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Abstract

:

Non-destructive detection of maize silage quality is essential. The aim is to propose a fast and non-destructive silage pH detection method based on a colorimetric sensor array (CSA). Extended color components, a novel sensitive dye screening method, and a feature screening method were integrated and applied to enhance pH detection. Fifty color components were constructed from five color spaces and used to extract information about the response of CSA to silage. Forward and backward stepwise selection and support vector regression (SVR) were combined to create a sensitive dye screening method, which was used to determine the optimal sensitive dye. The variable combination population analysis–iteratively retains informative variables algorithm was iterated to optimize effective features. Consequently, six hundred variables were extracted from the twelve dyes, which were able to comprehensively and finely characterize the CSA response. Four sensitive dyes were screened out from the twelve dyes, which were sensitive to silage volatile compounds and accurately reflected the odor changes. Twenty-eight effective features were preferred, based on which the SVR model had     R   p   2    , RMSEP and RPD scores of 0.9533, 0.4186, and 4.4186, respectively; the pH prediction performance was substantially improved. This study provides technical support for the scientific evaluation of silage quality.
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1. Introduction


Maize silage is an essential ruminant feedstuff due to its exceptional palatability, nutritional richness, and abundant yield [1,2]. Silage quality plays a critical role in determining the energy intake and milk production of cows on maize-silage-based diets [3]. Among the indicators of silage quality, pH is particularly significant as it reflects the concentration of organic acids such as lactic, acetic, and propionic acids [4]. Indeed, the aerobic deterioration of silage is an unavoidable phenomenon once the silo is unsealed [5]. During aerobic deterioration, the pH escalates due to the diminution of water-soluble carbohydrates and organic acids [6]. Monitoring the pH of silage during aerobic deterioration is paramount. Traditional methods for measuring silage pH, which employs a pH meter and necessitates soaking the feed in deionized water for half an hour, are laborious and time-intensive [7]. In contrast, non-destructive detection methods allow rapid testing of large sample volumes with little or no sample preparation [8]. Therefore, there is an urgent need to develop a non-destructive detection method for silage pH during aerobic deterioration.



A variety of non-destructive detection methods for silage pH were proposed, including hyperspectral imaging (HSI), visible–near-infrared spectroscopy (VIS-NIRS), and machine vision (MV) [7,9,10,11]. As for the detection principles, HSI and VIS-NIRS methods mainly characterize the functional groups of feed organic compounds, such as lactic acid, proteins, and cellulose, while MV techniques are based on the color and texture characteristics of the feed surface [7,11,12]. During aerobic deterioration, the alteration in volatile compounds, such as acetic acid, propionic acid, butyric acid, and ammonia, precipitates shifts in silage pH [4,13,14]. Spectrum and MV technology ignore the influence of the above compounds on the pH value, leading to suboptimal detection accuracy. Electronic nose (E-nose) and colorimetric sensor array (CSA) techniques are highly sensitive to the above-mentioned volatile compounds and are used for silage quality assessment [15,16]. Compared to E-nose, CSA-based detection models are not only more accurate, but also have lower equipment costs, better reproducibility, and wider applications [17,18,19]. This technology shows good potential for detecting various quality indicators including pH [15,16], and may promote the scientific evaluation of silage quality. Therefore, it is significant to utilize CSA technology to achieve accurate silage pH detection.



By integrating the MV technique with CSA, the CSA response is obtained and represented as color components in various color spaces [20]. A suite of 14 color components from the Red–Green–Blue (RGB), Hue–Saturation–Value (HSV), and International Commission on Illumination Lab (CIE Lab) space is used for detecting pork, black tea, beef, and oysters [21,22,23,24,25]. These components include R, G, B, R + G + B, R/(R + G + B), G/(R + G + B), B/(R + G + B),      R   2   +   G   2   +   B   2     , H, S, V, L, a, and b [21,22,23,24,25]. However, the limited number of color spaces and components used to reflect the CSA response information restricts the ability to fully capture the characteristics of volatile compounds. This limitation also affects the accuracy of silage pH detection. Besides the three aforementioned color spaces, CMY and NTSC YIQ spaces were also used for fine characterization of color, which may make up for the lack of color spaces [26]. Among them, Cyan–Magenta–Yellow (CMY) space is based on a subtractive color model for characterizing the mixing effect of colors, whereas National Television Standards Committee Luminance-In-phase-Quadrature (NTSC YIQ) space uses a linear transformation of RGB data to separate luminance and chrominance information [26]. Moreover, a series of color components constructed based on R, G, and B enhanced potato quality detection, such as the Cumulative Blue Difference Index and the Blue Difference Norm Index [27]. Therefore, it is important to enrich the CSA color space and develop novel color variables to improve the pH prediction.



