
This phosphate fertilizer exacerbated the degree of clogging under different drip irrigation
modes. Muhammad et al. [13] studied the clogging situation of using urea phosphate
and monopotassium phosphate in saline drip irrigation systems. The urea phosphate at
low concentrations could effectively alleviate the degree of blockage. Barrow et al. [14]
showed that plants grow best near pH 5.5 and grow worst near neutral pH. The monovalent
form of phosphorus in acidic solutions is more easily obtained from phosphate fertilizers.
The utilization rate of phosphate fertilizer could reach its maximum value. Gryta [15]
indicated that ammonium polyphosphate (APP) could block the growth sites of active
crystals and reduced the formation of calcium carbonate by chelating Ca2+. These two
types of phosphate fertilizers increase the precipitation of phosphate, silicate, and quartz.
To investigate the issue of whether the APP reduced the total amount of sediment values,
Xiao et al. [16] indicated the dominant role of Ca2+ concentration in drip irrigation water.
The phosphorus fertilizer reduced the clogging of drip irrigation emitters at low Ca2+

concentrations. The opposite was true at high Ca2+ concentrations. The reason was the
competitive effect between PO4

3− and CO3
2− in phosphate fertilizer. The ion concentration

in irrigation water could not be reduced through simple methods such as filtration. The
effective way to alleviate phosphorus fertilizer blockage was changed to the operating
mode of the drip irrigation system at present. Mills et al. [17] indicated that in simple Ca2+

containing solutions, Mn2+ could significantly reduce the growth of calcium carbonate.
The degree of inhibition did not depend on the absolute concentration of Mn2+. The Mn2+

is a micronutrient that participated in activating enzyme-catalyzed reactions in plants,
which could affect respiration, amino acid synthesis, and lignin biosynthesis [18]. The small
amounts of Mn2+ were added to drip irrigation water and could promote plant growth.

The Songhua River is the largest river in terms of basin area and flow in northeast
China. It plays an irreplaceable role in agricultural irrigation development and water
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resource management. At present, the blockage problem of adding phosphate fertilizer
in the drip irrigation system of Songhua River is still unclear. Previous studies have not
clearly described the changes in clogging substances during drip irrigation. On the basis
of elucidating the coupling mechanism of water phosphate fertilizer, the characteristics of
blocking substances were elucidated from both macroscopic and microscopic perspectives.
This study selected three types of phosphate fertilizers (urea phosphate UP, potassium
dihydrogen phosphate PDP, and ammonium polyphosphate APP) based on the above
reasons. The effect of phosphorus fertilizer on the clogging of drip irrigation emitters and
the clogging situation of drip irrigation emitters after adding Mn2+ were explored. The
purpose of this study was to: (1) study the effects of three types of phosphorus fertilizers
on the clogging characteristics of drip irrigation emitters; (2) analyze the degree of blockage
after the addition of Mn2+ to drip irrigation with fertilizer and the situation of the change at
both macro and micro levels; (3) determine the required concentration of Mn2+ to alleviate
the degree of blockage. The new perspective for alleviating the blockage problem of drip
irrigation with fertilizer is provided.

2. Experimental Materials and Methods
2.1. Experimental Design and Instrument Preparation

The methodology for this study was established. The detailed technical roadmap is
shown in Figure 1.
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The experiment was conducted at an irrigation station in Harbin, Heilongjiang
Province. The irrigation water used was from the Songhua River with multiple samples
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of water sources used in the drip irrigation experiments. The drip irrigation experiments
were conducted for 12 h every day. The temperature and pH values were measured using a
thermometer and pH detector at 2:00 pm every day. The water quality was sampled every
two days during the experiment. The average ± standard deviation of the water quality is
shown in Table 1 and the changes in water pH during experiments are shown in Table 2.

Table 1. Water quality parameters.

pH Total Suspended
Solids (mg/L)

Electrical
Conductivity

(ms/cm)
Ca2+ (mg/L) Mg2+ (mg/L)

Work
Pressure

(MPa)

Water
Temperature (◦C)

7.6 ± 0.5 43.6 ± 7.2 754 ± 14 41.7 ± 6.3 34.8 ± 4.7 0.1 16 ± 3

Table 2. The average and standard deviation of water pH under different treatments.

