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Abstract: The combined effects of tillage and organic amendments on microbial respira-
tion and its contribution to soil hydraulic conductivity are still uncertain in the 0–40 cm
layer of a loess soil. We conducted a two-year field experiment to explore the effects of
organic amendments, tillage and their interaction on soil microbial respiration, aggregate
stability, pore parameters, and hydraulic conductivity on the Loess Plateau. Three tillage
methods (conventional tillage (CT), deep tillage (DT) and no tillage (NT)) plus five fertilizer
treatments (mineral fertilizer (control) alone and along with 20 t ha−1 wheat straw (MWS),
wheat husk (MWH), farmyard soil (MFS) and bioorganic fertilizer (MBF)) were set up
as experimental treatments. The findings demonstrated that the organic amendments
significantly increased the soil microbial respiration and saturated hydraulic conductivity
compared to the control in the 0–10 cm and 10–20 cm layers. Soil microbial respiration
had indirect effects on hydraulic conductivity by improving the water aggregate stability
and macroporosity. Additionally, the interaction effects of tillage and organic amendments
on the pore and hydrological parameters were significant in the 20–40 cm layer. NT-MBF
resulted in the greatest saturated hydraulic conductivity, which was directly correlated
with the soil’s strong pore organization. Given the issue of subsurface soil compaction in
our study area, it is recommended that local farmers adopt NT-MBF to enhance the soil’s
microbial, structural and hydrological properties.

Keywords: hydraulic conductivity; microbial respiration; aggregate stability; pore connectivity;
sustainable practices

1. Introduction
Hydraulic conductivity has a substantial influence on soil quality, along with the

ecosystem services that the soil provides [1,2]. Soil hydraulic conductivity controls soil
water infiltration, redistribution, drainage and evaporation and determines the roots’ water
absorption and crop growth [3]. A soil’s hydraulic conductivity is primarily determined
by its structure, which may govern a variety of physical, chemical and biological activi-
ties; in turn, it is also shaped by these activities [4,5]. The soil structure is regarded as a
crucial indicator in assessing the functionality of soil [6,7], and it is usually described in
terms of aggregates or pore spaces [8]. From an aggregate perspective, the soil structure
is characterized by the dry and wet sieving of soil aggregates to assess their size, shape,
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grade and stability [9]. Dry sieving indicates the soil aggregates’ resilience against me-
chanical disruption, whereas wet sieving demonstrates the soil aggregates’ resistance to
dispersion [3]. The soil quality is generally improved by increasing the fraction of large
aggregates (>0.25 mm) [10]. Soil aggregate stability denotes the capacity of aggregates to
withstand disintegration caused by factors such as tillage, water-borne abrasion and wind
erosion [11]. Soil aggregate stability can indicate the soil organic carbon content, biological
activity and the transfer processes of water and air [12]. Diminished aggregate stability
and reduced hydraulic conductivity may cause intense soil erosion and additional land
degradation processes [6]. The pore space indicates the hierarchical organization of soil
pore systems [6,8], which are physically delineated by the pore size, shape and spatial dis-
tribution, thereby facilitating the derivation of the pore connectivity [5]. A soil’s hydraulic
conductivity is strongly influenced by its macroporosity, as well as the continuity and
connectivity within the pore network [13]. Various factors have the potential to influence
the soil structure and hydraulic conductivity, including tillage [14,15], machinery-induced
compaction [16,17] and organic amendments [18]. Therefore, assessing these properties
under different conditions is crucial in understanding the essential functions of soil.

Sustainable intensification strategies for soil improvement emphasize minimal me-
chanical soil disturbance and the application of organic amendments, which are pivotal in
optimizing the soil structure and enhancing the hydraulic conductivity [1,19]. However,
studies citing the impacts of tillage on hydraulic conductivity remain difficult to compre-
hend due to inconsistent reports. Some researchers have reported that tillage has a positive
effect in elevating the soil hydraulic conductivity [20], whereas other researchers have
reported a decrease in soil hydraulic conductivity [21,22]. The soil structure affects the
hydrological properties of soils [14]. Therefore, tillage, by reshaping the soil aggregate and
pore structure, concurrently changes the soil hydraulic conductivity [19]. Conservation
tillage increases the hydraulic conductivity via higher aggregation stability and lower soil
bulk density by increasing the soil organic carbon content [2,4]. For example, no-tillage
systems improve the distribution and connectivity of soil pores, along with enhancing the
hydraulic conductivity, because the soil structure is altered [23]. However, the hydraulic
conductivity is ultimately reduced with intensive tillage [24]. The repeated passage of
heavy machinery can disrupt root systems and biological processes, destroying the macrop-
ore network and decreasing the hydraulic conductivity [17,21]. The multifaceted influence
of tillage systems on soil hydraulic conductivity requires further study.