Extracting effective features from CSA response information is a key means of eliminating redundant and interfering information, thereby improving the accuracy of prediction models. Random forest (RF) was used to extract the effective features of CSA, which significantly improves the prediction accuracy of the model compared to the baseline model using full-color components [21]. Ant colony optimization and competitive adaptive reweighted sampling algorithms are employed in extracting the effective features in the CSA, which effectively augments the prediction performance of oysters [28]. Metaheuristic algorithms, including genetic algorithm and particle swarm optimization (PSO), are found to be effective in extracting the Raman spectral features [29]. These studies indicate that feature selection is a potential means to enhance silage pH prediction. Therefore, there is an urgent need to select CSA features to maximize silage pH detection performance.



Dye combinations are key in determining CSA performance. CSA utilizes dyes such as porphyrins (TPPs), natural pigments, and pH indicators as sensors [25,28]. These dyes exhibit varying sensitivities to different volatile compounds [30]. Arbitrary combinations of dyes may deteriorate the detection performance of CSA on analytes. It is necessary to screen sensitive dyes based on analyte characteristics. Currently, intelligent optimizers, namely multi-subspace randomization with collaborative feature selection (SRCFS), the whale optimization algorithm (WOA), and PSO-integrated regressors of support vector regression (SVR), were used to extract effective features from dye responses; the dyes corresponding to these features were used as sensitive dyes [24,31,32]. However, the random characteristics of these methods lead to poor stability and large computational resource consumption. Moreover, complex volatile compounds are present in silage, including acids, esters, phenols, and terpenes [33,34]. Screening sensitive dyes for silage from such complex compounds may be challenging. In summary, developing an efficient and intelligent screening method for sensitive dyes is of great significance to realize the accurate prediction of pH.



The hypotheses of the study are as follows: CSA technology could accurately characterize silage volatile compounds; CSA response information could be comprehensively reflected by enriching the color space and developing novel color components; and screening of key features and sensitive dyes could optimize the detection performance of CSA. The study aims to create an accurate and non-destructive pH detection method based on CSA by enriching response information, identifying key features and screening sensitive dyes. The main contributions are delineated as follows: an extended color component was proposed to comprehensively characterize the response information of CSA to silage; a novel method was created using a forward–backward stepwise selection algorithm to screen sensitive dye combinations; a variable combination population analysis-iteratively retains informative variables (VCPA-IRIV) algorithm was used to extract key features; a pH detection model was constructed based on the SVR algorithm which significantly improved the detection accuracy.




2. Materials and Methods


2.1. Materials


Maize (Zea mays L., KeHe 699) was grown in the experimental field in Hohhot City, Inner Mongolia Autonomous Region, China (111.697° E, 40.485° N). Planting density, average plant height, and number of adult leaves were 67,500 plants/hm2, 310 cm, and 19 leaves, respectively. The sowing and harvesting dates were 5 May 2023, and 14 September 2023, respectively. The moisture content of the experimental soil was 11.03%, and the density was 1.65 g/cm3. Fertilizer application rates for nitrogen (N), phosphorus (P), and potassium (K) were 210, 120, and 80 kg/hm2, respectively. The dyes including 8 TPPs and 4 pH indicators were purchased from Sigma-Aldrich Chemical Co., Ltd., St. Louis, MO, USA (Table S1). The C2 reverse silica gel plate was purchased from Merck KGaA, Frankfurter, Germany.




2.2. Silage Sample Preparation and pH Measurement


Whole-crop maize was harvested at the 66% milk line stage and chopped into 10–20 mm lengths. The finely mixed maize was ensiled in polyethylene bags, each measuring 50 × 70 cm and harboring approximately 10 kg of the bags, achieving a compaction density of roughly 210 ± 4 kg of dry matter/m3. After 60 d of ensiling at 23 ± 2 °C, samples were uniformly collected manually from both the upper and lower layers of each bag. A total of 74 bags of silage were used, and samples were collected from multiple bags to ensure broad and representative sampling. From this process, 148 high-quality silages were collected and placed individually in self-sealing bags at −18 °C pending subsequent analysis.



Non-aerobic exposure and intermittent and continuous aerobic exposure treatments were used to collect representative samples of different qualities. For no aerobic exposure treatment, 48 samples were randomly selected from high-quality silage. In the intermittent aerobic exposure treatment, 35 high-quality samples were collected and placed in self-sealing bags. The bagged samples were regularly opened and exposed to an aerobic environment for 0.5 h per day for 7 d. After daily treatment, the aerobic exposure of 5 samples was terminated, and the remaining samples continued to be treated. The treatment group obtained 5 samples each of intermittent exposure from 1 to 7 d, and the corresponding actual aerobic exposure time was 0.5 to 3.5 h. For continuous aerobic exposure, 65 samples were placed in self-sealing bags with evenly distributed holes to ensure air circulation in the bags. During the 6.5-day treatment period, 5 samples of aerobic exposure were terminated every 0.5 d. The treatment group obtained 5 samples each of continuous exposure from 0.5 to 6.5 d, and the corresponding actual aerobic exposure time was 12 to 165 h.



