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Abstract: Controlled Environment Agriculture (CEA) offers a viable solution for sustainable
crop production, yet the optimization of the latter requires precise modeling and resource
management. This study introduces a novel hybrid plant growth model integrating stochas-
tic, empirical, and optimization approaches, using Internet of Things sensors for real-time
data collection. Unlike traditional methods, the hybrid model systematically captures
environmental variability, simulates plant growth dynamics, and optimizes resource inputs.
The prototype growth chamber, equipped with IoT sensors for monitoring environmental
parameters such as light intensity, temperature, CO,, humidity, and water intake, was
primarily used to provide accurate input data for the model and specifically light intensity,
water intake and nutrient intake. While experimental tests on lettuce were conducted
to validate initial environmental conditions, this study was focused on simulation-based
analysis. Specific tests simulated plant responses to varying levels of light, water, and
nutrients, enabling the validation of the proposed hybrid model. We varied light durations
between 6 and 14 h/day, watering levels between 5 and 10 L/day, and nutrient concentra-
tions between 3 and 11 g/day. Additional simulations modeled different sowing intervals
to capture internal plant variability. The results demonstrated that the optimal growth
conditions were 14 h/day of light, 9 L/day of water, and 5 g/day of nutrients; maximized
plant biomass (200 g), leaf area (800 cm?), and height (90 cm). Key novel metrics developed
in this study, the Growth Efficiency Ratio (GER) and Plant Growth Index (PGI), provided
solid tools for evaluating plant performance and resource efficiency. Simulations showed
that GER peaked at 0.6 for approximately 200 units of combined inputs, beyond which
diminishing returns were observed. PGI increased to 0.8 to day 20 and saturated to 1 by
day 30. The role of IoT sensors was critical in enhancing model accuracy and replicability
by supplying real-time data on environmental variability. The hybrid model’s adaptabil-
ity in the future may offer scalability to diverse crop types and environmental settings,
establishing a foundation for its integration into decision-support systems for large-scale
indoor farming.

Keywords: Controlled Environment Agriculture (CEA); hybrid plant growth; Growth
Efficiency Ratio (GER); Plant Growth Index (PGI); optimization algorithms; machine
learning; resource efficiency; indoor farming
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1. Introduction

The increasing global demand for sustainable food production has driven the develop-
ment of innovative solutions in agriculture. Controlled Environment Agriculture (CEA)
represents a promising approach to address this challenge by enabling precise control
over environmental factors, such as light, temperature, humidity, water, and nutrients,
to optimize crop growth while minimizing resource wastage [1,2]. Despite its potential,
achieving a balance between resource inputs and maximizing crop yields remains a critical
challenge, particularly in resource-limited settings. To address this, researchers have fo-
cused on developing models and technologies that predict, simulate, and optimize plant
growth under various environmental conditions [3,4].

Previous studies in the field of CEA have explored various modeling approaches. Em-
pirical models, such as linear and nonlinear regression, have been widely used to capture
relationships between environmental inputs and plant growth outputs. However, these
models are often limited by their reliance on specific datasets and lack the flexibility to
incorporate variability [4-6]. Stochastic models, introduced to account for environmental
uncertainties, provide a framework for simulating random fluctuations in growth con-
ditions, such as light or temperature variability. Despite their strengths, these models
frequently lack integration with real-time data sources, limiting their practical applicabil-
ity [6,7]. Optimization techniques, including genetic algorithms and linear programming,
have been employed to enhance resource usage in CEA systems but are often applied in
isolation rather than as part of an integrated framework [8-10].

Recent advances in metrics and tools for plant growth evaluation include innovations
like StoManager, which measures over 30 stomatal and guard cell metrics to study leaf
physiology [11]. While such metrics offer detailed insights, they primarily focus on specific
parameters rather than providing a comprehensive framework for growth and resource
optimization. Similarly, imaging-based approaches allow for precise non-destructive mea-
surements of plant traits but lack the multidimensional perspective needed for integrated
decision-making.

Machine learning has shown promise for predicting plant growth and optimizing
resource allocation by processing large datasets and uncovering complex patterns in plant-
environment interactions. However, many machine learning-based studies lack physiologi-
cal insights and fail to integrate stochastic and empirical models, limiting their robustness
and interpretability. Additionally, IoT technologies have gained prominence in CEA by
enabling real-time monitoring of environmental variables, such as temperature, humid-
ity, CO, concentration, and light intensity [12]. While IoT enhances data accuracy and
replicability, its integration into hybrid modeling frameworks remains underexplored.

Despite these advancements, existing tools and models fall short in offering a unified
approach that combines the strengths of stochastic, empirical, and optimization methods
with real-time IoT data. Furthermore, the absence of comprehensive metrics to evaluate
both plant growth and resource efficiency, as well as their adaptability across diverse crops,
leaves a significant gap in the literature.

To address these gaps, this study proposes a novel hybrid plant growth model with ma-
chine learning to enhance predictive accuracy and robustness. By incorporating IoT sensors
for real-time data collection, the model dynamically adapts to varying environmental con-
ditions, improving both accuracy and replicability. The contributions of this study include:

1.  Development of a Hybrid Plant Growth Model:

An integrated framework combining stochastic, empirical, and optimization ap-
proaches to simulate and optimize lettuce growth in controlled environments.
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2. Introduction of Innovative Metrics:

Development of the Growth Efficiency Ratio (GER) and Plant Growth Index (PGI),
providing comprehensive evaluation of resource efficiency and plant health.

3. Machine Learning for Metric Optimization:
Application of linear regression to empirically derive weights for the PGI metric.
4. Cooling System Efficiency Analysis:

Assessment of cooling performance using the Coefficient of Performance (COP) to
optimize energy use in the prototype growth chamber.

5. Comprehensive Simulation:
Simulations conducted under varying environmental scenarios.
6. Transferability of Models and Metrics:

Design of adaptable hybrid models and metrics for application to other crops and
controlled agriculture systems.

Through a case study on indoor lettuce growth, this research demonstrates the hybrid
model’s ability to optimize resource usage, maximize crop yields, and improve decision-
making in CEA systems. Lettuce was selected for its widespread cultivation in controlled
environments, rapid growth cycle, and sensitivity to environmental conditions, making it
an ideal model crop for evaluating and refining growth models and metrics. By bridging
the gap between theoretical modeling and practical application, this study contributes to
advancing smart agriculture technologies and decision-support tools for long-term sus-
tainability. The findings of this study suggest potential integration into Decision Support
Systems (DSS) for enhanced agricultural management. The GER and PGI metrics provide
actionable insights that could inform resource allocation strategies in real time. By em-
bedding the hybrid model into DSS platforms, growers could access recommendations on
optimal water, nutrient, and light levels tailored to their specific setups. This integration
could facilitate real-time monitoring and decision-making in CEA systems, particularly in
large-scale operations where efficient resource use is critical.

2. Materials and Methods

In this study, a combination of experimental prototype development in Figures 1 and 2
and simulation modeling using python shown in Appendixes A.1 and A.2 was utilized to
study the growth and development of lettuce under controlled environment conditions. A
prototype growth chamber was constructed to test key parameters, providing a basis for the
simulated datasets and model validation. The chamber was designed to replicate optimal
growing conditions, including temperature regulation via a cooling system, adjustable light
intensity, and automated irrigation systems.

Our hybrid model combines stochastic, empirical, and optimization approaches, the
relationship between these three models forms a conceptual, interconnected framework
where each model informs and supplements the next one.
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Figure 2. IoT-integrated growing chamber from inside.

2.1. Data Collection

The prototype growing chamber in Figures 1 and 2 is a controlled environment sys-
tem designed to optimize and monitor plant growth conditions. It features a transparent
enclosure from plexiglass to allow visual inspection while maintaining a sealed environ-
ment. A cooling fan is installed to ensure proper air circulation, preventing stagnation and
regulating temperature and humidity. The system includes adjustable LED grow lights
mounted inside the chamber, which provide a customizable light spectrum and intensity to
simulate daylight cycles for photosynthesis, enabling precise control of light conditions to
suit the needs of different growth stages.