Organic amendments significantly contribute to the regulation of soil’s hydraulic
properties by modifying the soil structure [3,25]. Various organic materials, including
compost, crop residues and manure, can enhance the soil quality [26,27]. Compost and
crop residues are particularly popular for soil amendment due to their ready availability
and accessibility [28,29]. Compost- and crop residue-amended soil had more water-stable
aggregates and greater macroporosity, leading to higher hydraulic conductivity than that
of non-amended soil, with a greater increase at higher application rates [25]. Notably, soil
aggregates can physically protect organic carbon from microbial decomposition, thereby
reducing microbial respiration, with a pronounced effect in the upper soil layers [30].
Conversely, organic amendments increase the soil organic carbon and macropores, pro-
viding adequate nutrients, oxygen and space for soil microorganisms, thus promoting
soil microbial respiration [31]. Most studies have concentrated on soil organic carbon,
microbial respiration, aggregate sizes and stability, pore parameters and hydraulic con-
ductivity, yet the variations in these properties differ significantly across various tillage
practices. Importantly, the potential interactions among these parameters have not been
fully considered.
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Soil degradation is one of the primary constraints restricting agricultural development
in the loess soils of the Loess Plateau, China [32]. This stress impact is exacerbated by
unsustainable soil management practices [33]. Intensive conventional tillage (rotary tillage
without straw retention) destroys the soil structure’s stability, hinders biological activity
and lowers the hydraulic conductivity [34]. Furthermore, heavy agricultural machinery has
caused subsurface compaction. Compaction adversely impacts soil by diminishing the pore
volume, reducing the pore connectivity and causing anisotropic alterations in water and
air movement [17]. Currently, scientists are exploring ways to improve the soil structure
and hydrology. The individual impacts of tillage or organic amendments on soil hydraulic
conductivity have been studied extensively at the Loess Plateau [17,35,36]. Nevertheless,
few studies have been conducted to clarify the integrated impacts of tillage and organic
amendments on the soil hydraulic conductivity and its correlation with microbial respira-
tion, especially across the soil profile. Therefore, assessing the influence of tillage strategies
combined with organic amendments on the soil profile’s microbial respiration and its
relationship with hydraulic conductivity may help managers to make better judgments. In
this context, the purposes of this research were (1) to investigate the impacts of tillage and
organic amendments on the microbial respiration, structure and hydraulic conductivity of
the soil profile in the loess soil of the Southern Loess Plateau and (2) to explore the direct
and indirect effects of microbial respiration, the aggregate stability and the pore proper-
ties (i.e., macroporosity and pore organization) on the hydraulic conductivity in response
to various tillage practices and the addition of organic amendments in field conditions,
specifically at the soil depths of 0–10 cm, 10–20 cm, 20–30 cm and 30–40 cm.

2. Materials and Methods
2.1. Experimental Site

Summer maize and winter wheat rotation field experiments were conducted from 2014
to 2016 in Yangling (34◦17′ N, 108◦04′ E, altitude 506 m), Shaanxi Province, China. This
region is a typical dryland agricultural area at the southern edge of the Loess Plateau, with
a semi-arid to sub-humid climate. The average annual air temperature and precipitation are
13 ◦C and 632 mm, respectively. Precipitation throughout the year is mainly concentrated
between July and September. The daily rainfall amounts and air temperatures during the
experimental period are shown in Figure 1. These data were sourced from the Yangling
National Weather Station, situated approximately 50 m west of the experimental site. The
soil at the site is loess-derived silty clay loam (eum-orthic anthrosols). Table 1 shows the
basic soil physicochemical parameters evaluated before the experiment. The maize cultivar
Zhengdan 958 (June–October) and the wheat cultivar Xiaoyan 22 (October–June) were
planted in the experimental field.

Table 1. Basic physicochemical properties of the tested soil at 0–40 cm.

Parameter
Depth (cm)

0–10 10–20 20–30 30–40

Texture (international system) Clay loam Clay loam Silty clay loam Silty clay loam
Sand (0.02–2 mm) (%) 38.24 36.65 30.51 30.47

Silt (0.002–0.02 mm) (%) 43.80 44.22 46.71 48.69
Clay (<0.002 mm) (%) 17.96 19.12 22.78 24.90
Bulk density (g·cm−3) 1.32 1.44 1.68 1.70

Total porosity (%) 50.29 46.03 36.99 35.96
Field capacity (cm3·cm−3) 0.322 0.328 0.308 0.314
Organic carbon (g kg−1) 8.75 8.04 7.28 6.42

Electric conductivity (1:5) (dS m−1) 0.36 0.25 0.27 0.22
Soil pH (1:5) 8.56 8.57 8.55 8.58
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Figure 1. Daily precipitation and air temperatures during the 2014–2015 and 2015–2016 summer 
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Figure 1. Daily precipitation and air temperatures during the 2014–2015 and 2015–2016 summer
maize–winter wheat rotation. The dashed line is used to distinguish the summer maize season from
the winter wheat season.