To collect the subsamples for pH measurement and CSA information acquirement, further sampling was carried out using the quadrature method with some modifications [3]. Each sample was first poured onto a clean plastic film and thoroughly mixed to ensure homogeneity. The quartering method was then applied to reduce the sample size to approximately 60 g. Of this, 10 g was allocated for pH measurement, while the remaining 50 g was reserved for CSA analysis.



The pH of the silage was measured by a pH meter (Metrohm, Inc., Herisau, Switzerland) according to the method previously studied [7]. Each silage was measured three times with the pH meter, and the mean value was taken as the actual pH of the silage.




2.3. Fabrication of the CSA and Extraction of Color Components


The CSA was fabricated using 12 dyes, following the methodology delineated in the reference [35]. The porphyrin compound and pH indicator were dissolved in dichloromethane and anhydrous ethanol, respectively, and the solution concentration was adjusted to 2 mg/mL. Subsequently, the solution was subjected to ultrasonic oscillation for 30 min to ensure that the solute was completely dissolved. Then, a 100 × 0.3 mm capillary tube was used to absorb the solution point by point and uniformly dropwise added to the C2 reverse phase silica gel plate. The prepared CSA was dried in a fume hood for 30 min. Once dried, it was stored in self-sealing bags and utilized within 5 h to ensure optimal performance.



There were eight steps to extract the CSA color components (Figure 1): (1) the pre-reaction CSA image was collected by a scanner (M7206W, Lenovo, Inc., Beijing, China); (2) a sample weighing 50 ± 0.1 g sample was placed in a 500 mL beaker, which was then hermetically sealed using plastic film. The CSA affixed to the interior surface of the film with double-sided tape, was positioned to react adequately with the volatile compounds, with the reaction duration set at 20 min; (3) after the reaction, the CSA was removed to obtain a post-reaction image consistent with step (1); (4) Gaussian filtering was employed to eliminate noise from the images; (5) the overflowing filling method was utilized to extract irregular areas exhibiting uniform color within each dye, designated as the region of interest (ROI); (6) the RGB ROI images, both pre and post reaction, were transformed into images in HSV, CIE Lab, CMY, and NTSC YIQ color spaces using OpenCV 4.6.0 (Intel Corp., Santa Clara, CA, USA), respectively; (7) for each dye, 50 color components were extracted from both pre-and post-reaction images (Table S2), and were normalized to 0 to 255; (8) the response color components of CSA were obtained by subtracting the post-reaction color features from the pre-reaction features, which comprised 12 dyes × 50 = 600 components.




2.4. Data Processing


2.4.1. Outlier Rejection


Outliers reduce the stability and performance of the prediction model [36]. To address this issue, the principal component analysis–Mahalanobis distance (PCA-MD) method was employed, which combines the dimensionality reduction capability of PCA with the outlier detection accuracy of MD to accurately eliminate outliers [36]. Specifically, the first 15 principal component scores were computed to obtain the main features of the dataset. These scores were calculated as the product of the CSA information and the PCA loading matrix (Equation (S1)). Subsequently, the Mahalanobis distance was determined by calculating the matrix of differences between the sample scores and the mean scores, weighting it by the covariance matrix, and computing its inner product (Equation (S2)). Finally, the outlier threshold was determined, defined as five standard deviations from the mean of a normal distribution. If the value of a particular sample exceeded the threshold, it was described as an outlier. The results showed that eight samples were defined as outliers at the confidence level of 95%. The remaining 140 silage were used for the subsequent modeling process.




2.4.2. Dataset Division


The Kennard–Stone (K-S) method is widely used in sample set partitioning, which can ensure that the samples have strong representativeness and uniformity [7,36]. This method divides the dataset by calculating the Euclidean distance between the samples, selecting the samples with large gaps into the calibration set and the rest into the prediction set. The dataset was divided according to a ratio of 3:1, and the calibration and prediction sets contained 105 and 35 samples, respectively. After dividing the 12 dyes × 50 = 600 components dataset, the rest of the datasets in this study (12 dyes × 9 = 108 components, 4 dyes × 50 = components, etc.) were divided based on this result.




2.4.3. Data Preprocessing


After preliminary trials, autoscaling improved the prediction of silage pH based on CSA information. Therefore, it was employed to preprocess the response information of CSA. The raw CSA information in the calibration and prediction sets were preprocessed separately.





2.5. The Sensitive Dyes Screening Method


2.5.1. Stepwise Selection Method


Stepwise selection is an advanced subset selection method, typically divided into forward, backward, and forward–backward selection [37]. The forward–backward selection balances the requirements of model complexity and accuracy. Therefore, it was utilized to construct the sensitive dye screening method.




2.5.2. SVR Regressor


SVR was utilized as the regressor for the stepwise selection method. The model was trained using 5-fold cross-validation, and the mean squared error in cross-validation (MSECV) after training was taken as the model error indicator. Among them, the hyperparameters in the SVR were optimized by the grid search method (Section 2.7).