A Raspberry Pi serves as the central processing unit for our IoT data collection and
control, while a relay module connected to an Arduino manages devices such as the fan,
and LED lights. A breadboard facilitates prototyping and the integration of the combined
sensor for temperature, humidity, and CO,. This IoT-enabled setup supports real-time
data collection and environmental regulation, making it ideal for precision agriculture and
smart farming technologies.

Fan: A cooling fan used for air circulation and temperature control inside the prototype.
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Raspberry Pi: The green circuit board on the right side is a Raspberry Pi, a single-board
computer used for controlling the system, processing data, and connecting sensors to the
Raspberry Pi through the breadboard.

Relay Module: The blue board on the upper left is a relay module, used to control
high-power devices, in our case for the fan with low-power signals from the Raspberry Pi.

Arduino: The board connected to the relay module is used for interfacing with sensors.

Breadboard: The white perforated board below the Raspberry Pi is a breadboard, used
for building and testing electronic circuits without soldering.

Wires: Various wires connect the components, allowing for power and data transmission.

Transparent Enclosure: The clear enclosure made of plexiglass provides a sealed
environment for the system.

Integrated Sensor SCD41: The integrated sensor that monitors temperature, humidity,
and CO; levels in real-time.

Air Stone: Facilitates oxygenation by diffusing air into the water, increasing dissolved
oxygen levels and supporting healthy root development.

Flow Meter: Measures the precise amount of water delivered to plants.

Growing Medium: The rockwool that holds the plants in place and provides structural
support, enabling efficient nutrient and water absorption for healthy growth.

Initial data on environmental inputs, including light intensity, water intake, nutrient
levels were collected directly from the prototype using IoT sensors and image analysis.
To validate early growth stages in Figure 3, lettuce seedlings were monitored inside the
controlled chamber.

Figure 3. Early growth stage of lettuce taken from the inside of the growth chamber.

Figure 4 highlights the uniform arrangement of seedlings in the growing medium and
the precise environmental conditions maintained during the study. Image analysis was
subsequently employed to calculate water and nutrient intake. The threshold segmentation
technique, as shown in Figure 5, was processed using PlantCV software with version 3.13.0
to distinguish wet and dry areas in the growing medium. Wet pixels were counted and
converted into physical area (cm?) through calibration, allowing precise quantification of
water absorption based on the medium’s water-holding capacity. Nutrient uptake was then
calculated by multiplying the absorbed water volume with the nutrient concentration in
the irrigation solution. This method builds upon the approach discussed in our previous
work on monitoring plant growth through phenotyping and image analysis, where similar
techniques were employed to study photosynthesis efficiency and resource utilization [13].
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Figure 5. Image of threshold segmentation of lettuce seedling.

2.2. Hybrid Model: Plant Growth and Resource Efficiency

The hybrid model integrates stochastic, empirical, and optimization approaches to
provide a comprehensive framework for plant growth prediction and resource optimiza-
tion. Each component contributes a distinct perspective, capturing variability, quantifying
relationships, and identifying optimal conditions.

2.2.1. Model and Its Components
Stochastic Model Equation

The first choice is environmental variability in our simulations, as it utilizes the
stochastic differential equation (SDE) to model the growth factors including as light, water,
and temperature. This approach captures both the deterministic trends in environmental
conditions and the inherent random fluctuations.

The general form in Equation (1) for each environmental factor X(t) (such as light,
water, or temperature) [14] of the stochastic equation is:

dX; =pu(X;, t) dt+ o (X;, t) AW (1)

where p(X;, f) represents the drift term modeling the deterministic trend, o(X;, t) denotes
the diffusion term accounting for random fluctuations, and dW; corresponds to the Brow-
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nian motion. This equation provides a robust framework for simulating dynamic and
uncertain environmental conditions.

In this case study as shown in Figure 6, we adapted the general form of the stochastic
differential equation to model key environmental inputs—light, water, and temperature—
by tailoring the deterministic component (1) and random variability (o) to reflect their spe-
cific dynamics. For light, 1 represented the planned exposure schedule, while caccounted
for fluctuations such as lighting failures. For water, i corresponded to scheduled irrigation
levels, and o captured inconsistencies in absorption rates. Similarly, for temperature, p
indicated expected trends from cooling or heating systems, and o modeled unexpected
changes such as equipment malfunctions.

Humidity Fertilizerunceratinties of Xt (WA,T,L,GM,H,F)

______________________ Light Growing medium Hi Ft
: R Lt hoonnns ,GMt PR I
| | T A e Sk A G |
: Temper'a_tlzl['e_]'} ______ N Stochastic : :
H I | Model ‘ ! '
e > | ; :
b oWy | dX, = p(Xy, t) dt + (X, ) dW, ‘ f :
: | - - T - . P
; P dle  9GMt g gre T WA i :
i ~— - -+ a—i-b-
: P | v Y Y Y VY : :
: P Empirical ! ; :
, P | Model \ : :
: Ll ¥ gt Xt Bt oot Bt e \ ; 5
: | ‘ . !
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Optimization Model I

max/minf(Light, Temperature,Water,...)

Water < WateT e ‘ I
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Figure 6. Plant growth prediction and resource efficiency.

By solving the SDEs, we simulated multiple scenarios of environmental conditions
under both expected and random influences [15]. Each simulation run produced a different
outcome based on the random components, allowing us to generate stochastic predictions
for future environmental conditions [16].

Empirical Modeling for Plant Growth Dynamics

The second step is the empirical model that starts by using datasets that were recorded
on plant growth metrics under various controlled environmental conditions in the previous
step. These data points allow the estimation of coefficients by, by, b3 . .. b, for each factor,
providing a functional form of the relationship between inputs and outputs. This served as
the basis for calculating biomass and height which was validated against simulation results.

The empirical model represented by Equation (2) is a common mathematical
model [17]. The model was employed to calculate key plant growth metrics such as
biomass yield, plant height, and growth rate:

Y=0bg+01 X1 +b0Xo+b3Xs+---+b, X, +e 2)

where Y is the target growth metric such as biomass yield or plant height; X3, X5, X3 ... X
are input factors like light intensity, water intake, nutrient levels, and temperature; by is the
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intercept representing the baseline value of Y when all inputs are zero; by, by, b3 ... b, are
coefficients indicating the contribution of each factor to Y; and e is the error term accounting
for unexplained variability.

Optimization Modeling for Resource Efficiency

We determined, using various simulation scenarios, the maximum values of key inputs
(such as water, light, and nutrient) that optimize plant growth. Beyond these maximum
thresholds, increasing input levels no longer contributes to efficiency improvements and
may result in diminishing returns. This approach ensures resource-efficient growth while
maintaining optimal conditions. Simulation models helped us to evaluate the effects of
environmental variables on plant growth and development; they are useful tools that allow
for the identification of optimal conditions and the assessment of potential impacts when
these conditions are exceeded [18,19].

The framework incorporates a set of threshold conditions, represented as inequalities
in Equation (3), to identify the maximum allowable resource levels for optimal growth:

Water < Watery,qy; Light < Light,ay; Nutrient < Nutrient 3)

These conditions are derived from the simulation results and represent the resource
limits at which plant growth efficiency is maximized without significant diminishing
returns. This Condition Set serves as a novel contribution of this study, providing a
reference for optimizing resource inputs in controlled environment agriculture.

2.2.2. Integration and Interactions Between Components
Stochastic Modeling—Simulating Environmental Variability

The process begins with the stochastic model, which takes the initial environmental
inputs derived from the prototype—such as light, water, temperature, and humidity—as
its baseline. These prototype-derived inputs represent the planned or controlled conditions
for the system.