2.2. Experimental Design

The field experiment included tillage treatments and organic amendments. Tillage
treatment was considered as the main effect, with organic amendments as a split-plot
effect, in a complete randomized experimental design (Table 2). Each sub-plot was
7.5 m × 4 m = 30 m2 and the trial area was 0.27 ha. The experiment used three tillage
methods, namely conventional tillage (CT), deep tillage (DT) and no tillage (NT). Each
tillage method included five fertilizer treatments: a control with only mineral fertilizer,
as well as mineral fertilizer combined with wheat straw (MWS), wheat husk (MWH),
farmyard soil (MFS) and bioorganic fertilizer (MBF). In total, fifteen treatments with three
replications were established. The experiment was carried out in a fixed field configuration
at the same site.

Table 2. Field experimental layout.

NT CT DT

Control MWS MFS MBF MWH Control MBF MWS MFS
MWS MWH MBF MFS Control MWH MWS MBF Control
MWH MFS Control MWS MBF MFS MWH MFS MBF
MBF Control MWS MWH MFS MWS MFS Control MWH
MFS MBF MWH Control MWS MBF Control MWH MWS

Note: CT, conventional tillage; DT, deep tillage; NT, no tillage. Control, mineral fertilizer; MWS, mineral fertilizer
with wheat straw; MWH, mineral fertilizer with wheat husk; MFS, mineral fertilizer with farmyard soil; MBF,
mineral fertilizer with bioorganic fertilizer.

CT involved ploughing and harrowing the soil twice to a 15 cm depth for the prepara-
tion of the seed bed. DT involved ploughing with a moldboard plow to a depth of 30 cm
and disking to a depth of 10 cm to prepare the seed bed. NT involved manually seeding into
undisturbed soil. Regarding the organic amendment treatments, the management details
are reported in Table 3. The wheat straw was chopped into segments of 2 cm. The wheat
husk was milled down to 2 mm. The farmyard soil was prepared using a standard ratio of
80% decomposed sheep manure to 20% soil by weight, adhering to the local conventional
production methods. The bioorganic fertilizer was crafted by blending farmyard soil with
a microbial agent, which was supplied by the Sino Green Agri-Biotech Company in Beijing,
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China, at a rate of 60 kg ha−1 with 2 × 108 cfu g−1 of live bacteria. Table 4 lists the nutrients
and dry bulk densities of the organic materials. The mineral fertilizer was urea (46% N)
and diammonium phosphate (18% N, 46% P2O5) in all fertilizer treatments. The mineral
fertilizer was applied at a ratio of 6:4 for basal to supplemental fertilization during every
summer maize season and at a ratio of 10:0 during each winter wheat season, following
the local farmers’ practices. All organic materials were applied as the basal dressing before
planting in each growing season for both maize and wheat crops. The irrigation schedule
complied with regional agricultural customs.

Table 3. Organic amendment treatments in the 2014–2015 and 2015–2016 summer maize–winter
wheat seasons.

Crop Management Control MWS MWH MFS MBF

Maize

Mineral
fertilizer

Basal
fertilizer

Date
(Y/M/D)

2014 2014/06/18
2015 2015/06/15

N rate (kg ha−1) 102 102 102 102 102
P2O5 rate (kg ha−1) 102 102 102 102 102

Supplemental
fertilizer

Date
(Y/M/D)

2014 2014/08/08
2015 2015/08/05

N rate (kg ha−1) 68 68 68 68 68
P2O5 rate (kg ha−1) 68 68 68 68 68

Total
fertilizer

N rate (kg ha−1) 170 170 170 170 170
P2O5 rate (kg ha−1) 170 170 170 170 170

Organic materials

Date
(Y/M/D)

2014 2014/06/18
2015 2015/06/15

Type Wheat
straw

Wheat
husk

Farmyard
soil

Bioorganic
fertilizer

Rate (t ha−1) 0 20 20 20 20

Irrigation

Date
(Y/M/D)

2014 2014/07/30
2015 2015/07/27

Method Flood irrigation
Amount (mm) 75

Precipitation (mm) 2014 381.3
2015 278.2

Wheat

Mineral fertilizer

Date
(Y/M/D)