2.5.3. Logical Procedure of the Sensitive Dyes Screening Method


The sensitive dye screening method constructed by the stepwise selection and SVR is shown in Algorithm 1. This method input the CSA information of 140 samples, which merged the calibration and prediction sets. During processing, each dye information was used separately to construct an SVR model and determine the optimal starting dye. Subsequently, the forward–backward selection was iterated until sensitive dyes were obtained.



	Algorithm 1. Pseudocode for the sensitive dye screening method.



	Input:



	Dataset of dye1–12 D1 = (x1), D2 = (x2), …, D12 = (x12); Label of datasets Y = (y).



	Process:



	% Determine the optimal single dye as a starting.



	for i = 1, 2, …, number (type of dyes):



	  (cbest, gbest) = grid search for SVR (Di, Y, 5-fold cross validation);



	  MSECVi = SVR train (Di, Y, 5-fold cross validation, cbest, gbest);



	end



	(MSECVbest, index) = min (MSECV1, MSECV2, …, MSECV12);



	max features = number (type of dyes);



	selected features = index;



	while number (selected features) < max features



	  % Forward selection.



	  available features = (1, 2, …, max features) − selected features;



	  for j = 1, 2, …, number (available features):



	    Dcurrent = {D(selected features), D(available features(j))};



	    (cbest, gbest) = grid search for SVR (Dcurrent, Y, 5-fold cross validation);



	    MSECVj = SVR train (Dcurrent, Y, 5-fold cross validation, cbest, gbest);



	  end



	  (MSECVforward-best, index) = min (MSECV1, MSECV2, …, MSECVnumber(available features));



	  if MSECVforward-best < MSECVbest



	    selected features = (selected features, index);



	    MSECVbest = MSECVforward-best;



	  else



	    break



	  end



	  % Backward selection.



	  for k = 1, 2, …, number (selected features):



	    Dcurrent = D(selected features) − D(selected features(k));



	    (cbest, gbest) = grid search for SVR (Dcurrent, Y, 5-fold cross validation);



	    MSECVk = SVR train (Dcurrent, Y, 5-fold cross validation, cbest, gbest);



	  end



	    (MSECVbackward-best, index) = min (MSECV1, MSECV2, …, MSECVnumber(selected features));



	  if MSECVbackward-best < MSECVbest



	    selected features = selected features − index;



	    MSECVbest = MSECVbackward-best;



	  end



	end



	Output:



	output = (selected features; MSECVbest);










2.6. Extraction of the Effective Features


This study applied the VCPA-IRIV amalgamated with SVR to extract the effective features and screen sensitive dyes (Figure 1). Given the random nature of VCPA-IRIV, the algorithm was run 50 times independently. The methodology was delineated as follows. Firstly, the VCPA-IRIV was run 50 times independently with the processed CSA data as input. For key parameters in VCPA-IRIV, the number of exponentially decreasing function runs was 50, the number of binary matrix sampling runs was 1000, and the number of cross-validation values was 5 [38]. Secondly, each SVR model was trained and predicted (Section 2.7) with the extracted features in each group as input. Thirdly, the decision coefficient of the prediction set (    R   p   2    ) and the root mean square error of the prediction set (RMSEP) values were outputted in each model. Finally, the effective CSA features were identified as the features corresponding to the highest     R   p   2     and the lowest RMSEP.




2.7. Establishment and Statistical Analysis of the pH Detection Models


SVR is a machine learning algorithm capable of handling regression problems, with strong generalization and robustness on small sample datasets and a wide range of applications [39,40]. Compared to other nonparametric models such as RF and partial least squares regression (PLSR), SVR achieves a better balance between nonlinear fitting ability and computational efficiency [8,41]. Given the small sample size and the complex relationship between CSA features and pH in this study, SVR modeling was chosen to improve the efficiency and accuracy of pH prediction. The implementation of SVR for pH detection was as follows. Initially, outlier rejection, dataset division, and preprocessing were performed on selected CSA color components. Subsequently, the regularization parameter C (Equation (S3)) and kernel parameter g (in the radial basis kernel function, Equation (S4)) in the SVR model were tuned by the grid search method with the calibration set as input. The bounds of C and g were in the range of 2−10–210, the change step for C and g was 20.5, and a 5-fold cross-validation was performed. Among them, 5-fold cross-validation is considered a reasonable choice, as it can effectively obtain the optimal hyperparameters without excessively consuming computational resources [16,41]. Finally, the SVR model was trained and predicted with the calibration and prediction sets as input, and statistical parameters were outputted.



The MSECV was selected as an evaluation index for the sensitive dye screening method. For the pH detection model and the effective feature screening methods, the decision coefficient of the calibration set   (   R   c   2   )  , the root mean square error of the calibration set (RMSEC), the     R   p   2    , RMSEP, and ratio of performance to deviation (RPD) were selected as evaluation indexes. The parameters were expressed by equations in Equations (S5)–(S10). Among them, RMSE can visually quantify the size of the error between the predicted and true values, providing a clear and reliable indicator for assessing the overall performance of the model.