CK UP2 UP3 UP4 PDP2 PDP3 PDP4 APP2 APP3 APP4

7.6 ± 0.3 6.3 ± 0.3 5.1 ± 0.3 3.7 ± 0.3 7.2 ± 0.3 6.9 ± 0.3 6.7 ± 0.3 7.6 ± 0.3 7.6 ± 0.3 7.6 ± 0.3

Three types of water-soluble fertilizers (urea phosphate, UP; potassium dihydrogen
phosphate, PDP; ammonium polyphosphate, APP) and three levels of fertilization (0.2, 0.3,
and 0.4 g/L) were applied. The non-fertilized treatment was used a control treatment (CK).
The processing methods are summarized in Table 3.

Table 3. Experimental arrangement for drip irrigation.

Experiment Number Fertilizer Chemical Composition Fertilizer
Concentration/(g/L)

Ck - - -
UP2 Urea phosphate CO(NH2)2·H3PO4 0.2
UP3 Urea phosphate CO(NH2)2·H3PO4 0.3
UP4 Urea phosphate CO(NH2)2·H3PO4 0.4

PDP2 Potassium dihydrogen phosphate KH2PO4 0.2
PDP3 Potassium dihydrogen phosphate KH2PO4 0.3
PDP4 Potassium dihydrogen phosphate KH2PO4 0.4
APP2 Ammonium polyphosphate (NH4)n+2PnO3n+1 0.2
APP3 Ammonium polyphosphate (NH4)n+2PnO3n+1 0.3
APP4 Ammonium polyphosphate (NH4)n+2PnO3n+1 0.4

The experimental platform for drip irrigation emitters is shown in Figure 2. The
filtration equipment of this system consists of two sand filters (T-shaped laminated filter
and T-shaped mesh filter). This study aimed to exclude the influence of drip irrigation
emitter structure type on experimental factors; the experimental platform had six subunits.
The subunits both had an independent layer and used a type of labyrinth drip irrigation
emitter (marked as FE1-FE6). The structural parameters of drip irrigation emitters are
shown in Table 4. The subunit consisted of 5 drip irrigation branches and 25 drip irrigation
emitters. The drip irrigation branch had a length of 1.5 m, inner diameter of 16 mm, wall
thickness of 0.2 mm, and hole spacing of 25 cm. The return pipe was installed at the end.
The operating pressure of the drip irrigation system was constant at 0.1 MPa and the water
tank was equipped with a stirring device to maintain a constant concentration during the
operation of the drip irrigation system.
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Table 4. Structural parameters of drip irrigation emitters.

Label Initial Flow
(L/h)

Flow Path
Length (mm)

Flow Path
Width (mm)

Flow Path
Depth (mm)

Flow
Index Structural Style

FE1 2.55 26 1 0.7 0.52
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2.2. The Performance Evaluation Parameters of Drip Irrigation Emitters

The blockage evaluation in drip irrigation experiments was conducted via flow detec-
tion. Flow detection was performed by measuring the flow rate of drip irrigation emitters
at a given time. In the experiment, the weighing method was used to test the flow rate, the
time for measuring the flow rate was set to 5 min. The high-precision electronic balance
was used to measure the flow rate in the measuring cylinder. The influence of water
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temperature on water was eliminated by using Formula (1) to calculate the flow rate of
water [20].

qTi =

(
1 +

57.35x − 28.24
100

× Ti − 20
20

)
× q20 (1)

In the Formula (1): qTi is the corrected discharge of emitters, L/h; Ti is the water
temperature during the test, ◦C; q20 is the design discharge of emitters under 20 ◦C, L/h; x
is flow index.

The system discharge variation ratio (Dra) is the percentage of the average flow
rate of drip irrigation emitters to the rated flow rate, which indicates the degree of flow
reduction [21]. It is defined as no blockage when the Dra is greater than 75%. It is defined
as general blockage when Dra is between 50% and 75%. It is defined as a serious congestion
case when Dra is between 25% and 50%. It is defined as completely blocked when Dra is
less than 25%. The calculation formula is as follows:

Dra =

∑n
i

qt
i

q0
i

n
× 100% (2)

The Christiansen coefficient of uniformity (CU) was calculated based on the Chris-
tiansen formula, which comprehensively reflects the working performance of drip irrigation
emitters [22]. The performance of drip irrigation emitters is optimal when the CU is greater
than 89%. It is moderate when CU is between 71% and 89%. It is poor when CU is less than
71%. The calculation formula is as follows:

CU = 100

(
1 − ∑n

i=1
∣∣qt

i − qt∣∣
nqt

)
(3)

qt =
∑n

i=1 qt
i

n
(4)

In the Formulas (2) and (3): q0
i is the initial flow rate of the No. i drip irrigation emitter;

qt
i is the No. i drip irrigation emitter flow rate tested at sampling time t; qt is the average

flow rate of each drip irrigation device along the horizontal direction at sampling time t; n
is the total number of emitters along the lateral.