Using stochastic differential equations (SDEs), the model simulates the dynamic and
uncertain nature of these environmental factors, capturing both deterministic trends and
random fluctuations.

The outputs of this step (dL;, dGM;, dH;, dF;, dT;, dWA;) reflect these simulated
variations and provide realistic environmental scenarios. These outputs, combined
with the prototype inputs, serve as the foundation for further analysis in the empirical
modeling step.

Empirical Modeling—Predicting Growth Metrics

The empirical model takes the outputs from the stochastic model and uses them to
predict key plant growth metrics, such as biomass, height, and growth rate. This step
employs regression-based relationships derived from real-world data to quantify how
environmental conditions influence plant development. These predictions are used as the
basis for evaluating the effectiveness of current input conditions.

Optimization Modeling—Validating and Refining Inputs

The optimization step acts as a validation layer rather than a computationally intensive
model. Based on the predictions from the empirical model, it evaluates whether the current
environmental inputs (e.g., light, water, nutrients) meet the resource efficiency criteria.
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2.3. Metrics for Plant Growth and Resource Efficiency

We observed that there are different aspects of the data that need to be analyzed.
Mainly we need to see how the growth output change according to the given input by
simulating real-world data. The first inputs that we visualized are energy consumption,
water usage and nutrient intake which is calculated from the fertilizer input.

The visualized metrics are Plant Growth Index, Growth Efficiency Ratio, Cooling
Load Ratio, Biomass Yield and Plant Height. We used different light, water, and nu-
trient conditions to simulate real-world data plot different graphs representing each a
different simulation.

2.3.1. Composite Growth Metrics
The Growth Efficiency Ratio GER

The Growth Efficiency Ratio (GER) shown in Equation (4) is a novel metric, developed
during our research. GER indicates the efficiency of the usage of resources in plant growth
and specifically in biomass production.

In other words, GER represents the return on investment in terms of resources, in-
dicating how effectively inputs like energy, water, and nutrients are converted into plant
biomass. In our case study, the hybrid model aims to maximize the value of GER by
balancing and optimizing resource inputs to produce high biomass yields with minimal
resource consumption.

The goal is to achieve a highly cost-effective ratio in indoor farming by minimizing the
amounts of energy, water, and nutrients required while maximizing yield, which leads to
achieving the most efficient use of resources. The hybrid model works towards enhancing
GER, thereby supporting sustainable practices where energy consumption for light and
cooling system is a major operational expense.

Total Biomass Yield (g)

GER = Energy Consumption (kWh) 4+ Water Used (L) + Nutrient Input (g)

(4)

where Total Biomass Yield is the final dry weight of the plant (leaves, stems, fruit, etc.).

Energy Consumption refers to the total electricity used for lighting, heating, and other
systems in kWh.

Water Used refers to the total water consumed during the plant’s growth cycle in L.
Nutrient Input is the amount of fertilizer or nutrients used, usually measured in g.

Plant Growth Index (PGI)

The Plant Growth Index (PGI) is a metric we developed specifically for this case study,
integrates key growth factors such as height, biomass, and leaf area to provide a composite
measure of plant health and resource efficiency. By employing a data-driven approach to
determine the relative weights of each factor, this index represents a unique contribution
to controlled environment agriculture, offering a scalable and adaptable tool for assessing
plant performance under varying growth conditions.

The PGI in Equation (5) allows for tracking plant health over time and across multiple
growth factors. The maximization of the PGI is ensured by the hybrid model to get
optimal plant health and growth efficiency within the given environmental conditions. This
composite metric makes the comparison of the different plant growth conditions easier.

B A

H
PGI = wq- + wop- + w3~
! Hmax 2 Bmax 3 Amax

)

H = Plant height, normalized by the maximum possible height.
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B = Plant biomass normalized by the maximum possible weight.
A = Leaf area, normalized by the maximum possible leaf area.

Machine Learning for Plant Growth Index

To compute the Plant Growth Index (PGI), we employed a machine learning approach,
specifically linear regression, to determine the relative importance of key growth factors:
plant height, biomass, and leaf area. The data collected through simulations or user inputs
was structured into a matrix (X), where each row represented an individual data point, and
each column corresponded to one of the growth factors.

The relationship between the target metric (P;) and the growth factors was modeled
using the logit function, which is mathematically expressed in Equation (6) as:

. _ Py
logit(P;) = ln<1 — Pt) (6)

This equation ensures a nonlinear mapping of probabilities to a linear combination of
input factors [20].

The linear regression process, developed specifically for this case study, was imple-
mented using a Python script shown in Appendix A.1 and followed the process below:

1. Data Preparation

The dataset was divided into training and testing subsets, with 80% of the data
allocated for training the model and 20% reserved for testing. Input data (height, biomass,
and leaf area) was structured into a feature matrix (X) and paired with the target variable
(Pt), representing overall growth efficiency.

2. Model Training

A linear regression model was applied to compute coefficients (wy, w,, w3) for each
growth factor. These coefficients quantified the contribution of each factor to the target
metric (Py).

3. Normalization

The coefficients are normalized to sum to 1, ensuring interpretability as weights in
the PGI formula in Equation (4). By training the model using Python, the coefficients were
calculated to represent the relative influence of each factor on growth efficiency.

The logit transformation ensures that the probabilities are correctly modeled while
maintaining a linear relationship between the factors and the target metric.

2.3.2. Basic Growth Metrics
Cooling Load Ratio

In controlled environment systems, the efficiency of a cooling device like a fan as in our
case study is essential for optimizing energy use. The Cooling Load Ratio in Equation (7)
represents the proportion of a cooling system'’s capacity that is actively being used to meet
real-time cooling demands [21]:

Actual Cooling Load

ling Load Ratio =
Cooling Load Ratio Cooling Capacity

(7)

When the ratio is less than 1, the system is not utilized the proper way; when it reaches
1, the system is operating at full capacity.

The Observed COP (Coefficient of Performance) represents the cooling system’s effi-
ciency in our simulated case study. COP is calculated as the amount of cooling provided
per unit of energy consumed by the system; thus, it is a key metric for evaluating energy
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efficiency. We used the observed COP to understand our case study efficiency under its
operating conditions, allowing us to pinpoint how different temperature differences impact
the cooling performance [22].

Plant Height

Plant Height is a metric used to assess the growth of plants in controlled environment
agriculture, and is measured as the vertical length from the base of the plant to its highest
point, usually recorded in centimeters [23,24]. Plant height informs us about the plant’s
response to environmental conditions and resource inputs. Monitoring plant height over
time allows for adjusting inputs to ensure that plants are developing at an optimal rate,
thus contributing to efficient and productive growth in controlled agricultural systems [25].

Plant height can be modeled as in Equation (8) as a function of environmental factors
such as light intensity, water, nutrients, and temperature over time. In our case study, we
adapted the general empirical model in Equation (2) to fit the plant height:

H = by + byL + byW + bsN + by T + e ®)

where H is Plant height (cm), by is the intercept (baseline Height); by, by, b3, by are the
coefficients representing the influence of each factor; L is Light intensity (in lumens); W is
Water input (L per day); N is Nutrient input (g per day); T is Temperature (°C); e is Error
term capturing variability not explained by the main factors.

The equation estimates plant height as a function of inputs, with each coefficient
showing how much each factor contributes to growth.

Biomass Yield

There is another important metric that we wanted to investigate, which is Biomass
Yield. Biomass yield, shown in Equation (9), outlines the total dry weight of the plant
produced over a specific growth period [26]. Biomass yield is typically measured in g and
provides a direct indication of plant productivity, reflecting the effects of environmental
conditions, resource inputs and plant health [27].

As a performance metric, biomass yield is essential for evaluating the success of
various growth strategies and the efficiency of resource use. High biomass yield indicates
that the environmental conditions and resource allocation are effectively supporting plant
growth, and low biomass yield may indicates that the conditions or resources are not
sufficient [28].

