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Abstract: In contemporary agricultural practices, greenhouses serve as a critical component
of infrastructure, where soil temperature plays a vital role in enhancing pest management
and regulating crop growth. However, achieving precise greenhouse environmental con-
trol continues to pose a significant challenge. In this context, the present study proposes
ReSSA-iTransformer, an advanced predictive model engineered to accurately forecast soil
temperatures within greenhouses across diverse temporal scales, encompassing both long-
term and short-term horizons. This model capitalizes on the iTransformer time-series
forecasting framework and integrates Singular Spectrum Analysis (SSA) to decompose
environmental variables, thereby augmenting the extraction of pivotal features, such as
soil temperature. Furthermore, to mitigate the prevalent distribution shift issues inherent
in time-series data, Reversible Instance Normalization (RevIN) is incorporated within the
model architecture. ReSSA-iTransformer is adept at executing multi-step forecasts for
both extended and immediate future intervals, thereby offering comprehensive predictive
capabilities. Empirical evaluations substantiate that ReSSA-iTransformer surpasses con-
ventional models, including LSTM, Informer, and Autoformer, across all assessed metrics.
Specifically, it attained R2 coefficients of 98.51%, 97.03%, 97.26%, and 94.83%, alongside
MAE values of 0.271, 0.501, 0.648, and 1.633 for predictions at 3 h, 6 h, 24 h, and 48 h
intervals, respectively. These results highlight the model’s superior accuracy and robust-
ness. Ultimately, ReSSA-iTransformer not only provides dependable soil temperature
forecasts but also delivers actionable insights, thereby facilitating enhanced greenhouse
management practices.

Keywords: time-series prediction; iTransformer; singular spectrum analysis; reversible
instance normalization; greenhouse control

1. Introduction
Severe climate change, coupled with a rapidly expanding global population, presents

significant challenges to the sustainability of agricultural systems [1]. Increasingly frequent
extreme weather events and rising food demand necessitate more resilient and efficient
production strategies. Agricultural production is particularly susceptible to environmental
fluctuations [2]. Facility agriculture, equipped with intelligent control systems, can maintain
optimal growing environments year-round, thus improving yields, resource utilization, and
environmental sustainability. These controlled conditions also expand viable cultivation
areas and reduce geographical constraints. Advanced predictive models further enhance
facility agriculture by providing scientific decision support, accurate early warnings, and
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precise automation of the production environment [3]. As a result, the development of
robust predictive models is urgently needed to ensure future food security and sustainable
agricultural practices.

Greenhouses create controlled microclimates conducive to crop growth by integrating
various regulatory measures. However, their climate is inherently complex, shaped by ex-
ternal weather conditions, internal management strategies, and numerous interdependent
parameters that interact nonlinearly. Traditional predictive models typically use system
dynamics or material flow transfer methods to forecast environmental changes [4]. Among
these factors, maintaining optimal soil temperature and moisture is crucial for greenhouse
production [5]. These conditions influence nutrient distribution, soil fertility, microbial
activity, and plant development, directly impacting yield and profitability. Accurate soil-
condition predictions further enhance irrigation efficiency and resource utilization [6].

Cucumbers are sensitive to fluctuations in soil temperature due to their relatively large
leaf area and shallow root distribution. In greenhouse cultivation, maintaining an optimal
soil temperature is crucial for fostering a robust root system, enhancing mineral and water
absorption, and improving the overall vitality of the plant [7]. When soil temperatures
are maintained within the range of 20–25 ◦C, the growth rate of cucumber roots and the
level of enzymatic activity are optimized [8], which in turn enhances the photosynthetic
rate and assimilate accumulation in the aboveground parts, ultimately improving fruit
yield and quality [9]. Conversely, excessively low temperatures can inhibit the activity
of root-related enzymes; reduce nutrient absorption efficiency; and lead to typical stress
symptoms, such as leaf wilting and curling. On the other hand, excessively high tempera-
tures can accelerate root respiration and increase transpiration rates, making cucumbers
more susceptible to water deficiency. This can result in problems such as fruit deformity
or elevated levels of bitter compounds [10–12]. The internal greenhouse soil temperature
and air temperature reflect a complex interplay of external conditions, internal materials,
and historical environmental patterns [13]. Recent machine-learning approaches have
capitalized on historical time-series data to model these intricate dynamics with increasing
accuracy. For example, Li et al. [14]. employed an extreme gradient-boosting algorithm
to predict greenhouse temperature and humidity, subsequently informing greenhouse
film-rolling decisions. Zhao et al. [15]. integrated convolutional neural networks (CNNs)
with gated recurrent units (GRUs), improving temperature and humidity forecasts beyond
what conventional backpropagation (BP) neural networks, long short-term memory (LSTM)
networks, or standalone GRUs could achieve. Jung et al. [16]. combined recurrent neural
networks (RNNs) with LSTMs to mitigate gradient explosion issues, outperforming arti-
ficial neural networks (ANNs) and nonlinear autoregressive exogenous (NARX) models,
though the resulting model remained complex and less effective for humidity prediction.
T. Petrakis et al. [17]. proposed a multilayer perceptron (MLP) model to estimate indoor
temperature and relative humidity of the greenhouse climate. Vyas et al. [18]. introduced
a semi-supervised dynamic graph neural network for soil moisture prediction, demon-
strating robustness to missing data and strong performance on real-world datasets. As
variants of the Transformer architecture, Informer, Autoformer and iTransformer have
demonstrated strong performance across various fields. Informer introduces a probabilis-
tic sparse attention mechanism to address the high computational cost associated with
self-attention, thereby enhancing the predictive accuracy of long-sequence time series.
Autoformer, on the other hand, models trend components through moving averages in
seasonal trend decomposition, effectively separating the changing trend and seasonal
components from the hidden variables. It alternates between optimizing prediction results
and decomposing the sequence, achieving mutual reinforcement in the process. Without
modifying the original components, iTransformer redesigns the architecture to enhance its
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timing-prediction performance. However, a single prediction model still has certain limita-
tions. When confronted with short-period time-series data, these models often struggle
to effectively capture the sequence characteristics, making them susceptible to overfitting
during training.