2.3. Extraction and Testing of Blockages

The DW was tested every 4 days. The samples were collected in each subsystem
during the experiment. The drip irrigation emitters from the front, middle and end of the
pipeline were randomly selected. In order to obtain dry blockage material, the blockage
material sample was subjected to constant temperature (60 ◦C) treatment in a blast dryer
for 60 min. The ultrasonic cleaning machine was used to remove blockages (manufacturer:
Chaowei, Suzhou, China; Type: GVS-10L; Frequency: 100 Hz). The samples were placed in
a zipper bag and added to 20 mL of deionized water. The blocked substance sample was
weighed via high-precision electronic scale (with an accuracy of 10−4 g). The average value
of DW was calculated finally.

The clogging substances were analyzed via the X-ray diffractometer (manufacture:
Bruker, Karlsruhe, Germany; type: D8-Advance) to achieve polycrystalline diffraction pat-
terns. The working voltage of the diffractometer was 40 kV and the current was 40 mA. The
scanning angle was typically 5~90◦. The scanning method was diffraction. Each scan should
not exceed 10 min. Copper targets were applied and the wave length was 1.5406 Å. The XRD
analysis chart was analyzed via JADE9 software to obtain the mineral content and crystal
characteristics of the blockage material. The size and morphology of the blockage material
were detected using scanning electron microscopy (SEM) (manufactured: Hitachi Regules8100,
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type: Tescan Mira4, Guoyi Quantum, AnHui, China.). The sample was sprayed with gold
and the working voltage was 20 kV, with a magnification of 2000–5000 times.

2.4. Statistical Analysis

Data were subjected to statistical analysis using SPSS (ver. 19.0 IBM, Chicago, IL, USA).
The significance of the independent variable was determined to be p < 0.05. Independent
t-tests were applied to determine significant differences between treatments. Multiple factor
analysis of variance (ANOVA) was used to determine the differences in fertilizer type,
concentration, drip irrigation system performance parameters (Dra and CU), and DW (the
dry weight of clogging substances). The linear regression models were used to analyze the
correlation between CK and three types of phosphorus fertilizer drip irrigation treatments.

3. Results
3.1. Effect of Phosphate Fertilizer on Drip Irrigation Emitter Performance

The Dra and CU of drip irrigation emitters under different fertilization treatments
are shown in Figure 3. The curve trend was generally characterized by a slow decline in
the early stage (0–12 d) and later stage (32–40 d), and a rapid decline in the middle stage
(12–32 d). The Dra of UP, PDP, and APP decreased by an average of 6.2%, 18.5%, 27.7%,
13.8%, 24.6%, 33.8%, 21.5%, 30.8%, and 44.6% compared to CK. The average decline in CU
was 5.9%, 11.8%, 23.5%, 10.3%, 21.6%, 27.9%, 19.1%, 32.4%, and 38.2%. Overall, the emitter
clogging was worse after fertigation. The independent t-test between drip irrigation with
phosphate fertilizers and CK are shown in Table 5. The results show that most treatments
had statistical significance with CK, the fertilizer type and concentration had a significant
impact on Dra and CU in drip irrigation systems (p < 0.05). The correlation between CK and
phosphate fertilizer treatments indicated that phosphorus fertilizer exacerbated clogging
of drip irrigation emitters (Figure 4). Its characteristic was that the slope of the fitting
curve was greater than 1. The three types of phosphate fertilizers showed the most severe
blockage under the treatment of 0.4 g/L, followed by 0.3 g/L, 0.2 g/L. The blockage caused
by the same phosphate fertilizer was positively correlated with concentration. The fitting
curve quality of Dra and CU was well (R2 > 0.94). The performance of the Songhua River
drip irrigation system could be referred to this linear regression equation to quickly predict
the degree of blockage and take preventive measures. The UP could significantly alleviate
the degree of blockage compared to traditional phosphate fertilizer PDP. The Dra and CU
under drip irrigation of UP increased by 8.9%, 8.2%, 9.3%, and 4.9%, 11.1%, and 6.1%,
respectively. The APP exacerbated the blockage of drip irrigation emitters. The Dra and
CU under drip irrigation of APP reduced by 10.7%, 10.2%, and 16.3% and 9.8%, 14.8%, and
14.3%, respectively. The UP should be used as the preferred phosphate fertilizer when the
concentration is the same.