2014–2015 2014/10/20
2015/10/20

2015–2016 2015/10/20
N rate (kg ha−1) 150 150 150 150 150

P2O5 rate (kg ha−1) 110 110 110 110 110

Organic materials

Date
(Y/M/D)

2014–2015 2014/10/20
2015/10/20

2015–2016 2015/10/20

Type Wheat
straw

Wheat
husk

Farmyard
soil

Bioorganic
fertilizer

Rate (t ha−1) 0 20 20 20 20

Irrigation

Date
(Y/M/D)

2014–2015 2015/01/08
2015/10/20

2015–2016 2016/01/10
Method Flood irrigation

Amount (mm) 75

Precipitation (mm) 2014–2015 239.4
2015–2016 218.5

Note: Control, mineral fertilizer; MWS, mineral fertilizer with wheat straw; MWH, mineral fertilizer with wheat
husk; MFS, mineral fertilizer with farmyard soil; MBF, mineral fertilizer with bioorganic fertilizer.
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Table 4. Physicochemical characteristics of the applied organic materials.

Material Cellulose
(%)

Organic
Carbon
(g kg−1)

Total N
(g kg−1) C/N Ratio Total P

(g kg−1)
Total K
(g kg−1)

Dry Bulk
Density
(g·cm−3)

Wheat straw 36.32 432.44 10.84 39.95 1.65 9.71 0.074
Wheat husk 24.89 396.99 20.44 19.43 5.41 6.20 0.137
Farmyard
soil 18.25 190.30 11.63 16.46 3.02 6.49 0.474

Bioorganic
fertilizer 17.96 184.19 12.98 14.21 3.19 6.27 0.325

2.3. Sampling and Measurements

Soil samples were collected from the top 40 cm depth at 10 cm intervals by mixing
four subsamples from each plot in June 2016 before the winter wheat harvest. The air-dried
samples were crushed to pass through a 0.15 mm sieve for the measurement of soil organic
carbon (SOC) using the dichromate oxidation method [3]. Soil microbial respiration (MR)
was quantified on fresh soil samples using the incubation–alkaline absorption method
over seven days at 75% of the water holding capacity and 25 ◦C [25]. The CO2 evolved
was trapped in 0.1 M NaOH, followed by titration with a standard HCl solution [37]. To
evaluate the decomposability of the organic amendments across various tillage systems,
the mineralization quotient (qmC) was calculated from the measurements of the SOC and
the cumulative value (168 h) of CO2 evolution, using the following formula: qmC = mg
CO2–C/mg SOC [25,37]. The qmC represented the fraction of SOC mineralized throughout
the entire incubation period (168 h).

Some soil samples were utilized to test the aggregate stability with the dry and wet
sieving methods. Fresh soil samples were carefully treated to eliminate dead organisms,
undecomposed materials and roots. Then, these soil samples were gently broken into
around 10 mm pieces manually and air-dried. Air-dried soil (200 g) was passed through a
series of five sieves using a horizontal shaker (JH-200, Xinxiang, China), which caused the
sieves to oscillate horizontally. The sieve sizes were 5, 2, 1, 0.5 and 0.25 mm, respectively.
The distribution of dry aggregate sizes was determined by weighing the soil aggregates
remaining on each sieve and those that were collected below the 0.25 mm sieve [38]. The
analysis of water-stable aggregates was conducted using 50 g air-dried samples, which
were prepared by separating dry aggregates of various sizes according to their percentage
distribution in the sieves. These soil samples were placed on a series of sieves with mesh
sizes of 5, 2, 1, 0.5 and 0.25 mm, which were fitted to a soil aggregate analyzer (QD24-DIK-
2001, Kounosu, Japan). After this, the stacked sieves along with the samples were soaked
in water and subjected to shaking for 15 min at an oscillation frequency of 30 cycles/min
with an amplitude of 35 mm [38]. Finally, the aggregate size distribution was obtained by
drying and weighing the soils remaining on each sieve.

The percentage of aggregate destruction (PAD, %) was calculated as follows:

PAD =
wd − ww

ww
× 100% (1)

where Wd is the weight ratio of dry-sieved soil > 0.25 mm and Ww is the weight ratio of
wet-sieved soil > 0.25 mm.

The mean weight diameter (MWD) was estimated using the formula [39]

MWD =
∑n

i=1 XiWi

∑n
i=1 Wi

(2)
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where Xi is the mean diameter of the sieve, mm; Wi is the proportion of aggregates retained
on the ith sieve, %; and n is the number of sieves.

The aggregate size distribution was modeled using a power-exponential distribution [3,40]:

M(< d) = λdγ
(

1 − e−(d/dr)
)

(3)

where M(<d) is the cumulative frequency of aggregates sized less than d, %; d is the sieve
size, mm; and λ, γ and dr are fitting parameters.