Although these methodologies demonstrate proficiency in accurately predicting short-
term temperatures, they often encounter difficulties in multi-step temperature forecasting.
Specifically, they perform well in predicting a singular instance but face challenges in
forecasting temperatures at multiple distinct time intervals [19]. Furthermore, there exist
inherent limitations in the relationship between the volume of data and the implemen-
tation of algorithms. Many forecasting techniques depend on sparse data points, which
may be inadequate for short-term or precise predictions. The temporal characteristics of
changes in greenhouse soil temperature are evident, and the internal climate of a green-
house differs significantly from traditional meteorological forecasts. This is because both
air and soil temperatures are greatly influenced by complex environmental factors and
structural properties [20]. Relying solely on simple variables, such as temperature, for
forecasting cannot adequately account for the temperature fluctuations caused by multiple
interacting variables.

This study examines the limitations of current time-series forecasting models in the
context of multivariate long-term forecasting. We propose an iTransformer time-series
forecasting model that combines singular spectrum analysis (SSA) [21] with reversible
instance normalization (RevIN) [22], referred to as ReSSA-iTransformer. The model aims
to deliver more accurate forecasts for variables such as soil temperature in cucumber
greenhouses. The main contributions of this study are summarized as follows:

• The environmental-factor data obtained from the cucumber greenhouse are analyzed
using SSA to decompose the greenhouse soil-temperature data, in conjunction with
strongly correlated predictive variables, into subsequences. This methodology en-
hances the significance of features within the predictive model, thereby facilitating
a more precise representation of the characteristics and trends present in the time-
series data.

• The ReSSA-iTransformer greenhouse soil temperature prediction model is the first
to integrate the SSA and RevIN methods within the iTransformer prediction frame-
work, enabling both long- and short-term multi-step predictions of greenhouse soil
temperature. In this model, subsequences derived from the SSA decomposition serve
as the input for the prediction process. To address the distribution shift problem in
the model’s prediction results, RevIN technology is employed, enhancing the overall
prediction performance.

• Comprehensive experiments validate the effectiveness of the SSA decomposition algo-
rithm in time-series prediction models through comparative testing. The model devel-
oped in this study demonstrates superior performance compared to traditional models
in predicting soil temperature in cucumber greenhouses across various forecasting-
time horizons.

The remainder of this paper is organized as follows: Section 2 introduces the materials
and methods, including data collection, dataset preprocessing, and the algorithms em-
ployed in this study. Section 3 presents the experiments and result analysis, which includes
numerous experiments. Finally, Sections 4 and 5 provide an analysis and summary of the
findings in this study.
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2. Materials and Methods
2.1. Dataset Construction and Preprocessing Process
2.1.1. Greenhouse Environment Dataset Construction

The cultivation environment of cucumbers is a critical factor influencing the quality of
production, as it directly affects their growth cycle, susceptibility to diseases, and overall
yield. To enhance the production quality of greenhouse cucumbers, it is imperative to
analyze the environmental variables that affect cucumber growth and implement appro-
priate measures to regulate the greenhouse conditions. Establishing optimal growing
conditions and mitigating the spread of diseases caused by adverse environmental factors
will contribute to improved production quality.

In order to accurately predict soil temperature within the cucumber greenhouse, key
environmental parameters were collected from a greenhouse situated at the No. 7 planting
shed of the National Precision Agriculture Research Demonstration Base in Changping
District, Beijing. The experimental greenhouse is designed as a solar greenhouse, measuring
30 × 7.5 × 3 m, and is utilized for the cultivation of two cucumber crops. The overall
configuration is illustrated in Figure 1. To more accurately represent the climate-change
characteristics within the greenhouse, the sensor was positioned in the central area of
the room, at a height of 1.5 m from the ground, 15 m from both the front and back of
the greenhouse, and 3.75 m from each side. The environmental dataset for the cucumber
greenhouse developed in this study encompasses data on soil temperature, soil moisture, air
temperature, air humidity, light intensity, outdoor evapotranspiration, and soil salinity. All
data were collected from NX-XLB01 Green Cloud Greenhouse Environmental Monitoring
Equipment(Beijing Academy of Agricultural and Forestry Sciences Information Technology
Research Center, Beijing, China). A total of 17,570 data items were collected at 10-min
intervals, as presented in Table 1.
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Table 1. Main data collected in cucumber greenhouse.