Table 5. Independent t-test analysis of Dra and CU under phosphorus fertilizer treatment.

Clogging
Parameters Statistical Parameters UP2 UP3 UP4 PDP2 PDP3 PDP4 APP2 APP3 APP4

Dra t-value 0.66 1.97 * 2.37 * 1.77 * 2.01 * 2.47 * 2.34 * 2.49 * 2.81 *
standard deviation 12.68 15.78 18.11 14.76 17.15 19.21 15.84 17.49 20.24

Mean value difference 2.93 10.14 13.20 8.60 10.80 14.33 11.92 13.53 16.97
CU t-value 0.59 1.17 1.98 * 0.76 1.32 * 1.99 * 1.42 * 2.28 * 2.52 *

standard deviation 11.82 12.92 15.83 12.53 13.95 16.05 14.59 17.42 19.16
Mean value difference 2.45 5.13 9.87 3.26 6.07 9.72 6.73 12.13 14.48

Note: * indicates significant (p < 0.05).
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3.2. Effect of Phosphate Fertilizer on the Dry Weight of Clogging Substances

The dry weight (DW) of clogging substances inside different drip irrigation emitters
showed a similar trend under different treatments (Figure 5). It showed that the DW grew
slowly in the early stages of the experiment (0–12 days) and rapidly in the middle and
late stages (12–40 days). The DW treated with drip irrigation increased by an average of
10.3%, 24.2%, 38.9%, 19.7%, 34.2%, 45.6%, 30.3%, 52.1%, and 58.2% compared to CK. The
independent t-tests between phosphorus fertilizers and CK are shown in Table 6. The
results showed that most treatments had statistical significance with CK. Fertilizer type
and concentration had a significant impact on DW (p < 0.05). The correlation between CK
and phosphorus fertilizer treatments (Figure 6) indicated that phosphorus fertilization led
to an increase in DW, which is characterized by a slope of the fitting curve greater than 1.
The larger the slope of the fitting curve, the greater the clogging of substances. The fitting
curve quality of DW was well (R2 > 0.93). Compared with traditional phosphorus fertilizer
PDP, the average reduction in DW under UP treatments was 10.1%, 8.2%, and 6.9%. The
average increase in DW under APP treatments was 8.6%, 10.7%, and 7.4%. The changing
trend of the DW curve and the slope of the fitted curve were consistent with Dra and CU,
which indicated that an increase in clogging material led to a decrease in the performance
of drip irrigation emitters. The 0.2 g/L UP had no significant effect on Dra, CU, or DW. The
UP could reduce the content of clogging substances and improve drip irrigation efficiency.
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Figure 5. The dynamic changes of dry weight (DW) of blockages in phosphate fertilizer drip
irrigation system.

Table 6. Independent t-test analysis of DW under phosphorus fertilizer treatment.

Clogging
Parameters Statistical Parameters UP2 UP3 UP4 PDP2 PDP3 PDP4 APP2 APP3 APP4

DW t-value −0.75 −1.21 * −1.71 * −1.16 * −1.52 * −1.94 * −1.60 * −1.92 * −2.18 *
standard deviation 5.45 6.33 7.41 5.98 6.75 7.43 6.84 7.71 8.35

Mean value
difference −1.37 −2.41 −3.81 −2.23 −3.18 −4.34 −3.37 −4.42 −5.34

Note: * indicates significant (p < 0.05).
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3.3. Effect of Mn2+ on Drip Irrigation with Fertilizer Application

The drip irrigation with fertilizer application of APP4 caused the most severe blockage.
The drip irrigation experiment was conducted by coupling 0.4 g/L APP with different
concentrations of Mn2+, which demonstrated that Mn2+ could alleviate the blockage degree
of drip irrigation with fertilizer. The four experimental methods are summarized in Table 7.

Table 7. Experimental arrangement for coupled drip irrigation of APP4 and Mn2+.