Minimally disturbed soil cores (100 cm3) were sampled from 0 to 40 cm at 10 cm
increments to assess the soil pore and hydrology characteristics. The soil cores were
saturated with water to determine their saturated hydraulic conductivity, employing the
constant head method for the measurement. The hanging water column method was then
used to drain the soil cores at a soil matric potential of −10 kPa. Each sample was weighed
and then oven-dried at 105 ◦C for 24 h. The volumetric water content at −10 kPa was
calculated based on the weight loss of the soil cores during oven drying. The macroporosity
was deduced by calculating the difference between the volumetric water content at −10 kPa
and the total porosity. Soil total porosity was evaluated according to the soil bulk density
and soil particle density. Air permeability was measured on the same cores as above at
−10 kPa using the one-dimensional steady-state method [41].

Pore organization (PO) was used to obtain more insights into the soil pore characteris-
tics [42]:

PO = ka/εa (4)

where ka is the air permeability at −10 kPa, µm2, and εa is the macroporosity at −10 kPa. A
high PO indicates high continuity [14].

2.4. Statistical Analysis

The main effects and interactions of the tillage and organic amendments on the soil
microbial respiration and structural and hydrological properties were analyzed by two-way
analysis of variance (ANOVA). The means were compared by Duncan’s multiple range
test (p < 0.05). To link soil microbial respiration, aggregates and pores with hydrology, we
selected a set of 23 predictor variables to perform Pearson’s correlation analysis. The vari-
ables encompassed soil microbial parameters (SOC, MR and mqC), the soil aggregate size
distribution (>5 mm, 2–5 mm, 1–2 mm, 0.5–1 mm, 0.25–0.5 mm and >0.25 mm) determined
by both dry and wet sieving, aggregate stability indicators (PAD, MWD determined by dry
and wet sieving), pore characteristics (total porosity, macroporosity, air permeability and
PO) and the soil saturated hydraulic conductivity. Structural equation modeling (SEM) was
conducted to elucidate how the soil MR affects the soil hydraulic conductivity through the
soil aggregate and pore properties, using AMOS 26.0 (Chicago, IL, USA). The CHI/DF < 3,
chi-squared test (p) > 0.05, a root mean square error of approximation (RMSEA) < 0.08 and
a comparative fit index (CFI) > 0.9 were adopted to fit the SEM [43]. Statistical analysis was
performed with SPSS 20.0 (IBM-SPSS, Inc., Chicago, IL, USA). Drawing, non-linear fitting,
heat plot correlation and principal component analysis (PCA) were performed using Origin
2021 (OriginLab, Northampton, MA, USA). The PCA was performed to thoroughly assess
the differences among the combined treatments regarding the soil hydraulic conductivity
and corresponding soil parameters.
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3. Results
3.1. Soil Organic Carbon

The tillage methods exerted a significant (p < 0.05) influence on the SOC, but only
within the upper 10 cm soil depth (Table 5). Compared with DT, CT and NT resulted
in higher SOC values (p < 0.05). However, in comparison with DT, both CT and NT
presented slightly lower SOC values at 10–40 cm, although these changes were not obvious
(p > 0.05). Regardless of the tillage method, the mean SOC content was significantly
(p < 0.05) greater under the organic amendments compared to the control at 0–40 cm. The
significant differences were mainly found at the 0–20 cm depth. At these depths, MWS
performed better than MWH, MFS and MBF, although its advantages were generally not
obvious (p > 0.05).

Table 5. Responses of soil organic carbon to tillage and organic amendments at 0–40 cm.

Treatment
SOC (g kg−1)

0–10 cm 10–20 cm 20–30 cm 30–40 cm 0–40 cm

Tillage
CT 10.88 ± 1.31 a 9.27 ± 0.85 7.64 ± 0.55 6.75 ± 0.56 8.63 ± 0.51
DT 9.92 ± 1.04 b 9.33 ± 0.94 7.77 ± 0.70 6.83 ± 0.62 8.47 ± 0.47
NT 11.50 ± 1.51 a 8.92 ± 0.77 7.59 ± 0.66 6.60 ± 0.45 8.65 ± 0.54

Organic amendments
Control 8.88 ± 0.73 b 8.31 ± 0.64 b 7.45 ± 0.57 6.55 ± 0.44 7.80 ± 0.09 c
MWS 11.89 ± 1.18 a 9.83 ± 0.67 a 7.77 ± 0.49 6.83 ± 0.70 9.08 ± 0.20 a
MWH 11.40 ± 1.05 a 9.54 ± 0.68 a 7.86 ± 0.78 6.78 ± 0.65 8.90 ± 0.30 a
MFS 10.88 ± 1.05 a 9.06 ± 0.73 a 7.71 ± 0.47 6.76 ± 0.61 8.60 ± 0.27 b
MBF 10.77 ± 1.10 a 8.96 ± 0.78 a 7.55 ± 0.81 6.71 ± 0.32 8.50 ± 0.33 b