Biomass yield is influenced by similar factors, including light, water, nutrients, and
temperature. In our case study, we applied the logarithmic or exponential growth model
to reflect how biomass accumulates over time, with diminishing returns as inputs in-
crease [29]. In our case study, we adapted the general empirical model in Equation (2) to fit
the biomass yield:

B = apg+aq 1n(L)+a2 11‘1(W)+L13 In(N)+ay ll’l(T) + 7 9)

where: B is Biomass Yield (g); ag is the intercept (baseline biomass); aj, ap, a3, a4 are the
coefficients representing the influence of each factor; L is Light intensity (lumens); W is
Water input (L/day); N is Nutrient input (g/day); T is Temperature (°C); e is the error term
capturing randomness or noise in the data not explained by the main factors.

By estimating B with this model, we could analyze and optimize conditions for
maximum plant growth in controlled agriculture settings.
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4. Leaf Area

In controlled environment agriculture (CEA), leaf area is a critical indicator of plant
health, growth rate, and resource efficiency, as it determines the plant’s ability to ab-
sorb light for photosynthesis, which directly impacts biomass production and overall
growth [30]. Maximizing leaf area ensures optimal light interception, efficient resource
use, including water and nutrients, and improved air circulation [31]. Given the variabil-
ity in environmental conditions, a stochastic model was employed in this case study to
realistically predict leaf area by capturing both predictable growth patterns and random
variability resulting from environmental uncertainties, such as fluctuations in light, water,
and temperature inputs [32].

The model is based on a stochastic differential equation (SDE) that incorporates a
drift term, representing the deterministic growth rate, and a diffusion term, accounting for
random variability. A Python script implementing this SDE, including both components, is
detailed in Appendix A.2. This script simulates the dynamic and uncertain nature of plant
development under changing conditions, enabling the generation of a range of potential
growth outcomes [33]. By adapting the general empirical model (Equation (2)), the study
further refines the approach to analyze and predict plant height and leaf area, providing a
robust framework for understanding growth dynamics in CEA systems.

Stochastic Model Equation in Equation (10) for Leaf Area:

DA; =u(Ai, L,W,N,T) dt + o (A;, L ,W,N, T) dW; (10)

where A; is Leaf area at time t; u(A¢, L,W,N,T) is the drift term, representing the determinis-
tic growth rate; o(A,L,W,N,T) is the diffusion term, representing random fluctuations in
leaf area; dW; is the wiener process (Brownian motion), introducing randomness into the
model; dt is time increment.

The drift term in Equation (11) represents the average expected growth in leaf area
based on the levels of light, water, nutrients, and temperature:

(A, L,W,N,T) = ap+a;L+a,W+azN+ay T (11)

Diffusion Term (o):

In the diffusion term in Equation (12), 3 controls the magnitude of random fluctuations
in leaf area, scaled by the square root of A; to reflect that variability might increase as the
plant grows larger:

o(A, L,W,N,T) = B/ A (12)

3. Results

3.1. GER
3.1.1. Combined Resource Use vs. GER

The plot in Figure 7 shows the X-axis representing energy consumption (kWh used
per plant or system) and Y-axis representing the Growth Efficiency Ratio (GER), which was
calculated as the biomass yield per unit of energy consumed. The data used to plot the
graph and to perform the computations of GER values are included in Appendix B Table Al.

The plot demonstrates the relationship between combined daily resource used: Energy
consumption (kWh), Water usage (L), and Nutrient input (g) and the Growth Efficiency
Ratio (GER), that represents the biomass yield per unit of resource consumed. We can
observe in the plot that initially, as combined resource input increases, GER also rises,
indicating improved efficiency in resource utilization. However, beyond a certain point
(approximately 200 units), the rate at which GER increases starts to slow, showing the classic
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“diminishing returns” effect. This observation suggests that while an initial investment in
resources improves growth efficiency, excessive inputs yield minimal benefits to the plant
growth. Identifying the values of the threshold allowed us for optimizing resource usage
to avoid waste, this is particularly important for cost-effective controlled environment
agriculture for our case study.

0.5751
0.550
0.525

0.500
]

0.4751

0.450

0.425r

0.400

160 180 200 220 240 260 280
[Energy + Water + Nutrients (KWh + liters + grams)|

Figure 7. Combined Resource Use vs. GER for one head of lettuce.

The plot demonstrates a non-linear relationship, which was mathematically modeled
using a polynomial equation, as shown in Equation (13). This equation was derived based
on the observed quadratic behavior of GER as a function of combined resource input:

GER = a (Combined Resource Use)? + b (Combined Resource Use) + ¢ (13)

e Combined Resource Use is the sum of energy consumption (kWh), water usage (L),
and nutrient input (g).

e a,b, and c are coefficients determined by fitting the equation to the data.

The coefficients a, b, and ¢ were obtained by performing polynomial regression on the
data points in our plot. The values of a, b, and c define the curve’s shape and allowed us to
predict GER based on varying levels of combined resource use.

In our case study, the regression analysis yielded:

e a=-1198x107°
e b=0.006474
e c=-02924

Then the equation becomes:

GER = —1.198 x 107° (Cornbined Resource Use)? + 0.006474 (Combined Resource Use) — 0.2924. (14)

Equation (14) can be used for other case studies, and the concept of “Combined
Resource Use” can be generalized to other case studies by adapting the relevant input
resources in different systems or plants. To find the maximum level of Growth Efficiency
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Ratio (GER) based on our polynomial equation, and also to determine the point where
adding more inputs becomes inefficient:

Since the equation is a quadratic equation, the maximum GER occurs at the vertex of
the parabola. For a downward-opening parabola if a is negative, which implies diminishing
returns, the vertex gives the maximum point.

To find the vertex we solve the equation shown in Equation (15):

b

a (15)

Combined Resource Usepax= —
This gives the level of combined resource use that maximizes GER. We substitute this
value back into the equation to obtain the maximum GER.
We can find the level of resource input where adding more inputs does not lead to
significant efficiency gains. We analyze the rate of change of GER by finding the second
derivative of the GER equation shown in Equation (16):

d*(GER)

5 =2a (16)
d(Combined Ressource )

Since a is constant, it confirms that the graph is concave. Negative a means diminishing
returns, and to find the point where we should stop adding inputs, we used a threshold
approach based on practical significance or efficiency. We observe that when the increase
becomes very small, we start at the Combined Resource Usemax value, then we add small
values of the inputs to observe when the increase becomes very small. We calculate the
GER values in increments at 5 or 10 units above the maximum resource level, until the
difference in GER is less than 0.01.

This approach helps us to decide when adding more resources has little impact on
GER, indicating an efficient stopping point. In our case study, the Combined Resource
Useyay is 200 units. We calculated the GER values at 210, 220 and 230 to see when the
difference is very small. We found that the GER difference between 210 and 220 was 0.012,
but between 230 and 240 was 0.008, therefore 230 units was our stopping point. The value
of 230 units is the combined resource use level in our case study beyond which adding
more light, water, or nutrients does not lead to meaningful gains in GER for lettuce. At
this value, we have to stop adding more resources to avoid inefficient resource usage.
This stopping point represents the threshold of diminishing returns, balancing yield with
resource efficiency.

3.1.2. GER Heatmap

To further examine how individual resources influence GER, we examined the in-
teraction between light intensity and water usage through additional visualizations. We
extended our analysis to understand how individual resource inputs interact to affect GER.
Specifically, we examined the combined effects of light intensity and water usage on plant
growth efficiency. To visualize these interactions, we generated a heatmap plot illustrating
how GER varies across different levels of light and water inputs.

The heatmap displays GER values for multiple combinations of light intensity and
water usage. The data used to plot this graph are included in Appendix B Table A1. Each
cell in Figure 8 represents a simulation with a specific value of light and water inputs,
and the color gradient indicates the corresponding GER. The representation of the plot in
Figure 3 demonstrates regions where GER is optimized, illustrating that moderate levels of
light intensity combined with moderate water usage yield the highest growth efficiency.
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Figure 8. GER heatmap: light vs. water.