Experiment
Number

Sediment
Concentration (g/L)

The Group with the
Most Severe Blockage

Mn2+ Concentration
/(mg/L)

APP4 2 APP4 0
Mn1 2 APP4 1
Mn2 2 APP4 2
Mn3 2 APP4 3

The dynamic changes in Dra, CU, and DW under four drip irrigation modes are shown
in Figures 7 and 8. The Mn2+ could affect the degree of blockages in APP4. The blockage
degree of drip irrigation emitters was alleviated under the treatment of Mn1 and Mn2 in the
middle and later stages (12–40 days), while Mn3 exacerbated the blockage degree of drip
irrigation emitters in the later stages (32–40 days). The Dra and CU of Mn1 increased by an
average of 13.16% and 7.33%, while the DW decreased by an average of 5.13%. The Dra and
CU of Mn2 increased by an average of 24.57% and 18.54%, while the DW decreased by an
average of 13.27%. The average Dra and CU of Mn3 decreased by 8.79% and 12.7%, while
the average DW increased by 8.43%. The results indicate that the 2 mg/L of Mn2+ could
alleviate the blockage of APP4 to the greatest extent possible. The multiple comparison
analysis of Dra, CU, and DW are shown in Table 8. There were significant differences in
most multiple comparison analyses, which indicated that the concentration of Mn2+ had a
significant impact on the Dra, CU, and DW of APP4 (p < 0.05). The 0.2 mg/L Mn2+ could
be added when coupled with drip irrigation between Songhua River water and APP.
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Table 8. Multiple comparative analysis of Dra, CU and DW under coupled drip irrigation of APP4
and Mn2+.

Phosphate
Fertilizer Type

Phosphate
Fertilizer Type

Dra Mean Value
Difference

CU Mean Value
Difference

DW Mean Value
Difference

APP4 Mn1 −5.68 * −3.15 * 1.19
Mn2 −9.13 * −7.56 * 3.11 *
Mn3 3.27 5.23 * −1.98 *

Mn1 APP4 5.68 * 3.15 * −1.19
Mn2 −3.27 −4.62 * 1.92 *
Mn3 9.13 * 8.48 * −3.18 *

Mn2 APP4 9.13 * 7.56 * −3.11 *
Mn1 3.27 4.62 * −1.91 *
Mn3 12.28 * 13.11 * −5.09 *

Mn3 APP4 −3.27 −5.23 * 1.98 *
Mn1 −9.13 * −8.48 * 3.18 *
Mn2 −12.28 * −13.11 * 5.09 *

Note: * indicates significant (p < 0.05).
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3.4. The Mineral Composition, Lattice Parameters, and Morphology of Blocking Substances

The performance of drip irrigation emitters was closely related to clogging substances
combined with Sections 3.1 and 3.2. Further research is needed to investigate the changes
in the content, composition, and lattice parameters of blocking substances. The blocking
substances of drip irrigation with fertilizer application (UP4, PDP4, APP4, and Mn2) were
selected. The composition of the blocking material was analyzed by using XRD (Figure 9).
The main components of blockages were classified into carbonates (CaCO3, CaMg(CO3)2),
quartz (SiO2) and other substances (such as muscovite, alkaline feldspar, chlorite, calcium
feldspar, etc.) on chemical elements. The content of each substance is shown in Figure 10.
The content of carbonate and quartz changed as the types of phosphate fertilizers changed.
The content of carbonate and quartz in UP4 accounted for 42.7% and 26.9%. PDP4 was
59.1% and 16.8%. APP4 was 67.9% and 14.9%. Mn2 was 44.8% and 19.5%. The UP4 had the
lowest carbonate content and 2 mg/L Mn2+ reduced the carbonate content. The content
of silicates under these two treatments was higher than APP4. The carbonate had a major
impact on the clogging problem of phosphate fertilizer drip irrigation.

The lattice parameters reflected the growth of calcium carbonate. The lattice parame-
ters indirectly express whether phosphorus fertilizer promotes or inhibits the growth of cal-
cium carbonate. The larger lattice parameter indicated that the growth of calcium carbonate
was promoted. The lattice size a, b, c, and crystal lattice volume (Cv) of calcium carbonate
are shown in Figure 11. The XRD results indicate that calcium carbonate crystal was the
hexagonal crystal system. The lattice parameters showed a trend of UP4 < PDP4 < APP4,
while the lattice parameters of Mn2 were all smaller than APP4. The crystal lattice volume
of calcium carbonate in APP4 was the largest. When APP4 was compared with UP4, PDP4,
and Mn2, the a-axis increased by 0.0028~0.004 Å, the b-axis increased by 0.0028~0.004 Å,
the c-axis increased by 0.032~0.072 Å, and the Cv increased by 0.37~0.49.
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The scanning electron microscopy (SEM) images of calcium carbonate precipitation
under four different drip irrigation with fertilizer application are shown in Figure 12. The
apparent morphology of calcium carbonate showed certain differences under the four
treatments. The shape of calcium carbonate particles in UP4 was irregular, many particles
had not formed a hexahedral shape, and the surface was rough. A small number of particles
in PDP4 had formed a hexahedral shape and the surface was smooth. The shape of calcium
carbonate particles in APP4 was mostly hexahedral. The surface had layered ripples with
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a more regular and dense structure. The shape of calcium carbonate treated with Mn2
was irregular. There were many small and irregular particles attached to the surface. The
reason was that Mn2+ adsorbed on the surface of calcium carbonate crystals. The Mn2+