Acquisition
Parameters ParameterUnit Measuring

Range Accuracy Resolution Data Cycle

Soil temperature ◦C −50~80 ±0.5 ◦C 0.1 ◦C 10 min
Soil moisture RH 0~100% ±3%RH 0.1% RH 10 min

Air temperature ◦C −40~60 ±0.5 ◦C 0.1 ◦C 10 min
Air humidity RH 0~100% ±3%RH 0.1% RH 10 min

Light intensity Lux 0~56,500 ±5% 0.1 Lux 10 min
Salt content mg/L 0~10,000 ±10% 0.1 mg/L 10 min

Evapotranspiration mm 0–200 ±5% 0.001 mm 10 min
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2.1.2. Experimental Data Preprocessing

When training a model, the presence of numerous outliers and missing values in the
training data can impede the model’s ability to learn robust time-dependent features. The
model may focus excessively on these anomalies, which can introduce unnecessary com-
plexity during the training iterations. Sensor limitations, manual greenhouse operations,
and extreme weather conditions can lead to missing or anomalous data, posing challenges
in building reliable cucumber greenhouse datasets. Unstable sensor networks and packet
loss further exacerbate these issues by causing short-term omissions in environmental
parameters. To ensure robust predictive models, it is crucial to preprocess the collected
data, removing parameters with substantial missing values and eliminating outliers that
deviate significantly from expected ranges. This approach preserves data integrity and
enhances model performance.

The data-preparation phase encompasses two primary steps: outlier removal and
missing value imputation. Outliers are defined as non-positive values and are excluded
from the dataset. Missing values are addressed through various interpolation methods,
contingent upon their position within the data sequence. It is a widely accepted practice
to impute missing values between two valid data points through the method of linear
interpolation. In instances where a sequence exhibits missing values at the beginning, the
first valid downstream value is employed for imputation. Conversely, if the series contains
missing values at the end, the first valid upstream value is utilized for this purpose. In
experiments, the dataset is divided into training, validation, and test sets in a 7:1:2 ratio.

2.2. iTransformer

The iTransformer represents a variant of the Transformer framework, specifically
designed to address the challenges encountered by autoregressive models when generating
sequences in reverse order [23]. This innovative time-series prediction model enhances
performance by overcoming the limitations of traditional Transformers, particularly in
managing large-scale backtracking windows and conventional embedding strategies. As
illustrated in Figure 2, the traditional Transformer model fails to adequately represent the
intrinsic correlations among variables at the same time step within a time series. In contrast,
the iTransformer adopts an inverted perspective of the time series, mapping each time
series to a variable label. This approach enables the model to not only focus on temporal
dependencies but also to effectively capture the inter-variable correlations. By employ-
ing a self-attention mechanism on the variable tokens, the iTransformer adeptly extracts
dependencies across multiple variables. This methodology is particularly advantageous
for multivariate time series, where the intricate interconnections between variables often
pose challenges for traditional Transformers. Moreover, the iTransformer mitigates the
high computational costs typically associated with extended backtracking windows. In
conventional Transformers, increasing the backtracking window often results in diminished
performance and heightened computational demands. The iTransformer addresses this
concern by reengineering the attention and feedforward network components, thereby
reducing the complexity of the attention mechanism to a linear scale, which efficiently
accommodates longer backtracking windows [24]. The architecture of the iTransformer
proficiently resolves the task of generating output sequences in reverse order, offering tai-
lored solutions for specific sequence generation requirements. Initially, the entire sequence
of a given variable is transformed by the iTransformer into variable tokens, which gener-
ate feature vectors that encapsulate the variable and independently reflect its historical
changes. Subsequently, the attention module identifies the correlations among multiple
variables, while the feedforward network encodes historical observation features layer by
layer along the temporal dimension, mapping these features to future prediction outcomes.
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The variation in greenhouse soil temperature exhibits a short periodicity and is significantly
influenced by diurnal meteorological conditions. The iTransformer model is capable of
mapping the time-series characteristics of each influencing factor to a uniform variable label
within the time-series analysis of the dataset utilized in this study. This approach effectively
captures the interrelationships among variables, thereby enhancing the predictive accuracy
regarding trends in greenhouse soil temperature changes.
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The iTransformer framework is composed of an embedding layer, a projection layer,
and multiple stackable Transformer modules. Initially, the iTransformer maps the entire
sequence, X:,n, of each variable into a high-dimensional feature representation, h0

n, through
the embedding layer. Subsequently, the feature set H =

{
h1, h2, . . . , hN} ∈ RN×D is input

into the TrmBlock module to model the correlations between variables, where H contains N
feature vectors of dimension, D [25]. The output, Hl , from the l-th layer is then fed into the
subsequent TrmBlock module to continue modeling the relationships among the variables.
The feedforward network encodes historical observation features layer by layer along the
time dimension and maps the learned features, hN

l , to future prediction outcomes, where
Ŷ:,n represents the predicted value for each variable. The entire process can be articulated
through Equations (1)–(3).