Two-way ANOVA (p values)
T 0.000 ** 0.298 (ns) 0.771 (ns) 0.598 (ns) 0.117 (ns)
O 0.000 ** 0.003 ** 0.760 (ns) 0.903 (ns) 0.000 **

T × O 0.550 (ns) 0.990 (ns) 0.999 (ns) 1.000 (ns) 0.991 (ns)

Different letters indicate significant differences at p < 0.05. T, tillage method; O, organic amendment. **, significant
at p < 0.01; ns, non-significant. CT, conventional tillage; DT, deep tillage; NT, no tillage. Control, mineral fertilizer;
MWS, mineral fertilizer with wheat straw; MWH, mineral fertilizer with wheat husk; MFS, mineral fertilizer with
farmyard soil; MBF, mineral fertilizer with bioorganic fertilizer. SOC, soil organic carbon.

3.2. Microbial Respiration

Regarding soil MR, significant variations were observed with the tillage methods
and organic amendments, but their interaction had no significant impact on the soil MR
(Figure 2, Table 6). Comparisons among the tillage methods suggested that DT and NT
experienced significantly (p < 0.05) greater mean values of soil MR than CT in 0–40 cm.
Similar changes were found at 0–10 cm, 20–30 cm and 30–40 cm. Significantly (p < 0.05)
greater MR was observed only in DT rather than CT at 10–20 cm. Under all tillage systems,
the organic amendment treatments produced significantly (p < 0.05) greater mean values of
soil MR compared to the control at 0–40 cm. With MBF, we observed the greatest increase
in CO2 emissions (p < 0.05).
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(c,d) to tillage and organic amendments at 0–40 cm. Different letters indicate significant differences 
at p < 0.05. CT, conventional tillage; DT, deep tillage; NT, no tillage. Control, mineral fertilizer; MWS, 
mineral fertilizer with wheat straw; MWH, mineral fertilizer with wheat husk; MFS, mineral ferti-
lizer with farmyard soil; MBF, mineral fertilizer with bioorganic fertilizer. 

Figure 2. Responses of soil microbial respiration (a,b) and mineralization quotient of organic carbon
(c,d) to tillage and organic amendments at 0–40 cm. Different letters indicate significant differences at
p < 0.05. CT, conventional tillage; DT, deep tillage; NT, no tillage. Control, mineral fertilizer; MWS,
mineral fertilizer with wheat straw; MWH, mineral fertilizer with wheat husk; MFS, mineral fertilizer
with farmyard soil; MBF, mineral fertilizer with bioorganic fertilizer.

Table 6. Results of two-way ANOVA for soil microbial and structural properties at 0–40 cm.

p Value
MR

(mg CO2
kg−1 Soil)

qmC
(%)

MWD (mm) Total
Porosity

(%)

Macroporosity
(%)

ka
(µm2)

PO
(µm2)Dry Sieve Wet Sieve

0–10 cm
T 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.023 * 0.002 ** 0.009 ** 0.031 *
O 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **

T × O 0.996 (ns) 0.456 (ns) 0.000 ** 0.713 (ns) 0.857 (ns) 0.118 (ns) 0.423 (ns) 0.184 (ns)

10–20 cm
T 0.002 ** 0.000 ** 0.000 ** 0.001 ** 0.000 ** 0.002 ** 0.271 (ns) 0.005 **
O 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.001 ** 0.000 ** 0.000 ** 0.000 **

T × O 0.731 (ns) 0.923 (ns) 0.030 * 0.067 (ns) 0.641 (ns) 0.075 (ns) 0.870 (ns) 0.010 *

20–30 cm
T 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **
O 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.248 (ns) 0.000 ** 0.000 ** 0.000 **

T × O 0.350 (ns) 0.240 (ns) 0.118 (ns) 0.384 (ns) 0.186 (ns) 0.005 ** 0.048 * 0.004 **

30–40 cm
T 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **
O 0.001 ** 0.007 ** 0.000 ** 0.000 ** 0.054 (ns) 0.000 ** 0.000 ** 0.000 **

T × O 0.893 (ns) 0.983 (ns) 0.045 * 0.056 (ns) 0.186 (ns) 0.009 ** 0.000 ** 0.000 **

0–40 cm
T 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.001 **
O 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.045 * 0.000 ** 0.000 ** 0.000 **

T × O 0.837 (ns) 0.672 (ns) 0.096 (ns) 0.597 (ns) 0.488 (ns) 0.016 * 0.309 (ns) 0.017 *

MR, microbial respiration; qmC, mineralization quotient; MWD, mean weight diameter; ka, air permeability; PO,
pore organization. T, tillage method; O, organic amendment. *, significant at p < 0.05; **, significant at p < 0.01; ns,
non-significant.