and Ca2+ simultaneously participated in a chemical reaction and produced additional
manganese carbonate in subsequent chemical reactions. The lattice of calcium carbonate
underwent certain distortions and its surface structure became looser. There were more
hexahedral particles (calcium carbonate) in the four sets of images, which indicated that
calcium carbonate was the main component in the blocking substances. The SEM images
match well with the XRD results.
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4. Discussion
The high accumulation of soil phosphorus concentration was excessive in the ap-

plication of phosphorus fertilizer. The effective management of agricultural phosphorus
fertilizer remains a global concern [23]. The blockage mechanism of drip irrigation with
fertilizer application could improve drip irrigation efficiency, reduce phosphorus fertilizer
waste in agricultural cultivation, and protect soil resources [24]. The results indicated that
the content of carbonate precipitation formed under UP, PDP, and APP drip irrigation with
fertilizer application would be higher. This result is similar to other studies [12,13,16]. This
was mainly due to the low solubility of carbonates; the calcium and magnesium ions in
saltwater would preferentially react with bicarbonate to form carbonate precipitates [25].

The degree of blockage of drip irrigation emitters was significantly influenced by the
type and concentration of phosphorus fertilizer. The drip irrigation efficiency under UP
treatment was better than PDP and APP. Ma et al. [26] indicated that the application of
UP reduced the pH of water and the carbonate content in drip irrigation with fertilizer
application. The chemical reaction was suppressed and the solubility of carbonates in water
was improved. The solubility of Ca2+ and carbonate were increased. Thus, the production
of blocking substances was reduced [27]. The anions bis (urea) bis (dihydrogen phosphate)
and bicarbonate produced by the UP fertilizer dissolved in water reacted with calcium
and magnesium ions [28], and the two formed a competitive relationship. Moreover, bis
(urea) bis (dihydrogen phosphate) calcium magnesium compounds were soluble and easily
passed through the entire flow channel, further reducing the risk of carbonate precipitation.
The UP fertilization reduced the content of carbonate while the degree of blockage increased
compared to CK. In this study, it was found that UP4 had the highest silicate content, which
indicated an increase in physical blockage. The pH value at room temperature (around
25 ◦C) significantly affected its dissolution rate [29]. In acidic solutions, H ions only reacted
with surface silicate groups. The bond energy of silicon oxygen bonds was relatively high
and only a small amount of silicon oxygen bonds were broken. This meant that the silicate
groups would be treated as a whole and difficult to remove independently [30,31]. In fact,
a large amount of clogging substances existed at the end of drip irrigation emitter. After
the water inside the channel evaporated under sunlight, the silicate transformed into a
saturated state and formed particles. The drip irrigation emitter had different levels of
sensitivity to particle size. The larger sand particles directly occupied the channel and
caused physical blockages. The mixing sand particles of different sizes formed a stable
skeleton structure, which promoted flocculation and chemical reactions. The blockage
problem of UP fertilizer in this study should be attributed to physical chemical blockage.

The application of PDP and APP in drip irrigation fertilization led to more severe
blockage. The main reason was that PDP and APP fertilizers did not lower the pH of the
irrigation water and promoted the precipitation of carbonates. Another reason was that
PDP and APP can accelerate particle precipitation. PDP fertilizer contains KH2, which has a
certain adsorption capacity when dissolved in water. The particle flocculation, aggregation,
and sedimentation were promoted [32]. This adsorption promoted the attachment of
carbonate ions and calcium magnesium ions to the surface of particles, which led to more
stable chemical reactions and increased carbonate content [33]. The precipitates generated
via the chemical reactions adhered to the wall of the flow channel and the roughness of the
flow channel wall increased. The motion state of particles in the flow channel were changed
and accelerated the accumulation of particles. Therefore, PDP fertilizer increased the
probability of both physical and chemical blockages occurring simultaneously. Gryta [15]
showed that APP as a scale inhibitor could block the growth sites of active crystals and
reduced the formation of calcium carbonate. The reason was the calcium ion concentration
in irrigation water was very low. The calcium ion content in the irrigation water used in
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this study (Songhua River water) was relatively high. The compounds in APP fertilizers
formed a chain structure and chain type hydrogen phosphate salts had weak chelation
ability towards calcium ions. The APP was difficult to bind with Ca2+ after dissolving in
water, which resulted in an increase in free Ca2+ in the solution. Carbonate ions could easily
capture surrounding calcium ions [34]. Shen et al. [35] found that the content of nitrogen
and phosphorus (nutrients for microorganisms) in APP was relatively high, which caused
an increase in microbial content and diversity. Microorganisms grew and reproduced in
large quantities and secreted sticky extracellular polymers. Secretions adsorb suspended
particles and promote the deposition of blockages.