h0
n = Embedding (X:,n) (1)

Hl+1 = TrmBlock
(

Hl
)

, (l = 0, . . . , L − 1) (2)

Ŷ:,n = Projection
(

hL
n

)
(3)

2.3. SSA Signal Decomposition

SSA can accurately decompose highly variable time-series data without obscuring key
signal trends or smoothing out mutations [26]. It effectively separates the primary trend
and periodic components within the time series, facilitating efficient calculations in the
feature extraction for forecasting model changes. This study employs SSA as an auxiliary
preprocessing technique to eliminate noise and decompose signals. SSA is a non-parametric
time-series analysis method that is widely used in signal extraction, periodic analysis, and
data dimensionality reduction [27]. Given that this algorithm does not impose assumptions
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regarding parameters and does not necessitate specific conditions for the stationarity of the
time series, it has found extensive application in tasks related to time-series decomposition.
SSA effectively extracts and reconstructs signals from the original time series while accu-
rately identifying periodic and oscillatory components [28]. The SSA process consists of
four key steps: embedding, decomposition, grouping, and reconstruction.

2.3.1. Signal Embedding

The primary time series is transformed into a matrix format to facilitate further anal-
ysis through the embedding process. This transformation allows the time series to be
represented in a multi-dimensional matrix form by selecting appropriate embedding di-
mensions and delay factors. Transforming the original signal, xn, into a two-dimensional
trajectory matrix, X, is the main objective of embedding. The fundamental aspect of the
embedding process is determined by the length of the moving window, ψ, which satisfies
2 ≤ ψ ≤ N

2 .The one-dimensional original sequence, Xori = {x1, x2, . . . , xN}, is divided into
several overlapping segments of equal length using the moving window. By embedding
these segmented signals into a matrix, the trajectory matrix, xi = (xi, . . . , xi+ψ−1)

T , is
generated. The definition of the trajectory matrix, X, is given by Equation (4), where the
parameters ψ and β satisfy the conditions ψ < β and N = β + ψ − 1.

X =
[
X1, · · · , Xβ

]
=
(
Xij
)ψ,β

i,j=1


x1 x2 · · · xβ

x2 x3 · · · xβ+1
...

...
. . .

...
xψ xψ+1 · · · xN

 (4)

2.3.2. Signal Decomposition

In SSA, the most critical stage is performing Singular Value Decomposition on the nor-
malized embedded trajectory matrix, X. The main objective of this procedure is to minimize
noise present in the original dataset and to identify the principal components. These com-
ponents consist of the left eigenvector, Ui; the right eigenvector, Vi; the left singular matrix,
U; the right singular matrix, V; and the diagonal matrix, Σ, where i ∈ {1, 2, . . . , ψ}. The
calculation formula for Vi is shown in Equation (5), where the singular value,

√
λi, is used to

construct the diagonal matrix, Σ. The matrix Σ satisfies the condition λ1 ≥ λ2 ≥ · · · ≥ λψ,
and λψ → 0 , with the specific definition provided in Equation (6). The original matrix,
Ti, is shown in Equation (7). The trajectory matrix, X, can then be decomposed using the
original matrix, Ti, and the decomposition result is shown in Equation (8).

Vi =
XTUi√

λi
(5)

Σ = diag
(√

λ1,
√

λ2, · · · ,
√

λi

)
(6)

Ti =
√

λi Ui Vi (7)

X = T1 + T2 + · · ·+ Td, d = max(i, λi > 0) (8)

2.3.3. Signal Grouping

The process of decomposing the embedded trajectory matrix, X, into various singular
spectral components is conducted in accordance with the chosen singular values. The
contribution rate, α, determines the value of r, and its calculation formula is shown in
Equation (9). In the grouping stage, by ignoring smaller singular values, noise can be
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effectively removed, thus improving feature extraction. The refinement process of the
trajectory matrix, X, is shown in Equation (10).

α =
λi

d
∑

i=0
λi

(9)

X = XI1 + · · ·+ XIm (10)

2.3.4. Signal Reconstruction

The goal of reconstruction is to approximate the original time series by recombining
the extracted singular spectral components. Each grouped matrix is transformed using
Equation (11) to produce a time series of length, N. xij is an element of the matrix which
has ψ rows and β columns, where 1 ≤ i ≤ ψ, an 1 ≤ j ≤ β. The matrix, XIi, is transformed
into the time series Yi = {y1, y2, · · · , yN}, as defined in the formula, where d′ = min(ψ, β),
f ′ = max(ψ, β). The original time series, Xori, is decomposed into m subsequences, as
specifically defined in Formula (12).

yk =



1
k

k
∑

m=1
xm,k−m+1, 1 ≤ k < d′

1
d′

d′

∑
m=1

xm,k−m+1, d′ ≤ k < f ′

1
N − k + 1

N− f ′+1
∑

m=k− f ′+1
xm,k−m+1, f ′ ≤ k ≤ N

(11)

Xori =
m

∑
k=1

Yi (12)

2.4. Reversible Instance Normalization

Long-term time-series forecasting tasks frequently encounter the challenge of distri-
bution shift, which arises from temporal changes in the mean and variance [29]. Such
distribution shifts create a discrepancy between the distributions of training and testing
data, resulting in input sequences that possess different underlying distributions. This
discrepancy can significantly diminish the predictive performance of the model. During
the forecasting process, models often struggle to extract meaningful features from non-
stationary sequences [30]. Normalizing the original data can help stabilize their statistical
properties, thereby enhancing their suitability for model training. However, this normal-
ization process may lead to the loss of critical non-stationary information present in the
original sequence [31]. Consequently, after normalization, the model learns exclusively
from the standardized data, neglecting the non-stationary information inherent in the
original data, which may further exacerbate the distribution shift issue.