2.8. Software


The CSA information was obtained via Python 3.8.5 (Python Software Foundation, Wilmington, DE, USA). The PCA-MD, K-S, autoscaling, sensitive dye screening method, VCPA-IRIV, and SVR were implemented via MATLAB 2022b (The Math Work, Inc., Natick, MA, USA).





3. Results


3.1. Analysis of pH Value During Silage Aerobic Deterioration


As shown in Figure 2a, the trend in pH value under continuous aerobic exposure initially experienced a rapid increase within the first three days, followed by a slight decrease for 3 to 5 d, and finally a rebound to a high level for 5 to 6.5 d. The average pH ranged from 4.0 to 5.2 at the 0 to 1.5 d sampling sites and 7.0 to 8.6 at the 2 to 6.5 d sampling sites. Figure 2b shows a gradually increasing trend in pH during 1 to 7 d of intermittent aerobic exposure. The mean pH at these sampling sites ranged from 4.0 to 4.3. Significant differences in pH were observed between continuous and intermittent aerobic exposure silage, owing to the differing actual aerobic exposure durations. Silage exposed to continuous aerobic conditions for 0.5 to 6.5 d experienced actual exposure durations of 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, and 156 h. In contrast, intermittently aerobic exposure silage for 1 to 7 d had much shorter actual aerobic exposure times of 0.5, 1, 1.5, 2, 2.5, 3, and 3.5 h. As for the 48 non-aerobic exposure silages, the minimum, maximum, mean, and standard deviation of pH values were 3.8, 4.1, 3.9, and 0.1, respectively. In summary, the pH of the silage was centrally distributed between 3.8 and 5.2 and between 7.0 and 8.6.




3.2. Response Patterns of CSA and Screening of Sensitive Dyes


3.2.1. Response Patterns of CSA to Different Aerobic Deterioration Silage


The response patterns of the CSA in different aerobic deterioration silages were analyzed (Figure 3). In each CSA subplot, the dyes were arranged from top to bottom and from left to right as follows: OEP (TPP1), CH3OTPPFeCl (TPP2), CH3OTPP (TPP3), CH3OTPPCo (TPP4), TPP (TPP5), TPPZn (TPP6), TPPCu (TPP7), TPPFeCl (TPP8), bromocresol green (pH1), bromothymol blue (pH2), basic red (pH3), and cresol red (pH4). The response patterns were analyzed for five sampling sites, including no aerobic exposure, 4 d and 7 d intermittent aerobic exposure, and 3.5 d and 6.5 d continuous aerobic exposure. Each feature image represented the mean response of five replicate samples. The samples without aerobic exposure were randomly selected from the 48 available specimens, with a mean pH of 3.9. The actual aerobic exposure durations for these five sampling points were 0, 2, 3.5, 84, and 156 h, respectively, covering the early, mid, and late stages of aerobic deterioration. These sampling points were selected to represent the entire aerobic deterioration process as comprehensively as possible.



Overall, the response differences within RGB, HSV, and CMY spaces were more pronounced across the sampling sites than in CIE Lab and NTSC YIQ spaces. The differences between the four pH indicators were more evident compared to the eight TPPs. This suggests a heightened sensitivity of the pH indicators with the silage volatile compounds. However, the color response of several TPPs was similar among the sampling sites, such as TPP1 and 3, indicating their ineffectiveness in detecting volatile compounds. Although CSA has the potential to detect silage pH, sensitive dyes need to be screened to improve the accuracy of silage pH detection.




3.2.2. Screening of Sensitive Dyes Based on the Novel Method


A novel sensitive dye screening method was developed, with the iterative process illustrated in Figure 4a. Initially, the pH1 color components model had the lowest MSECV of 0.0338 among the 12 single-dye color components models. The pH1 was utilized as the initial dye to start the stepwise selection. Secondly, the forward–backward stepwise selection was iterated, and the minimum MSECV in each iteration is given as follows: 0.0124 during the first forward selection, 0.0338 during the first backward selection, 0.0096 during the second forward selection, 0.0124 during the second backward selection, 0.0087 during the third forward selection, 0.0096 during the third backward selection, and 0.0089 during the fourth forward selection. Since the MSECVs of all backward selections were higher than their previous forward selection, ensuring that no dye selected during the forward selection was excluded during the backward selection. The iteration was terminated in the fourth forward selection, because the MSECV of this iteration (0.0089) was higher than that of the third forward selection (0.0087). Throughout the process, forward and backward selection were executed four and three times, respectively, with the construction of 59 SVR models. TPP6, pH4, and TPP4 were thus selected in the first, second, and third forward selections. The sensitive dyes were determined to be TPP4, TPP6, pH1, and pH4, which significantly reduced the material consumption of CSA.