The qmC was also significantly (p < 0.05) impacted by the tillage methods and organic
amendments (Figure 2, Table 6). Relative to CT, DT and NT significantly (p < 0.05) increased
the qmC across all investigated depths. At these depths, MBF had the highest qmC among
all organic treatments, which was significant (p < 0.05), regardless of the tillage method.
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3.3. Aggregate Size Distribution and Stability

Figure 3 and Table S1 show the soil aggregate size distributions acquired through the
dry and wet sieving analysis. The comparison of the macroaggregates (>0.25 mm) from
dry and wet sieving showed that the PAD values were 34.84%, 48.96%, 53.59% and 56.09%
at 0–10 cm, 10–20 cm, 20–30 cm and 30–40 cm under CT, respectively (Table 7). CT had the
lowest soil PAD at 0–10 cm among the three tillage systems. However, compared to CT, DT
and NT significantly (p < 0.05) decreased the soil PAD in deeper soil layers. The soil PAD
in DT was 1.62%, 2.62% and 2.92% lower than in CT, whereas that in NT was 6.05%, 8.29%
and 5.28% lower than in CT at the 10–20 cm, 20–30 cm and 30–40 cm layers, respectively.
The organic amendments generally reduced the soil PAD in all layers, with PAD values of
32.19–55.22% in amended soils versus 39.01–55.28% in non-amended soils. On average, the
organic amendments significantly (p < 0.05) decreased the soil PAD compared to the control
at 0–40 cm, where the MWS treatment had the lowest soil PAD values. The lowest values
for the MWS treatment mostly occurred at 0–10 cm. The tillage and organic amendment
interactions also revealed that CT-MWS attained the lowest soil PAD (29.15%) at 0–10 cm
(Table S2, p < 0.05). Conversely, the PAD values for NT-MBF were the lowest at 10–20 cm
(41.07%, p < 0.05), 20–30 cm (41.60%, p > 0.05) and 30–40 cm (46.77%, p > 0.05).
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Figure 3. Responses of macroaggregate size distribution, determined by dry (a–e) and wet (f–j)
sieving analysis, to tillage and organic amendments at 0–40 cm. CT, conventional tillage; DT, deep
tillage; NT, no tillage. Control, mineral fertilizer; MWS, mineral fertilizer with wheat straw; MWH,
mineral fertilizer with wheat husk; MFS, mineral fertilizer with farmyard soil; MBF, mineral fertilizer
with bioorganic fertilizer.

The mean weight diameter values determined from dry sieving (dry MWD, 1.72–4.04 mm)
were larger than those acquired from the wet sieving analysis (wet MWD, 0.70–1.38 mm)
in all soil layers (Figure 4, Table 6, p < 0.05). In both the dry and wet sieving analysis, the
MWD was significantly affected by the tillage method. Compared with CT, DT and NT
significantly increased the MWD by 7.61–30.50% and 6.62–34.60%, respectively. In the wet
sieving analysis, NT also significantly increased the mean MWD value by 7.8% relative to
that of DT at the 0–40 cm soil layer.
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Table 7. Responses of the percentage of aggregate destruction to tillage and organic amendments at
0–40 cm.

Treatment
PAD (%)

0–10 cm 10–20 cm 20–30 cm 30–40 cm 0–40 cm

Tillage
CT 34.84 ± 4.93 b 48.96 ± 3.12 a 53.59 ± 2.66 a 56.09 ± 2.36 a 48.37 ± 2.19 a
DT 36.63 ± 2.34 a 47.35 ± 2.35 b 50.97 ± 1.79 b 53.17 ± 3.02 b 47.03 ± 1.56 a
NT 35.14 ± 2.11 b 42.91 ± 2.29 c 45.29 ± 3.58 c 50.81 ± 3.03 c 43.54 ± 2.10 b