To address the identified issue, this study employs the RevIN method. Figure 3
presents a schematic representation of the RevIN structure, which is composed of two
symmetrical components: a normalization layer and a denormalization layer. Within the
normalization layer, translation and scaling techniques are utilized to adjust the input
instances, thereby mitigating the distributional discrepancies among instances [32]. This
approach aids in alleviating the effects of distribution shift on the predictive model. Cucum-
ber greenhouse prediction is considered a multivariate time-series forecasting task. The
objective is to generate an output, X ∈ Rpre_len×l , based on an input sequence, X ∈ RTX×l ,
where Tx represents the length of the input sequence, l denotes the number of variables,
and pre_len indicates the length of the forecast sequence. After normalizing the input
data, X, the mean and standard deviation are calculated using Formula (13). Through the
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statistical data, the input data are normalized, as demonstrated in Formula (14), where the
learnable affine parameter vectors are denoted as γ and β. The transformed data, denoted
as X̂, will serve as the input for the prediction model to forecast future values.

yk =


Et[Xlt] =

1
Tx

Tx
∑

j=1
Xl j

Var[Xlt] =
1
Tx

Tx
∑

j=1

(
Xl j − Et[Xlt]

)2 (13)

X̂lt = γl

(
x(i)lt − Et[Xlt]√

Var[Xlt] + ε

)
+ βl (14)

RevIN proficiently removes non-stationary information from data related to cucumber
greenhouse environments and reinstates it as required, thereby mitigating the problem of
distribution drift in soil temperature. As a result, this approach improves the precision and
reliability of multi-step soil temperature predictions, and this improvement is crucial for
optimizing temperature forecasting in greenhouse environments.
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2.5. ReSSA-iTransformer Model Combination Process

The multi-parameter greenhouse environment dataset undergoes initial processing
through a preprocessing layer, during which outliers are eliminated and missing values
are imputed. By determining the ideal quantity of subsequences for SSA decomposition,
this approach effectively filters out data noise, thereby enhancing the model’s ability to
accurately capture the features and trends inherent in the time-series data, and in turn, this
enhancement improves prediction accuracy [33]. Each complete subsequence is processed
through the embedding layer of the iTransformer, where the entire sequence corresponding
to the same variable is converted into high-dimensional feature representations. Following
the analysis of variable correlations, the RevIN method is employed to address distribu-
tional discrepancies among variables through layer normalization. Subsequently, a linear
feedforward network is utilized to extract deep features from the time-series data. The
learned features are projected through the projection layer to yield future prediction results
for each subsequence that are ultimately aggregated to produce the overall prediction
outcome. The greenhouse-environment data are characterized as a non-smooth sequence
with a distribution that evolves over time, displaying pronounced long-term trends and
seasonality. In the context of predicting soil temperature in cucumber greenhouses, the
RevIN method preserves the benefits of conventional normalization techniques, which
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enhance the optimization of neural network parameters and improve generalization perfor-
mance. Simultaneously, it mitigates the adverse effects associated with the direct omission
of information on the predictive performance of the model. The primary workflow for
predicting soil temperature in cucumber greenhouses is illustrated in Figure 4.
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3. Results
3.1. Experimental Setup and Results
3.1.1. Experimental Evaluation Indicators

This study utilizes four assessment measures to evaluate the efficacy of various time-
series forecasting techniques from multiple perspectives, thereby confirming the superiority
of the proposed strategy. In the following formulas, y = {y1, y2, · · · , yn} represents the
actual values; ŷ = {ŷ1, ŷ2, · · · , ŷn} represents the predicted values; and y denotes the
mean value.

The Mean Absolute Error (MAE) is determined by aggregating and averaging the
absolute discrepancies between the observed values and the forecasted values. The mathe-
matical representation of MAE is provided in Equation (15).

MAE =
1
n

n

∑
i=1

|ŷi − yi| (15)

The Root Mean Squared Error (RMSE) is a statistical metric employed to evaluate the
deviation between anticipated and observed outcomes. It is calculated as the square root of
the mean of the squared differences between the expected and actual values. The formula
for RMSE is presented in Equation (16).

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (16)
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Mean Absolute Percentage Error (MAPE) is a metric that calculates the average abso-
lute difference between observed values and predicted values, expressed as a percentage.
The formula for MAPE is given by Equation (17).

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (17)

Coefficient of Determination (R2) is a metric used to evaluate the goodness of fit of a
model. When data have different scales, metrics such as RMSE, MAE, and MAPE may not
adequately reflect model performance, in which case R2 can be a more suitable evaluation
criterion. It represents how well the regression line fits the observed data. The formula for
R2 is given by Equation (18).