3.2.3. Screening of Sensitive Dyes Based on the Conventional Method


To compare the effectiveness of sensitive dye screening between the novel and conventional methods, the VCPA-IRIV-SVR was independently executed 50 times, extracting features from 600 extended color components to screen sensitive dyes. The statistical metrics for the 50 calculations in the calibration and prediction sets are shown in Figure 4b,c. The mean and standard deviation of     R   c   2    , RMSEC,     R   p   2    , and RMSEP were 0.9374 ± 0.0119, 0.4641 ± 0.0452, 0.9326 ± 0.0084, and 0.7497 ± 0.0675, respectively. There were minor fluctuations during the calculations, indicating differences in the features extracted each time. Corresponding dyes for different combinations of features were analyzed. The 28th calculation had the highest     R   p   2     and the lowest RMSEP, screening a total of 11 dyes. Features in this calculation included TPP2 of B_nor, TPP3 of V, TPP4 of R_min_G_nor and b, TPP5 of hue_mod, TPP6 of G, TPP7 of Y, I, Q, and H, TPP8 of GLI, GBRI, ri, and R_dis_nor, pH1 of WI and ri, pH2 of hue, pH3 of hue_mod, and pH4 of CIVE, CBDI, GLI and B_dis_nor. Furthermore, the cumulative frequency of feature selection over 50 calculations is illustrated in Figure 4d. In total, 8 dyes with 14 features were screened more than 30 times, and 10 dyes with 22 features were screened more than 20 times. The number of dyes screened in the above three cases far exceeded that of the novel method. Moreover, the features in these cases were constructed separately as SVR models, as shown in Table 1. In terms of     R   p   2    , RMSEP, and RPD, the models were inferior to the sensitive dye information of the novel method. Therefore, the novel method was superior regarding the number of screened dyes and the prediction performance.





3.3. Screening of Effective Features and Prediction of pH Value


3.3.1. Effective Features Screening Based on VCPA-IRIV-SVR


To screen the effective features in the sensitive dye information, the VCPA-IRIV-SVR model was executed 50 times, and the results are shown in Figure 5a,b. There were some minor fluctuations in the performance parameters. Specifically, the mean and standard deviation of     R   c   2    , RMSEC,     R   p   2    , and RMSEP were 0.9289 ± 0.0168, 0.4956 ± 0.0618, 0.9326 ± 0.0084, and 0.5161 ± 0.0359, respectively. The optimal performance occurred in the fifth calculation with the highest     R   p   2     and the lowest RMSEP. In this iteration, a total of 28 color components were screened, including B_min_G_nor, G_min_B, and EGI in TPP4, ExG_min_ExR, hue_mod, and b in TPP6, R, G, ExG, ExR, CIVE, CBDI, WI, G_min_R, R_min_B, C, M, Y, Q, L, a, chroma_C, hue in pH1, and NGRDI, B_dis_nor, Q, L, and hue in pH4. These features were screened from all four sensitive dyes, supporting the validity of the optimal sensitive dye screening results. Moreover, Figure 5c shows the cumulative selection frequency of features over 50 calculations. Among these, 11 features were screened more than 30 times, and 19 were screened more than 20 times. These three sets of features could contain important information for characterizing silage pH. These features were used to construct the SVR model, and its accuracy is shown in Table 1. In terms of     R   p   2    , RMSEP, and RPD, the features of the fifth calculation performed optimally. Therefore, the features in the fifth calculation were identified as effective features.




3.3.2. pH Detection Based on Different Color Components


Different combinations of color components were used to construct the SVR model to evaluate the effectiveness of the proposed method, and their performance is shown in Table 1. The component combinations included regular R, G, B, H, S, V, L, a, and b color components (12 dyes × 9 = 108 components), extended color components (12 dyes × 50 = 600 components), sensitive dyes information (4 dyes × 50 = 200 components), and 28 components of effective features. In terms of     R   p   2    , RMSEP, and RPD, the extended color components model outperformed the conventional color components one, indicating that the extended color components effectively enrich the response information of CSA; the sensitive dyes information model substantially outperformed the extended color components one, showing the efficiency and accuracy of the proposed sensitive dyes screening method; the effective features model was superior to the sensitive dyes one, indicating that the effective features extraction method can mine the key information from the extended color components in depth. Among the abovementioned models, the effective features model had the best     R   p   2    , RMSEP, and RPD. Compared to the conventional color components model, the     R   p   2    , RMSEP, and RPD of this model improved by 23.82%, 54.58%, and 120.16%, respectively, which is a considerable improvement. In Figure 5d, the predicted values of the effective features model were closest to the true values in the prediction set compared to the other models mentioned above. In summary, the proposed method significantly improves the accuracy of the pH detection model, enabling fast and non-destructive detection of pH.






4. Discussion


4.1. Improvement of Sampling Methods and Changes in Silage Quality


Although this study draws on the aerobic exposure treatment methods in references [7,16], the sampling points are set more finely, which improves the representativeness of the samples and the accuracy of the data. Specifically, the intermittent aerobic exposure treatment was reduced from 1 h to 0.5 h per day; moreover, the sampling interval of continuous exposure was adjusted from 1 d to 0.5 d. The improved sampling method captures the dynamic changes in quality more accurately, and samples with different qualities are prepared, further verifying the generalization and robustness of the proposed method in dealing with different-quality silage samples.