In the GER heatmap, we observe the impact of varying light intensity and water usage
on Growth Efficiency Ratio (GER):

1.  Low Light Conditions: The highest value of GER is with low light and medium water
use (around 10-12 L), reaching values between to 0.575-0.600. This signifies that,
under low light and moderate water levels, the growth efficiency is optimized.

2. Medium Light Conditions: GER decreases as both light intensity and water usage
increase. The highest GER values in medium light are observed at 10 L of water,
where GER is around 0.525. Increasing water to 12 L or more in medium light leads
to a decrease in GER to values between 0.500-0.525. Therefore, excessive water
under medium light does not improve growth efficiency significantly and results in
diminishing returns.

3. High Light Conditions: GER values are lowest under high light and higher water
levels (12-15 L), with GER around 0.425-0.475. Even with the highest water input
(15 L), GER remains low, showing that an increase in both light intensity and water
does not lead to better growth efficiency. This illustrates that high resource inputs in
these conditions may be inefficient.

In our case study, optimal GER is achieved under low light conditions with moderate
water usage, reaching a peak of 0.600 at 10 L of water. The heatmap clearly shows that both
insufficient and excessive inputs lead to lower GER, emphasizing the need for balanced
resource allocation.

3.2. Coefficient of Performance (COP)

In our case study, the cooling system is ensuring optimal temperature regulation in
an indoor environment, which is essential for plant growth. Any indoor plant-growing
environment includes fans positioned on either side to circulate air effectively, reducing
heat build-up and stabilizing temperature across the room. Temperature control is crucial
in enclosed environments to support growth efficiency, as indicated by the Coefficient of
Performance (COP) measurements. The Coefficient of Performance measures the efficiency
of the cooling fan, defined as the amount of cooling provided per unit of energy consumed.
A higher COP indicates better efficiency, as more cooling is achieved with less energy
being used. The graph below in Figure 9 shows the relationship between the Coefficient
of Performance (COP) of the cooling fans and the ratio of actual cooling load to cooling
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capacity. The data were generated from controlled environment simulations performed
under varying ratios of cooling load to cooling capacity. The raw data are provided in
Appendix B Table A2.

Averaged COP of cooling fans

1t y=-14.1x%+21.6x-3.09

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ratio of actual cooling load to cooling capacity

Figure 9. Cooling Load Ratio and COP of cooling fans.

The peak COP value occurs between a Cooling Load Ratio of 0.6 and 0.8. In this range,
the COP reaches its maximum, indicating that the cooling fan is being efficient, where the
fan provides maximum cooling per unit of energy consumed. We solved the equation to
find the cooling fan load ratio that provides the best balance, maximizing efficiency without
pushing the system to full capacity, where efficiency begins to drop. Solving equation gives
that the Cooling Load Ratio that maximizes the COP is approximately 0.77. At this ratio,
the COP reaches its peak value of about 5.18. Beyond this point, as the cooling load ratio
approaches 1, the COP starts to decline, indicating diminishing efficiency effect when the
system is operating at full capacity.

In our case study, the analysis suggests that maintaining a cooling load ratio
of around 0.77 achieves maximum efficiency, balancing cooling effectiveness with
energy consumption.

The graph in Figure 10 demonstrates the COP’s relationship with the cooling load ratio
and air temperature difference, indicating that the cooling system reaches peak efficiency
at a specific range of load and temperature conditions. It illustrates how COP varies with
the air temperature difference between the outside and inside environments. The data
used to plot the graph are in Appendix B Table A3. The blue crosses represent the actual
COP values observed at each level of temperature difference. The red line represents
the fitted COP line, showing the expected COP performance across varying temperature
differences between outside and inside. These data provide insight into how the cooling
system performs under different environmental conditions.

As the temperature difference increases, the COP decreases.

e  Ata temperature difference of around 0 °C, the observed COP is about 6.0, indicating
high efficiency.

e  When the temperature difference reaches 10 °C, the COP drops to around 4.0.

e Ata difference of 20 °C, the COP decreases further to about 3.0.

The graph shows an expected improved COP line, suggesting that maintaining the
indoor environment closer to the outdoor temperature within a small difference is beneficial
for efficiency.
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COP vs Air Temperature Difference
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Figure 10. Analysis of COP performance in response to temperature differences.

3.3. Biomass Yield

In controlled environment agriculture, a balance between high biomass yield and
resource efficiency is essential to be balanced for the sake of sustainable crop production.
Biomass yield reflects the actual growth and productivity of the plants, which is crucial for
maximizing output while growing plants indoor. However, producing biomass efficiently
measured by the Growth Efficiency Ratio (GER) ensures that resources like water, light,
and nutrients are not wasted. Both biomass yield and GER together can give the optimal
conditions that provide the highest yield while minimizing resource consumption.

There three important factors that we considered in our study that decide about the
growth rate are: Light, Water and Nutrient intake. Therefore, we plotted graphs as shown
in Figure 11 combining two parameters at the same time, a bar chart for Biomass yield and
a line plot for GER to compare two different parameters from Light, Water and Nutrients
on the same graph. The data used for this plot are shown in Appendix B Table A4.

Biomass Yield and GER Across Light Conditions

Biomass Yield 0.56
—e— GER
0.51
o
w
Q
0.42

Low Light Medium Light High Light
Light Condition

Figure 11. Biomass yield and GER comparison across conditions.

Our aim was to identify which light condition produces the best balance between
high biomass yield and resource efficiency. This is especially useful for decision-making in
optimizing resource use.

The bars represent biomass yield in grams under different light conditions: low,
medium, and high light conditions. The line plot (GER) indicates the efficiency of biomass
production relative to energy consumption or resource use. High light conditions yield the
most biomass (around 42 g) and the highest GER (approximately 0.56). However, achieving
higher GER with low light conditions is beneficial in our case study as resource efficiency
is prioritized over maximizing biomass yield.
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The graph in Figure 12 shows biomass yield and GER at different daily water
intake rates (5 L, 7 L, and 9 L per head). The data used for this plot are shown
in Appendix B Table A5. Increased water intake correlates with higher biomass yield,
reaching about 210 g at 9 L. GER also improves with increased water usage, reaching about
0.52 at 9 L. This suggests that, within these conditions, higher water intake optimizes both
growth and resource efficiency.

Biomass Yield and GER Across Water Conditions per Head of Lettuce

= Biomass Yield 0.58
—e— GER
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Water (L/day) Conditions per Head

Figure 12. Biomass yield and GER comparison across water conditions per head of lettuce.

In Figure 13 biomass yield and GER are compared across different daily nutrient intake
levels (3 g, 4 g, and 5 g per head). The data used for this plot are shown in Appendix B Table A6.

Biomass Yield and GER Across Nutrient Conditions per Head of Lettuce
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Figure 13. Biomass yield and GER across nutrient conditions per head of lettuce.

Biomass yield peaks at 5 g (close to 200 g), while GER also improves, reaching about
0.51. This indicates that increased nutrient input improves both growth and efficiency, but
it is essential to weigh the costs of nutrients against the efficiency gains.

To sum up, from the biomass yield and GER across water conditions plot, 9 L per day
appears to yield the highest biomass while still maintaining a high GER. Therefore, 9 L/day
seems to be an optimal water level. The biomass yield and GER across nutrient conditions
plot suggests that 5 g per day of nutrients provides the highest biomass yield and the best
GER. Thus, 5 g/day is optimal for nutrient input. Based on the biomass yield and GER
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comparison across light conditions and the GER heatmap, high light levels (around 12-14 h
of light) seem to support the best growth efficiency and biomass yield. However, medium
light conditions (10-12 h) also show efficient GER levels and might be more sustainable for
energy use.