R2(y, ŷ) =

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − yi)

2
= 1 −

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − yi)

2
(18)

3.1.2. Experimental Environment Setup

The experimental software environment is based on Python 3.8.0 and the PyTorch 1.9.0
deep-learning framework. The hardware environment uses an RTX 3090 GPU with 24 GB
of memory. This study’s experiments mainly cover three areas. Initially, the influence of
distinct signal decomposition subsequences on prediction accuracy is assessed to evaluate
the effectiveness of the proposed adaptive signal decomposition algorithm. Subsequently,
the performance of various methods on greenhouse environmental datasets across different
temporal scales is evaluated, while also assessing the effectiveness of various signal de-
composition algorithms in time-series forecasting. Both experiments employ MAE, RMSE,
MAPE, and R2 as evaluation metrics.

3.2. Validation of the SSA Signal Decomposition Method

Using the SSA algorithm, the primary variable of the prediction model, namely soil
temperature, is subjected to decomposition. The embedding window is established at a
size of 10, and the resulting reconstructed component sequence is illustrated in Figure 5.
The experimental findings are summarized in Table 2, where the optimal number of
subsequences for prediction within the greenhouse dataset is emphasized in bold. Testing
across multiple sliced datasets revealed that the optimal number of subsequences fluctuates
across different temporal intervals. This variability is attributed to seasonal factors that exert
distinct influences on soil temperature throughout the year. Consequently, this underscores
the necessity for an adaptive approach to determine the optimal number of subsequences,
tailored to the specific characteristics of the data. The model is capable of extracting
the most significant feature information pertinent to soil temperature prediction under
varying conditions. By employing this method for subsequence selection, the iTransformer
prediction model attained optimal results across diverse factors within the greenhouse
environmental slice data. This further corroborates the efficacy of the SSA technique.
The prediction performance metrics for each decomposed subsequence are presented in
Figure 6.

Research on time-series forecasting in agricultural contexts underscores the neces-
sity for robust signal decomposition methods, particularly when handling unstable and
highly variable data, such as soil temperatures. The Stationary Wavelet Transform (SWT)
effectively captures subtle fluctuations in greenhouse temperature datasets; however, it
may introduce errors by excessively decomposing low-frequency components, which can
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fragment essential signal trends, and by inadequately representing high-frequency spikes
caused by external factors, like rapid ventilation changes. Variational Mode Decomposition
(VMD) demonstrates stable performance across varying time steps, making it advantageous
in greenhouse environments where sampling rates may fluctuate due to sensor limitations.
Nonetheless, VMD can smooth out abrupt cooling or heating events, leading to delayed pre-
dictions. In contrast, Empirical Mode Decomposition (EMD) enhances prediction accuracy
by iteratively extracting Intrinsic Mode Functions (IMFs) to address strongly fluctuating
data [34]. However, the sequential extraction process of EMD requires significant compu-
tational time, hindering its applicability in real-time agricultural settings and resulting in
large oscillations in forecasts under high noise levels. This emphasizes the need for robust
noise filtering during preprocessing stages. Furthermore, the Ensemble Wavelet Transform
(EWT) captures multi-scale features of temperature data but may lead to substantial pre-
diction fluctuations and pronounced lag when addressing abrupt changes in greenhouse
conditions. These limitations indicate that while each decomposition method offers unique
advantages, the effectiveness of each is contingent upon the specific characteristics of the
dataset and the operational requirements of the forecasting application.
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Table 2. Prediction results for different subsequence numbers.

Subsequence No. MAE MAPE RMSE R2

1 0.72 0.019 1.054 0.9418
2 0.994 0.028 1.263 0.8471
3 0.704 0.016 0.889 0.9527
4 0.623 0.015 0.875 0.9711
5 0.619 0.016 0.877 0.9752
6 0.613 0.015 0.855 0.9884
7 0.627 0.016 0.928 0.9782
8 0.645 0.017 0.905 0.9823
9 0.645 0.017 0.976 0.9765

10 0.694 0.021 0.984 0.9611
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Table 3 provides a quantitative comparison of the performance of these methods within
the iTransformer model, utilizing error metrics such as MAE and RMSE to emphasize
differences in accuracy and computational requirements. The indicators that demonstrate
the highest performance are presented in bold font. Additionally, Figure 7 illustrates a
comparative analysis of the prediction outcomes of different methodologies concerning the
one-hour soil temperature in cucumber greenhouses. In conclusion, the overall efficacy of
the different signal decomposition techniques can be ranked as follows: EMD < VMD <
SWT < EWT < SSA.

Table 3. Performance comparison of various signal decomposition algorithms.

Model MAE MAPE RMSE R2

EMD-iTf 1.121 0.028 1.563 0.7448
VMD-iTf 0.78 0.026 1.054 0.9192
SWT-iTf 0.704 0.016 0.889 0.9523
EWT-iTf 0.725 0.024 0.965 0.8515
SSA-iTf 0.613 0.015 0.855 0.9864

Through comparison study, the superiority of the SSA approach over other signal
decomposition approaches may be shown. The performance advantage of this approach is
derived from the robust mathematical theory that underpins it. The performance of the SSA
method is significantly affected by the choice of the number of decomposed subsequences.
The prediction model developed in this study effectively mitigates this challenge, leading
to substantial enhancements in the accuracy and adaptability of the algorithm.