With the increase in aerobic exposure time, organic acids, proteins, cellulose, and lignin are decomposed under the action of microorganisms, and a variety of secondary compounds are produced, resulting in a deterioration of quality and an increase in pH value [6]. According to the “Criteria for assessing the quality of silage”, the pH ranges for premium (grade 1), good (grade 2), average (grade 3), and poor (grade 4) silage were as follows: less than 4.0, 4.0 to 4.4, 4.4 to 5.0, and greater than 5.0, respectively [42]. Silage exposed to continuous aerobic conditions for 0 to 1.5 d, and all intermittently aerobic exposure silage mostly fell into grades 2 and 3, indicating slight deterioration. Silage exposed continuously to aerobic conditions for 2 to 6.5 d was mostly graded as 4, showing severe deterioration. Most silage without aerobic exposure was graded as 1, representing good quality. Compared with the intermittent aerobic exposure group, the quality of the continuous exposure group was worse, and the deterioration rate was faster. Both intermittent and continuous aerobic exposure simulate varying degrees of silage aerobic deterioration, and the sampling was representative.




4.2. Mechanism of Silage Quality Characterization by Sensitive Dyes


During the deterioration of silage quality, the odor changed from aromatic to putrid, which was related to the drastic change in volatile compound content [43]. Specifically, the decrease in the content of acids and esters leads to the gradual disappearance of the aromatic flavor; the significant changes in the content of phenol and ammonia are the main causes of spoilage odor [4,44]. The selected sensitive dyes effectively capture the changes in the content of these compounds, thereby reflecting the silage quality and its associated odor characteristics. CH3OTPPCo is a sensitive dye for differentiating cocoa bean species and for the quantitative detection of ammonia content [45,46]. The key volatile compounds of cocoa beans are acetic and butyric acids [47,48]. It is inferred that CH3OTPPCo is sensitive to both acids. TPPZn was found to quantitatively detect acetic acid content [49,50]. In addition, the content of several compounds changed with silage deterioration, including butyric, valeric, caproic, heptanoic, and phenylacetic acid, and 2-methoxy-4-vinyl phenol, 2,6-dimethoxyphenol, and vanillin. These compounds have acid dissociation constants (pKa) of 4.82, 4.84, 4.88, 4.4, 4.31, 9.6, 9.85, and 7.4 [44,51]. The pKa values of bromocresol green and cresol red are 4.0 and 8.2, respectively [51]. The pKa values of the pH indicator are close to those of the above compounds, indicating that it is capable of sensitive chromogenic reactions with these compounds. Sensitive dyes reflect changes in feed acids, esters, phenols, and ammonia, enabling fine-quality characterization. Overall, the sensitive dye screening method demonstrates high accuracy.




4.3. Novelties


Firstly, the study introduces an innovative characterization method for CSA response information by incorporating extended color components across multiple color spaces. So far, only 14 color components from RGB, HSV, and CIE Lab spaces have been employed to characterize the CSA response information [21,23]. In this study, 50 color components are introduced from RGB, HSV, CIE Lab, CMY, and NIST YIQ spaces. These components may inspire CSA detection techniques.



Secondly, the proposed method shows high accuracy and computational efficiency in sensitive dye screening, which is a breakthrough in dye screening. Traditional methods such as SRCFS, WOA, and PSO were used for sensitive dye screening [24,31,32]. Due to the randomness of the operational results, these methods exhibit insufficient stability and reliability, coupled with high computational resource consumption. In contrast, the proposed method only needs to perform four and three forward and backward selections, respectively, to screen out the best sensitive dye combination. The proposed method can potentially screen sensitive dye combinations in complex environments.



Thirdly, the study improves the generalization and robustness of the pH detection model and achieves a breakthrough in detection accuracy. Compared with the conventional CSA-based detection method, the proposed method significantly improves the prediction effect (Section 3.3.2). As for the other silage pH non-destructive detection method, the     R   p   2    , RMSEP, and RPD of the MV-based RF model were 0.9530, 0.3023, and 4.6860, respectively [7]. The     R   p   2     and RMSEP of the HSI-based PLSR model were 0.9170 and 0.4266, respectively [11]. The pH prediction performance of the proposed method in this study was close to the MV method and stronger than the HSI method. This showed that CSA was a practical solution for the non-destructive detection of silage pH.




4.4. Application Prospect


The proposed method is expected to be used for non-destructive quality testing of different agricultural products, and its application process is shown in Figure 6. According to the odor characteristics of agricultural products, a series of dyes can be selected to construct CSA, and the extended color component is used to characterize the response of CSA. The color component of each dye contains rich quality information and can be used as a database for CSA response. To improve the accuracy of the prediction model, the proposed method is used to screen sensitive dyes and extract effective features from the database. With features as input, various intelligent algorithms are used to construct quality prediction models. The prediction accuracy of the models is compared and analyzed, and the optimal result is used as the final prediction. Integrating the above processes ensures broad adaptability and enables the extraction of critical quality information. Therefore, the final prediction results are presumed to be highly accurate.