3.4. Plant Height

Plant height is a very close parameter to biomass yield, as both metrics reflect the
plant’s overall growth and health. Height often correlates with the plant’s ability to capture
light and efficiently use water and nutrients, which are essential for biomass production.
In controlled environments, analyzing plant height alongside biomass yield provides a
more comprehensive view of growth efficiency and productivity. By understanding how
changes in light, water, and nutrient inputs affect both height and biomass, we can make
data-driven decisions to maximize yield while maintaining resource efficiency.

The graph in Figure 14 shows specific quantitative dimensions into how wa-
ter and nutrient intake impact plant height growth. The data used are shown in
Appendix B Table A10. The slope of each line represents the response of plant height to
increasing nutrient levels at each watering rate. Higher slopes indicate a stronger positive
response in plant height growth per unit increase in nutrients.

Fertilizer Input vs Plant Growth with Watering Rates and R? Values
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Figure 14. Fertilizer input vs. plant growth with watering rates and R? values.

At 10 L/day watering, the slope is higher (5.47), meaning that at this watering rate,
plants gain more height per gram of nutrient input compared to the two watering rates.

At 5 L/day watering, the slope is lower (5.02), indicating a less height increase with
each additional gram of nutrients.

From the three lines, we observe that higher watering rates lead to better nutrient
utilization, and then to greater plant height. This suggests that increasing water from
5 L/day to 10 L/day enhances nutrient uptake efficiency.

For maximizing height growth until plant growth reaches approximately 70 cm, a
combination of high watering (10 L/day) with moderate to high nutrient levels (around
9-11 g) appears optimal, given the linear behavior and high slope observed.

The data used are shown in Appendix B Table A11. Similar to nutrient intake, we
observe a positive correlation between light exposure and plant height. As light hours
increase, plant height also increases.

At 10 L/day watering, the slope is higher (around 5.53), indicating that plant height
grows significantly with each additional hour of light exposure.
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At 5 L/day watering, the slope is lower (around 5.14), meaning that the height growth

response to light is less effective under reduced watering conditions.

For optimal height growth where the maximum plant growth observed is approxi-
mately 90 cm, a combination of 14-15 h of light per day with 10 L/day watering maximizes

the efficiency of light in promoting plant height.

These findings in Figure 15 align with our previous results of biomass yield and the
Growth Efficiency Ratio (GER), reinforcing the optimal resource allocation we identified.
The observed optimal conditions for plant height growth,14-15 h of light exposure com-
bined with a 10 L/day watering rate, correspond with the levels that maximized biomass

yield and GER in earlier findings.
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Figure 15. Light consumption vs. plant growth with watering rates and R? values.

3.5. Leaf Area
3.5.1. Leaf Area Development

We used the data from the simulation in the Appendix B Table A12 to plot the leaf area
versus time after sowing, as shown in Figure 16, to understand the growth progression and

the rate at which the individual lettuce leaves are developed.

800 H— Leaf 1 (Starts day 10)
Leaf 2 (Starts day 20)
—— Leaf 3 (Starts day 30)
700 1 —— Leaf 4 (Starts day 40)
—— Leaf 5 (Starts day 50)
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Figure 16. Logistic growth model simulation of leaf area per leaf in lettuce.
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The graph represents the time-dependent growth of individual lettuce leaves, plotted
as the area per leaf (cm?) against days from sowing. Each curve represents a specific leaf
that begins development at a distinct point in time, corresponding to the plant’s sequential
leaf emergence pattern.

For instance:

Leaf 1 begins developing around day 10;
Leaf 2 around day 20;
Leaf 3 around day 30;
Leaf 4 around day 40;
Leaf 5 begins developing around day 50.

Leaves that emerge earlier, such as Leaf 1 (starting around day 10) and Leaf 2 (starting
around day 20), benefit from a longer growth period, allowing them to expand fully and
achieve their maximum area (~800 cm?) relatively quickly. In contrast, leaves that emerge
later, such as Leaf 4 (starting around day 40) and Leaf 5 (starting around day 50), ini-
tially grow faster to compensate for the delayed start. However, these later-emerging
leaves eventually plateau at a similar maximum area due to genetic limitations and
environmental constraints.

Earlier-emerging leaves, such as Leaf 1 and Leaf 2, benefit from stable resources, in-
cluding light and nutrients, during their growth period, and with minimal competition. In
contrast, later-emerging leaves, like Leaf 4 and Leaf 5, face a resource-constrained environ-
ment as older leaves occupy more space, intercept light, and utilize nutrients, influencing
the growth trajectory of younger leaves. This overlapping growth pattern ensures efficient
light interception throughout the plant’s lifecycle, as leaves at different stages contribute to
photosynthetic activity. However, the limited leaf area of later-emerging leaves, such as
Leaf 5, reflects the plant’s natural balance between maximizing photosynthetic capacity
and allocating resources to other essential physiological processes.

3.5.2. Influence of Environmental Factors on Leaf Area

As a part of analyzing the factors impacting the PGl index, we focused on how different
environmental factors including water levels, nutrient intake, and light intensity affect the
leaf area of plants over a 30-day growth period. Leaf area is a crucial indicator of a plant’s
photosynthetic capacity and overall health. Figure 17 shows the change in leaf Area across
different water levels, we can see that as water levels increase from 5 L to 9 L per day, there
is a clear upward trend in leaf area growth, with 9 L/day yielding the highest leaf area by
day 30. The data used to plot this graph are in Appendix B Table A9.
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:,(}L"\ //A\,-r/

: ; o o W P
Figure 17. Leaf area vs. water levels.

Similar to water levels, increased nutrient intake in Figure 18 shows that a change
from 3 g to 7 g per day leads to a larger leaf area. Higher nutrient intake correlates with
more significant leaf growth, reaching the maximum around 7 g/day. The data used to plot
this graph are in Appendix B Table A10.
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Figure 18. Leaf area vs. nutrient intake.

The impact of light exposure shown in Figure 19 is also evident, with higher light in-

tensity (12 h/day) resulting in the most

substantial leaf area growth, followed by moderate

and low light conditions. The data used to plot this graph are in Appendix B Table A11.
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Figure 19. Leaf area vs. light intensity.

3.6. Machine Learning

To determine the contributions of plant height, biomass, and leaf area to the Plant
Growth Index (PGI), we implemented a linear regression model as described in the method-
ology. The input data are collected iteratively for each data point until the user indicates
completion by typing “done”. The Python script is detailed in Appendix A.2. The results,
shown in Figure 20, illustrate the input process and the normalized weights.

[Enter the data for plant growth analysis (type
Enter Height (or type ‘done” to finish): 10
Enter Biomass: 20

Enter Leaf Area: 160

Normalized Weights for PGI:
w_Height: 0.25

w_Biomass: 0.55
w_Leaf_Area: 0.20

Enter Height (or type ‘done’ to finish): done

‘done’ to finish):

Figure 20. User input data workflow.

The normalized weights derived from the linear regression model are as follows:
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The highest weight (w2 = 0.55) indicates that biomass has the most significant impact
on the PGIL This suggests that biomass accumulation is the primary driver of growth
efficiency in the studied plants, likely due to its direct correlation with productivity.

Plant height (w1l = 0.25) contributes moderately, reflecting its role in supporting
photosynthetic efficiency and overall structural development.

Leaf area (w3 = 0.20) has a lower contribution, highlighting its supportive role in
facilitating photosynthesis but with diminishing returns as leaf overlap and shading occur.

These results emphasize the need to prioritize biomass accumulation strategies, such as
nutrient optimization, while monitoring height and leaf area to avoid resource inefficiencies.

3.7. Plant Growth Index (PGI)

Figure 21 illustrates the progression of the Plant Growth Index (PGI) over a 30-day
period. We used the data in the Appendix B Table A13 for the plot. The PGI shows a
gradual increase at the start, beginning at approximately 0.2 on Day 0 and reaching 0.6 by
Day 10. During this initial phase, plant growth is steady, as resources are being allocated
toward early-stage development.
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Figure 21. PGI (Plant Growth Index) over 30 Days.