Agronomy 2025, 15, 223 14 of 20
Agronomy 2025, 15, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 7. Prediction results of various decomposition signal algorithms. 

Through comparison study, the superiority of the SSA approach over other signal 
decomposition approaches may be shown. The performance advantage of this approach 
is derived from the robust mathematical theory that underpins it. The performance of the 
SSA method is significantly affected by the choice of the number of decomposed subse-
quences. The prediction model developed in this study effectively mitigates this chal-
lenge, leading to substantial enhancements in the accuracy and adaptability of the algo-
rithm. 

3.3. Comparison of the Effectiveness of Prediction Results of Soil Temperature in  
Cucumber Greenhouse 

This section presents the quantitative evaluation results of ReSSA-iTransformer com-
pared to other baseline algorithms, including MAE, MAPE, RMSE, and R2. To validate the 
advancement of the constructed model, long- and short-term multi-step predictions of 
cucumber greenhouse soil temperature were compared using time steps of 3 h, 6 h, 24 h, 
and 48 h. The model performance comparison results are shown in Tables 4–7, while Fig-
ures 8–11 illustrate the prediction performance comparison between ReSSA-iTransformer 
and other models at the four time steps. Notably, the proposed model consistently 
achieved the best results across different time steps, demonstrating its ability to effectively 
reduce the impact of outliers and inaccurate data on prediction outcomes. It also success-
fully extracted subsequence components beneficial for prediction and further uncovered 
rich time-series information through the iTransformer framework. 

Table 4. Comparison of short-term forecast (3 h) results of various models. 

Model MAE MAPE RMSE  2R  
LSTM 1.421 0.89 1.916 0.4568 

Informer 1.211 0.602 1.103 0.8687 
Autoformer 0.704 0.38 1.137 0.9274 

iTransformer 0.476 0.336 0.481 0.9436 
Proposed 0.271 0.304 0.375 0.9851 

Figure 7. Prediction results of various decomposition signal algorithms.

3.3. Comparison of the Effectiveness of Prediction Results of Soil Temperature in
Cucumber Greenhouse

This section presents the quantitative evaluation results of ReSSA-iTransformer com-
pared to other baseline algorithms, including MAE, MAPE, RMSE, and R2. To validate
the advancement of the constructed model, long- and short-term multi-step predictions
of cucumber greenhouse soil temperature were compared using time steps of 3 h, 6 h,
24 h, and 48 h. The model performance comparison results are shown in Tables 4–7,
while Figures 8–11 illustrate the prediction performance comparison between ReSSA-
iTransformer and other models at the four time steps. Notably, the proposed model
consistently achieved the best results across different time steps, demonstrating its ability
to effectively reduce the impact of outliers and inaccurate data on prediction outcomes. It
also successfully extracted subsequence components beneficial for prediction and further
uncovered rich time-series information through the iTransformer framework.

Table 4. Comparison of short-term forecast (3 h) results of various models.

Model MAE MAPE RMSE R2

LSTM 1.421 0.89 1.916 0.4568
Informer 1.211 0.602 1.103 0.8687

Autoformer 0.704 0.38 1.137 0.9274
iTransformer 0.476 0.336 0.481 0.9436

Proposed 0.271 0.304 0.375 0.9851

Table 5. Comparison of short-term forecast (6 h) results of various models.

Model MAE MAPE RMSE R2

LSTM 1.928 0.112 2.471 0.5649
Informer 1.634 0.093 2.137 0.8592

Autoformer 1.449 0.083 1.967 0.9116
iTransformer 0.877 0.052 1.314 0.9325

Proposed 0.501 0.029 0.831 0.9703
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Table 6. Comparison of long-term prediction (24 h) results of various models.

Model MAE MAPE RMSE R2

LSTM 2.195 0.128 2.599 0.6235
Informer 1.829 0.107 2.341 0.7174

Autoformer 1.577 0.094 2.165 0.9283
iTransformer 1.115 0.065 1.788 0.8957

Proposed 0.648 0.041 0.856 0.9726

Table 7. Comparison of long-term prediction (48 h) results of various models.