The study found that the addition of 1 or 2 mg/L Mn2+ to APP4 alleviated the degree
of blockage. The main reason was that the Mn2+ in the solution limited the formation of
calcium carbonate. The diffusion coefficient of Mn2+ was lower than Ca2+ and its binding
ability with carbonate ions was slightly higher. The presence of Mn2+ competed with Ca2+.
Metal carbonates are all composed of ions. The substance that interacted between Mn2+

and carbonate was not a free ion in solution, but rather an ion pair, hydrated substance,
or possibly a larger multi-core cluster. Habermann et al. [36] indicated that the hydration
degree of Mn2+ was stronger than that of Ca2+. The Mn2+ attached to other ion sites at a
faster rate. The atomic bond distance of calcium magnesium carbonate crystals decreased
during their formation compared with other metal carbonates. This reduction led to an
increase in the repulsive force of carbonate ions [37]. The addition of Mn2+ shortened the
bond distance of CaCO3 and prevented the formation of calcium carbonate. The XRD
results indicated that the lattice parameters of calcium carbonate obtained from Mn2 were
relatively small. The reason was that Mn2+ had an inhibitory effect on the growth kinetics of
calcium carbonate in solution, which was related to its adsorption capacity. Han et al. [38]
indicated that Mn2+ adsorbed into calcium carbonate crystals and formed cluster like
structures. The part of Ca2+ in calcium carbonate was replaced by Mn2+ and the presence
of Mn2+ also caused lattice distortion. The 3 mg/L of Mn2+ exacerbated the degree of
blockage. The reason was that the concentration of Mn2+ was too high. Dromgole and
Walter [39] demonstrated that calcium carbonate was highly inhibited in Mn2+ solutions
with very low concentrations. This inhibitory effect began to form calcium rhodochrosite at
higher concentrations. The nucleation surface of CaCO3 still adsorbed Mn2+ even if the
surface sites of CaCO3 were saturated. The MnCO3 separated from the surface of CaCO3

and slowly precipitated subsequently [40]. More precipitates were generated in the flow
channel of drip irrigation emitters due to the lower solubility of manganese carbonate.

The study analyzed the dynamic changes in the degree of blockage and the blockage
substances under drip irrigation with fertilizer application. The influence of Mn2+ on
blockage from both macro and micro perspectives were explained. The results showed
that the blockage caused by the three types of phosphorus fertilizers was in the order of
UP < PDP < APP. The 2 mg/L of Mn2+ alleviated the blockage degree of APP4 to the
greatest extent.

5. The Preventive Strategies for Drip Irrigation of Phosphate Fertilizer
This study analyzed the dynamic changes in blockage degree and blockage substances

under drip irrigation with phosphate fertilizer. Regarding the clogging phenomenon
of phosphate fertilizer drip irrigation, future research areas can be carried out from the
following four points:

(1) Types of phosphate fertilizers. We suggest the use of UP for drip irrigation. The block-
age under UP treatment after fertilization was relatively light and the performance
of drip irrigation emitter would not significantly decrease under low concentration
conditions. The crops only absorbed phosphorus in the form of H2PO4 [41]. UP
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fertilization could lower the pH value of water and soil. The conversion of phosphate
to H2PO4 form was promoted and the effectiveness and utilization efficiency of phos-
phorus were improved [42]. In addition, drip irrigation technology is mainly used in
saline alkali areas [43]. UP could be used as a soil amendment to reduce soil salinity
and alkalinity. It is not advisable to use UP in acidic soil. Future research should
explore the availability of phosphate fertilizers in different soils.