4.5. Limitations and Future Works


There are some limitations, given as follows. Firstly, scientific evaluation of silage quality requires a combination of indicators, including nutrients and fermentation products. The proposed method is not used for detecting quality indicators except pH. The CSA technique may detect silage ammonium nitrogen and organic acids. Secondly, four sensitive dyes are still relatively plentiful for in situ non-destructive detection utilizing CSA. Intelligent methods can be developed to further reduce dye consumption in CSA. Thirdly, although it demonstrates high accuracy in pH detection, the model is too complex to detect silage pH rapidly. Linear regressions such as PLSR or simple devices based on naked-eye detection may be used to detect silage pH within seconds.





5. Conclusions


This study integrated extended color components, novel sensitive dye screening, and effective feature-extracting methods into the CSA for non-destructive detection of silage pH. The main conclusions are as follows. Firstly, compared with the conventional components, the pH prediction performance of the extended color components is better. The extended variables greatly enriched the information dimensions, providing a comprehensive and detailed characterization of the CSA response information. Secondly, compared with the feature extraction-based sensitive dye screening method, the proposed method significantly enhances accuracy and efficiency while markedly reducing the number of dyes required. Sensitive dyes effectively capture the changes in feed acids, esters, phenols, and ammonia substances and realize the fine characterization of pH value. Finally, the     R   p   2    , RMSEP and RPD of the pH detection SVR model constructed from the effective color components among the sensitive dyes are 0.9533, 0.4186, and 4.6395, respectively. These indexes represent enhancements of 23.82%, 54.58%, and 120.16% over the conventional model based on RGB, HSV, and CIE Lab spaces. The proposed method exhibits broad application prospects and is suitable for non-destructive testing of different agricultural product quality. In conclusion, the proposed methods enhance the performance of silage pH detection, promoting the development of in situ inspection of agricultural products based on CSA.
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Figure 1. Flow chart of sampling, CSA response information acquisition, sensitive dye screening, feature extraction, and pH prediction model construction. 
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Figure 2. Changes in silage pH during continuous aerobic exposure (a) and intermittent aerobic exposure (b). 
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Figure 3. CSA response characteristic images of silage under different aerobic exposure treatments, represented in various color spaces including RGB, HSV, CIE Lab, CMY, and NTSC YIQ. The dyes were arranged from top to bottom and from left to right as follows: TPP1, TPP2, TPP3, TPP4, TPP5, TPP6, TPP7, TPP8, pH1, pH2, pH3, and pH4. 
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Figure 4. (a) The iterative process of the sensitive dye screening method, where the “Initial” stage represents the determination of the optimal starting dye; “1st F”, “2nd F”, “3rd F”, and “4th F” correspond to the first, second, third, and fourth forward selection, respectively, and “1st B”, “2nd B”, and “3rd B” represent the first, second, and third backward selection, respectively. (b,c) The prediction performance of the VCPA-IRIV-SVR model (with all dye information as input) for different numbers of calculations, where (b) denotes the calibration set performance and (c) denotes the prediction set performance. (d) The cumulative number of times each color component is screened as a feature in 50 calculations of screening all sensitive dye features. 
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Figure 5. (a,b) The prediction performance of the VCPA-IRIV-SVR model (with sensitive dye information as input) for the different number of calculations, where (a) represents the calibration set performance and (b) represents the prediction set performance. (c) The cumulative number of times each color component is screened as a feature in 50 calculations of screening sensitive dye features. (d) The change in the predictive value of the prediction set of the SVR prediction model based on different combinations of color components. 
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Figure 6. Application flow of the proposed methodology. 
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Table 1. Performance of SVR models for pH detection constructed on different color components.
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Data

	
No. of Variables

	
Parameters

	
Calibration Sets

	
Prediction Sets




	
C

	
g

	
     R   c   2     

	
RMSEC

	
     R   p   2     

	
RMSEP

	
RPD






	
Regular color components

	
12dyes × 9 = 108

	
2

	
0.0313

	
0.9376

	
0.4795

	
0.7699

	
0.9216

	
2.1073




	
Extended color components

	
12 dyes × 50 = 600

	
128

	
0.0010

	
0.9678

	
0.3380

	
0.7932

	
0.8767

	
2.2151




	
Sensitive dyes information

	
4 dyes × 50 = 200

	
5.6569

	
0.1250

	
0.9842

	
0.2404

	
0.9477

	
0.4688

	
4.1429




	
Features screened more than 30 times from extended color components

	
14

	
1.4124

	
1.4124

	
0.9480

	
0.4224

	
0.8469

	
0.7714

	
2.5176




	
Features screened more than 20 times from extended color components

	
22

	
16

	
0.7071

	
0.9993

	
0.0485

	
0.9326

	
0.5139

	
3.7789




	
Features of 28th VCPA-IRIV-SVR from extended color components

	
22

	
1.4142

	
0.7071

	
0.9802

	
0.2656

	
0.9195
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