Model MAE MAPE RMSE R2

LSTM 4.024 0.256 4.630 0.4218
Informer 2.054 0.119 2.545 0.6528

Autoformer 1.808 0.104 2.323 0.8821
iTransformer 1.752 0.101 2.256 0.9044

Proposed 1.633 0.094 2.177 0.9483
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The experimental findings indicate that, although there is variability in the perfor-
mance of the comparison algorithms at various time intervals, the predictive model es-
tablished in this research consistently surpasses the performance of the other models in
most instances. Specifically, the average R2 value of the ReSSA-iTransformer in the green-
house soil temperature prediction dataset is 96.91%, indicating outstanding performance
in accurately fitting the true values and suggesting significant potential for broad applica-
tions. ReSSA-iTransformer achieved an average performance improvement of 48.89% in
MAE, 37.76% in MAPE, and 47.59% in RMSE compared to Transformer-based prediction
models across the four time-step forecasts. In contrast, the LSTM model exhibits inferior
predictive performance, primarily due to its difficulty in capturing correlations between
variables when processing long time-series data, thus hampering its ability to identify the
complex patterns and trends inherent in such data. Additionally, Autoformer and other
Transformer-based models, while designed to handle long-term dependencies through
attention mechanisms, often face challenges related to computational complexity and may
struggle with scalability in real-time agricultural applications. These models can also be
prone to overfitting, especially when dealing with noisy and highly variable agricultural
data, thereby reducing their generalization capabilities. By integrating the SSA and RevIN
methods, the predictive accuracy of the iTransformer on the greenhouse environment
dataset has been significantly enhanced. All evaluation metrics showed significant im-
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provement, with MAE improving by an average of 33.66%, MAPE by 24.41%, and RMSE
by 28.61% in time-series forecasting performance across different time steps.

In order to offer a more intuitive representation of the accuracy of the variations
associated with each method across different time steps, this paper presents charts illus-
trating the evaluation metrics, as depicted in Figure 12. The horizontal axis on the right
shows the names of the compared models, while the left side lists the different evaluation
metrics. The vertical axis represents the values of the four-evaluation metrics. Among
them, lower values of MAE, MAPE, and RMSE, and higher values of R2 indicate better
model performance.
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4. Discussion
Through comprehensive experimental validation, the following conclusions were

derived from the greenhouse soil temperature hybrid prediction model developed in
this study:

In comparative experiments, the hybrid model consistently demonstrated superior
performance compared to the individual models. This outcome can be attributed to the time-
lag effects observed in greenhouse environmental data, which arise from the interactions
among various environmental factors. Among various time-series prediction frameworks,
the iTransformer-based method surpasses other models within the Transformer series,
thereby validating the efficacy of the iTransformer’s transpose structure in facilitating
the extraction of deeper temporal information. When integrated with adaptive signal
decomposition, the iTransformer significantly enhances the model’s predictive performance
for univariate data, resulting in improved computational efficiency. In the context of
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greenhouse environment data, the SSA method introduced in this study demonstrates
a marked superiority over alternative signal decomposition techniques. This finding
underscores the importance of optimizing the number of optimal subsequences through
parameter tuning to fully leverage the benefits of SSA decomposition.

The ReSSA-iTransformer demonstrates superior performance across various temporal
dimensions and datasets. As the prediction horizon extends, the prediction errors for
all models tend to increase; nevertheless, the ReSSA-iTransformer consistently surpasses
other baseline models at every time step. In comparison to the baseline models, the
ReSSA-iTransformer exhibits enhancements across all evaluation metrics, highlighting
its exceptional learning capacity and nonlinear modeling proficiency. Furthermore, it
delivers stable and reliable predictive outcomes for datasets characterized by differing
sequence lengths.

While the ReSSA-iTransformer model demonstrates commendable efficacy in predict-
ing greenhouse soil temperature, several limitations persist. Specifically, under conditions
of extreme weather, the model is capable of forecasting the general trend of soil tempera-
ture fluctuations; however, its precision in predicting soil temperature amidst substantial
variations remains inadequate. Additionally, it is imperative to account for the robust
correlation with the time-series characteristics inherent in anomalous changes. The inte-
gration of greenhouse-monitoring data or remote-sensing data necessitates a thorough
evaluation of the model’s performance and efficiency in handling complex, large-scale
datasets. This is particularly crucial to ensure that computational efficiency is maintained
without compromising the high accuracy of predictions.

5. Conclusions
The greenhouse environment is characterized by its complexity and variability, ren-

dering precise predictions of soil temperature essential for the successful cultivation of
greenhouse crops. Accurate soil temperature forecasting not only facilitates optimal growth
conditions for crops but also enhances overall yield. This study introduces the long- and
short-term sequence prediction model, ReSSA-iTransformer, which is designed to extract
pertinent features of soil temperature within the cucumber greenhouse environment. The
model utilizes SSA to decompose various fluctuating factors into distinct signals, thereby
enhancing the identification of key feature factors. Furthermore, by integrating the RevIN
method into the iTransformer framework, this research effectively mitigates the issue of
distribution shift in prediction outcomes, resulting in accurate soil temperature forecasts
across different temporal sequences. The model developed herein supports both short-term
and long-term multi-step predictions of soil temperature in cucumber greenhouses. When
compared to several baseline methods, the proposed model demonstrates superior perfor-
mance in terms of accuracy, generalization capability, and response time, thereby providing
a viable solution for forecasting conditions within greenhouse environments.

Significant opportunities exist to enhance greenhouse soil prediction models by ad-
dressing the dynamic agricultural environment and regional climatic variations that influ-
ence outcomes. Developing models that integrate multi-source data can improve predictive
performance without increasing complexity or data volume. Additionally, incorporating
the effects of extreme weather events into data selection is crucial for capturing environmen-
tal dynamics. These advancements will result in more robust and accurate soil prediction
models, thereby facilitating informed decision-making in agricultural management.
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