(2) The concentration of Phosphate fertilizer. The results of this study found a positive
correlation between the degree of blockage and concentration at concentrations of
0.2~0.4 g/L. The optimal concentration of phosphorus fertilizer required for crops
varies [44]. Low concentration phosphorus fertilizer would prolong the total drip
irrigation time, which is not conducive to crop growth in the optimal season. The
selection of phosphate fertilizer concentration should take into account both clogging
issues and crop growth conditions.

(3) Types of drip irrigation emitters. The channel structure was a direct factor that affected
the anticlogging performance of drip irrigation emitters and did not change with
external factors [45]. This study used a labyrinth drip irrigation emitter. Many scholars
had optimized flow channel structure, such as inverted labyrinth flow channel [46]
and stellate water-retaining labyrinth channels [47]. Xu et al. created a pit drip
irrigation emitter and leaf vein drip irrigation emitter based on plant bionics [48,49].
These scholars demonstrated through CFD and sediment experiments that these
drip irrigation emitters could reduce sand sedimentation. It is still unclear whether
they could alleviate chemical blockages. The phosphorus fertilizer drip irrigation
experiments could be combined with these new drip irrigation emitters.

(4) Carbonate control. The commonly used method for removing carbonates is to add acid
regularly. This method is prone to damaging soils, crops, and increased precipitation
of silicates [50]. Regarding environmental issues, previous studies have shown that
Merus rings [51], nano bubble generators [52], and electrochemical reactors [53] could
be used. Finally, we propose the use of Mn2+ to reduce carbonate precipitation. This
method is easy to operate and promotes crop growth. Other ions that may be crucial
for alleviating carbonate stress but have not been widely studied include Fe2+, Fe3+,
and Cu2+.

6. Conclusions
This study selected three different types of phosphate fertilizers (UP, PDP, and APP)

for drip irrigation experiments. The performance of the drip irrigation emitter and the
dry weight of clogging substances were calculated. In order to alleviate the problem of
blockage, Mn2+ was selected to optimize the drip irrigation mode with the most severe
blockage (APP4). Finally, with the help of modern techniques such as XRD and SEM, the
characteristics of the blocking material were analyzed.

The Songhua River water source was selected as the irrigation water source in the
drip irrigation fertilizer application. The research found that the performance indicators
of the drip irrigation emitters changed within the normal range, which indicated that the
combination of Songhua River water source and phosphate fertilizer had good feasibility.
The phosphorus fertilizer treatments caused blockage situations and the degree of blockage
was proportional to the concentration. The Dra of UP, PDP, and APP treatments decreased
by 6.2~27.7%, 13.8~33.8%, and 21.5~44.6%, respectively, compared with CK. The CU
decreased by 5.9~23.5%, 10.3~27.9%, and 19.1~38.2%. The DW increased by 10.3~38.9%,
9.7~45.6%, and 30.3~58.2%. The drip irrigation fertilization should choose UP fertilizer
with a concentration of 0.2 g/L.
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The addition of Mn2+ in the APP treatment could change the degree of blockage. The
degree of blockage was first alleviated and then became severe within the concentration
range of 1~3 mg/L. The 2 mg/L of Mn2+ increased Dra by 24.57%, CU by 18.54%, and
reduced DW by 13.27% in the APP4 drip irrigation. When using APP fertilizer drip
irrigation, 2 mg/L Mn2+ should be added to improve drip irrigation efficiency.

There are still some issues that need to be investigated in the future. The Mn2+

needs to be applied in different types and concentrations of phosphate fertilizers. The
suitability of coupling Mn2+ with phosphate fertilizers needs to be explored. It is necessary
to combine the changes in blocking substances with time. The mechanism of Mn2+ on
blocking substances at different stages should be researched.
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Abbreviations

UP Urea phosphate
PDP Potassium dihydrogen phosphate
APP Ammonium polyphosphate
Dra The system discharge variation ratio
CU The Christiansen coefficient of uniformity
DW The dry weight of clogging substances
XRD X-ray diffractometer
SEM Scanning electron microscopy
APP4 Irrigation water with ammonium polyphosphate concentration of 0.4 g/L
Mn1 Irrigation water mixed with 0.4 g/L ammonium polyphosphate and 1 mg/L Mn2+

Mn2 Irrigation water mixed with 0.4 g/L ammonium polyphosphate and 2 mg/L Mn2+

Mn3 Irrigation water mixed with 0.4 g/L ammonium polyphosphate and 3 mg/L Mn2+

Cv Crystal lattice volume
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