Between Days 10 and 20, the PGI rises more sharply, climbing from 0.6 to 0.8. This
phase corresponds to the period of optimal growth, where the plant rapidly accumulates
height, biomass, and leaf area under favorable conditions. By Day 20, growth efficiency
begins to stabilize, with the PGI continuing to increase at a slower rate until it approaches
but never fully reaches its maximum value of 1.0 by Day 30. This indicates that the plant is
nearing its growth potential, as defined by the experimental conditions.

The PGI, developed as a novel metric for this study, has proven to be a valuable
tool for evaluating plant health and growth efficiency. By combining multiple growth
factors (height, biomass, and leaf area) into a single, weighted index, it provides a clear
and concise representation of plant performance over time. The metric not only highlights
the phases of growth where resource allocation is most effective but also enables informed
decision-making for optimizing controlled environment agriculture.

4. Discussion and Conclusions

This study introduces a novel hybrid model that functions as both a model and a
framework to enhance plant growth and resource efficiency in controlled environments.
As a model, it integrates stochastic, empirical, and optimization to predict plant growth
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and optimize resource efficiency. As a framework, it applies a logical approach for data
collection, analysis, and decision-making, making it adaptable to diverse scenarios and
environmental conditions.

The hybrid model combines stochastic modeling, empirical analysis, optimization
techniques, and IoT-enabled data collection to enhance plant growth and resource efficiency
in controlled environments. By utilizing IoT sensors connected to Raspberry Pi systems,
the framework ensured precise and replicable measurements of environmental factors
such as light, water, temperature, and humidity, bridging the gap between simulation and
real-world applications.

The stochastic model successfully captured environmental variability, while the empir-
ical model quantified relationships between resource inputs and key plant growth metrics,
including biomass, height, and leaf area. Machine learning was employed to derive data-
driven weights for the Plant Growth Index (PGI), offering a comprehensive evaluation of
plant performance. Additionally, the optimization model identified optimal resource levels,
resulting in maximum yield and resource efficiency. The framework’s focus on optimizing
resource use demonstrated significant environmental benefits. By identifying optimal
water usage of 9 L/day, light exposure of 14 h/day, and nutrient input of 5 g/day, the
model reduced resource consumption without compromising yields, achieving a maximum
biomass of 200 g. Additionally, the cooling system’s optimized Coefficient of Performance
(COP) of ~5.18 highlights energy efficiency gains.

Key findings, summarized in Table 1, highlight the practical relevance of the framework.

Table 1. Summary of the findings.

Metric

Description

Key Results

Growth Efficiency Ratio (GER)

Plant Growth Index (PGI)

Cooling Load Ratio (CLR)

Plant Height

Biomass Yield

Leaf Area Dynamics

Water, Nutrients, and Light Effects

Efficiency of converting inputs (energy,
water, nutrients) into biomass yield.

Composite index integrating height,
biomass, and leaf area, weighted
by importance.

Ratio of cooling load to system capacity,
measuring fan efficiency.
Vertical growth under
optimal conditions.

Total plant mass in grams.

Growth progression of individual leaves
under optimal conditions.

Relationship between environmental
inputs and growth metrics.

GER peaked at 0.6 for ~200 units of
combined input. Gains beyond
230 units became negligible.

PGI increased rapidly from 0.6 to 0.8
(Days 10-20) and saturated at ~1.0 by
Day 30.

Maximum efficiency at CLR ~0.77, COP
~5.18.

Maximum height of 90 cm at 14 h
light/day and 10 L water/day.
Maximum biomass of 200 g at 9 L
water/day, 5 g nutrients/day, and 14 h
light/day.

Maximum leaf area per leaf ~800 cm?,
with faster initial growth for
later-emerging leaves.
Optimal inputs: 9 L/day water,

5 g/day nutrients, 14 h/day light.

Table 1 summarizes our findings from this work:

To conclude, the framework was validated through experimental data and showed
significant improvements over traditional models. Previous studies have often relied on
single growth metrics, such as biomass yield or plant height, to evaluate performance,
which limits their ability to assess resource efficiency comprehensively [34,35]. In contrast,
our approach introduced the Growth Efficiency Ratio (GER) and Plant Growth Index (PGI)
metrics, which integrate multiple growth factors to provide a more holistic evaluation. This
aligns with findings from recent studies [36-38], where composite indices were shown to
improve decision-making in crop management.
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Unlike traditional models that assume constant environmental factors [39-41], the
stochastic component of this framework accounts for variability in light, temperature, and
humidity, offering more realistic simulations. Similar stochastic approaches have been
successfully applied in forestry models [42], but their integration with IoT and optimization
techniques remains underexplored in agriculture. By incorporating IoT technologies to
enhance data accuracy and replicability, this framework addresses critical gaps in precision
agriculture [43].

Compared to recent optimization studies [44], which primarily focus on maximiz-
ing yield, this framework balances yield with resource efficiency, demonstrating practi-
cal applications in resource-limited scenarios. For instance, while previous research on
tomato crops identified optimal water use [45], this study extends the approach to a multi-
dimensional framework for lettuce cultivation, providing a scalable solution for controlled
environment agriculture.

Despite its strengths, the framework has limitations that future research should ad-
dress. The current model is crop-specific, focusing on lettuce, and further research is
required to adapt it to crops with diverse physiological needs. Expanding the framework
to include crop-specific parameters and datasets will broaden its applicability. Future
studies should also aim to integrate advanced sensors, such as multi-spectral cameras and
automated nutrient analyzers, to improve data granularity and model precision.

Finally, the use of linear regression in deriving PGI weights is a limitation, as it restricts
the model’s ability to capture complex, non-linear interactions. Incorporating advanced
machine learning techniques, such as neural networks, could enhance predictive power and
adaptability. By addressing these limitations, the framework has the potential to become
a tool for advancing sustainable agricultural practices and improving resource efficiency
across a wide range of crops and controlled environment settings
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Appendix A.
Appendix A.1. Python Script for Machine Learning Model (Linear Regression)

import numpy as np
from sklearn.linear_model import LinearRegression

# Function to get user data interactively

def get_user_data():

print(“Enter the data for plant growth analysis (type ‘done’ to finish):”)
height =[]

biomass =[]

leaf_area =[]

while True:

try:
h = input(”Enter Height (or type ‘done’ to finish): *)
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if h.lower() == ‘done’:

break

h = float(h)

b = float(input(”Enter Biomass: “))
la = float(input(“Enter Leaf Area: “))

height.append(h)

biomass.append(b)

leaf_area.append(la)

except ValueError:

print(“Invalid input. Please enter numeric values.”)

return np.array(height), np.array(biomass), np.array(leaf_area)

# Collect user input
data = get_user_data()
height, biomass, leaf_area = data

# Ensure at least one data point was entered

if len(height) == 0 or len(biomass) == 0 or len(leaf_area) == 0:
print(“No data entered. Exiting program.”)

exit()

# Prepare the data matrix for regression analysis
X = np.column_stack((height, biomass, leaf_area))

# Simulated target variable
y = np.random.rand(len(height))

# Train a linear regression model
model = LinearRegression()
model fit(X, y)

# Extract coefficients and normalize them
coefficients = model.coef _
normalized_weights = coefficients/np.sum(coefficients)

# Display results

print(“\nNormalized Weights for PGI:”)
print(f"w_Height: {normalized_weights [0]:.2f}")
print(f"w_Biomass: {normalized_weights [1]:.2f}")
print(f"w_Leaf Area: {normalized_weights [2]:2f}”)

Appendix A.2. Python Script for Leaf Area Simulation

import numpy as np
import matplotlib.pyplot as plt

# Generating sample data for each factor’s impact on leaf area
days = np.linspace(0, 30, 30) # Simulate over a 30-day period

# Leaf Area vs Water Levels (5L,7 L, 9L)

water_levels =[5, 7, 9]

leaf_area_water = {level: np.clip(level * days * 2 + np.random.normal(0, 50, len(days)), 0, 800) for
level in water_levels)

# Leaf Area vs Nutrient Intake (3g,5¢,7 g)

nutrient_levels = [3, 5, 7]

leaf_area_nutrient = {level: np.clip(level * days * 2.5 + np.random.normal(0, 50, len(days)), 0, 800)
for level in nutrient_levels}
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# Leaf Area vs Light Intensity (8 h, 10 h, 12 h)

light levels = [8, 10, 12]

leaf_area_light = {level: np.clip(level * days * 1.8 + np.random.normal(0, 50, len(days)), 0, 800) for
level in light_levels}

# Plot for Water Levels

plt.figure(figsize=(10, 6))

for level, area in leaf_area_water.items():
plt.plot(days, area, label=f Water Level: {level}L/day’)
plt.xlabel("Time (days)”)

plt.ylabel(“Leaf Area (cm?)”)

plt.legend()

plt.show()

# Plot for Nutrient Intake

plt.figure(figsize=(10, 6))

for level, area in leaf_area_nutrient.items():
plt.plot(days, area, label=f Nutrient Intake: {level}g/day’)
plt.xlabel("Time (days)”)

plt.ylabel(“Leaf Area (cm?)”)

plt.legend()

plt.show()

# Plot for Light Intensity

plt.figure(figsize=(10, 6))

for level, area in leaf_area_light.items():

plt.plot(days, area, label=f Light Intensity: {level }h/day’)
plt.xlabel("Time (days)”)

plt.ylabel(“Leaf Area (cm?)”)

plt.legend()

plt.show()

Appendix B.

Table A1. Table for the data used to compute GER over 30 days.

Energy Consumption (kWh) Water Used (L) Nutrient Input (g) Total Biomass Yield (g) GER
0.8 160 50 64 0.400
1.0 180 55 81 0.450
1.2 200 60 100 0.500
1.4 220 65 115 0.525
1.6 240 70 132 0.550
1.8 260 75 149 0.575
2.0 280 80 162 0.580

Table A2. Data of the simulation of COP values according to the ratio of cooling.

Ratio of Actual Cooling Load to Cooling Capacity Averaged COP of Cooling Fans
0.2 1.296
0.3 2.511

0.4 3.576
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Table A2. Cont.

Ratio of Actual Cooling Load to Cooling Capacity Averaged COP of Cooling Fans
0.5 4491
0.6 5.256
0.7 5.871
0.8 6.336
0.9 6.651
1 5.716

Table A3. Table for the calculations of the curves of expected improved cop, fitted cop and observed cop.

AT=T,ytside— Tinside

o o . : . Expected
Toutside CC)  Tiysige °C) Air Tempem(?g;e Difference Observed COP Fitted COP Impr(f’ve 4.COP
15 25 —10 6.8 6.7 7.2
20 25 -5 6.0 5.9 6.5
25 25 0 5.2 5.1 5.8
30 25 5 4.3 4.2 49
35 25 10 3.5 3.3 4.1
40 25 15 2.8 2.5 3.3
45 25 20 75 7.3 7.8
Table A4. Table for Biomass Yield and GER across light conditions.
Light (h/Day) Biomass Yield (g) GER
6 20 0.47
9 37 0.54
12 45 0.56
Table A5. Table for Biomass Yield and GER across water conditions.
Water (L/Day) Biomass Yield (g) GER
5 162 0.46
7 198 0.50
9 221 0.59
Table Aé6. Table for Biomass Yield and GER across nutrient conditions.
Nutrient (g/Day) Biomass Yield (g) GER
3 153 0.42
4 176 0.51
5 212 0.57
Table A7. Leaf area growth vs. light intensity.
Day 8 h/Day (cm?) 10 h/Day (cm?) 12 h/Day (cm?)
1 51 55 64
5 102 123 141
10 151 181 202

15 217 262 217
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Table A7. Cont.

Day 8 h/Day (cm?) 10 h/Day (cm?) 12 h/Day (cm?)
20 302 351 398
25 418 504 552
30 602 681 704

Table A8. Data of the area growth versus nutrient intake.

Day 3 g/Day (cm?) 5 g/Day (cm?) 752?;;}7
1 41 47 53
5 78 102 119
10 140 182 202
15 203 249 281
20 282 353 402
25 401 498 603
30 551 652 698

Table A9. Data for leaf area growth vs. water levels.

Day 5 L/Day (cm?) 7 L/Day (cm?) 9 L/Day (cm?)
1 30 42 47
5 69 98 129
10 141 192 233
15 212 271 321
20 303 378 453
25 399 503 598
30 521 622 701

Table A10. Table for the effect of fertilizer input and watering levels on plant growth.

Fertilizer Input (g) Plant Growth Plant Growth Plant Growth
(5 L/Day) (cm) (7 L/Day) (cm) (10 L/Day) (cm)
3 25.72 28.7 30.59
4 30.74 33.67 36.06
5 35.76 38.64 41.53
6 40.78 43.61 47.0
7 458 48.58 52.47
8 50.81 53.55 57.94
9 55.83 58.51 63.41
10 60.86 63.48 68.88

11 65.88 68.46 74.35
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Table A11. Table for the effect of Light consumption and watering levels on plant growth.
Light Consumption (h) Plant Growth Plant Growth Plant Growth
8 P (5 L/Day) (cm) (7 L/Day) (cm) (10 L/Day) (cm)

6 40.02 47.90 53.03
7 45.14 52.01 58.53
8 50.28 57.02 64.06
9 55.42 62.03 69.59
10 60.56 67.04 75.12
11 65.70 72.05 80.65
12 70.84 77.06 86.18
13 75.98 82.07 91.71
14 81.12 87.08 97.24

Table A12. Table for the data of the five leaves starting at different times.

Tin;io(rzays Leaf 1 (Starts Leaf 2 (Starts Leaf 3 (Starts Leaf 4 (Starts Leaf 5 (Starts
Sowing) Day 10) Day 20) Day 30) Day 40) Day 50)
0 0 0 0 0 0
10 22.01 0 0 0 0
20 105.34 23.12 0 0 0
30 298.75 110.67 25.43 0 0
40 603.89 304.21 109.34 23.98 0
50 801.56 608.73 305.87 110.12 25.78
60 802.31 805.24 607.99 309.45 111.01
70 801.98 802.47 806.12 605.78 308.56
80 802.15 804.76 804.31 807.65 606.21
90 803.24 803.99 805.78 804.12 804.78
100 801.92 802.67 804.45 806.32 802.03
Table A13. Table of for the raw data for computing the Plant Growth Index (PGI).
Time (Days) H (cm) B (g) A (cm?) PGI
0 10 20 160 0.20
1 11 22 176 0.23
2 12 24 192 0.26
3 13 26 208 0.29
4 14 28 224 0.33
5 16 32 240 0.37
6 18 36 256 0.41
7 20 40 272 0.45
8 22 44 288 0.49
9 24 48 304 0.53
10 26 52 320 0.57
11 28 56 336 0.60
12 30 60 352 0.63
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Table A13. Cont.

Time (Days) H (cm) B (g) A (cm?) PGI
13 32 64 368 0.67
14 34 68 384 0.70
15 36 72 400 0.73
16 38 76 416 0.76
17 40 80 432 0.79
18 42 84 448 0.82
19 44 88 464 0.85
20 46 92 480 0.88
21 48 96 496 0.90
22 50 100 512 0.92
23 52 104 528 0.94
24 54 108 544 0.96
25 55 110 560 0.97
26 56 112 576 0.98
27 57 114 592 0.99
28 58 116 608 1.00
29 58 116 608 1.00
30 58 116 608 1.00
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