Organic amendments
Control 39.01 ± 3.22 a 48.38 ± 3.92 a 51.79 ± 2.70 55.28 ± 2.93 a 48.62 ± 2.51 a
MWS 32.19 ± 2.86 c 45.06 ± 3.11 b 49.60 ± 3.74 51.80 ± 3.07 b 44.66 ± 1.93 c
MWH 36.45 ± 1.32 b 44.98 ± 2.29 b 49.76 ± 4.85 52.00 ± 2.50 b 45.80 ± 2.09 bc
MFS 34.86 ± 2.86 b 47.01 ± 3.35 ab 49.74 ± 4.40 55.22 ± 2.50 a 46.71 ± 2.40 b
MBF 35.18 ± 2.66 b 46.59 ± 4.68 ab 48.86 ± 6.19 52.49 ± 4.87 b 45.78 ± 3.71 bc

Two-way ANOVA (p values)
T 0.030 * 0.000 ** 0.024 * 0.000 ** 0.000 **
O 0.000 ** 0.009 ** 0.204 (ns) 0.001 ** 0.000 **

T × O 0.000 ** 0.046 * 0.474 (ns) 0.063 (ns) 0.019 *

Different letters indicate significant differences at p < 0.05. T, tillage method; O, organic amendment. **, significant
at p < 0.01; *, significant at p < 0.05; ns, non-significant. CT, conventional tillage; DT, deep tillage; NT, no tillage.
Control, mineral fertilizer; MWS, mineral fertilizer with wheat straw; MWH, mineral fertilizer with wheat husk;
MFS, mineral fertilizer with farmyard soil; MBF, mineral fertilizer with bioorganic fertilizer. PAD, percentage of
aggregate destruction.
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Figure 4. Responses of the mean weight diameters of aggregates, obtained by dry and wet sieving
analysis, to tillage and organic amendments at 0–40 cm. Different letters indicate significant differ-
ences at p < 0.05. CT, conventional tillage; DT, deep tillage; NT, no tillage. Control, mineral fertilizer;
MWS, mineral fertilizer with wheat straw; MWH, mineral fertilizer with wheat husk; MFS, mineral
fertilizer with farmyard soil; MBF, mineral fertilizer with bioorganic fertilizer.

Regardless of the tillage method, the application of organic amendments significantly
(p < 0.05) impacted the dry MWD and wet MWD. The dry MWD significantly (p < 0.05)
increased after the addition of organic amendments (1.96–3.83 mm) in comparison with the
control (1.83–3.60 mm), except for the MFS treatment at 0–10 cm (Figure 4b). The dry MWD
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in the MWS treatment was significantly (p < 0.05) greater than those in the MWH, MFS and
MBF treatments at 0–20 cm. In addition, both the MWS and MBF treatments had higher
MWD values than the other organic amendments at 20–30 cm (p < 0.05). Regarding the wet
MWD, the control soil also had the lowest values (0.86–0.92 mm), whereas the amended
soils had significantly (p < 0.05) higher values (1.00–1.25 mm) (Figure 4d). Higher wet
MWD values were obtained in the MWS and MBF treatments than in the MWH and MFS
treatments at 0–20 cm (p < 0.05). Notably, the MBF treatment alone exhibited the highest
wet MWD values at 20–40 cm (p < 0.05).

Significant interactions between tillage and organic amendments were observed at
depths of 0–10 cm, 10–20 cm and 30–40 cm in the dry sieving analysis (Table S3, p < 0.05).
DT-MWS had the greatest dry MWD values at 0–10 cm. At 10–20 cm, NT-MBF achieved
the highest dry MWD value. Meanwhile, the highest dry MWD in NT-MBF was obtained
at 30–40 cm, which was significant. In the wet sieving analysis, the interactions between
the tillage and organic amendments were not obvious (p > 0.05).

The power-exponential distribution model was used to match the aggregate size
distributions for both dry and wet sieving (Figure 5). The statistical characteristics for the
good fit data are shown in Table S4. The coefficient of determination (R2) ranged from
0.92 to 1.00 (average of 0.97), while the root mean square error (RMSE) varied between
0.008 and 0.04 (average of 0.02). These findings demonstrate that the power-exponential
model adequately described the distributions of the dry and wet sieving aggregates in the
organically modified soils under various tillage systems. The γ values changed from 0.002
to 0.59, with an average of 0.22. Larger γ values indicate a more left-skewing distribution.
The skewness for various treatments of dry or wet soil aggregates was generally similar
at each soil depth in the present study. In addition, the values of dr ranged from 0.003 to
2.13, with an average of 0.30. Organic amendments generally had lower dr values for wet
aggregates in all soil layers under the different tillage systems, but the differences were
not obvious. Smaller values of dr indicate a greater frequency of macroaggregates. For
example, the soil aggregates exhibited sizes of >5 mm, 2–5 mm and 1–2 mm according to
the wet sieve analysis (Figure 3f–j).

3.4. Soil Porosity Fractions

The tillage systems significantly affected the total porosity (Figure 6a,b, Table 6) and
macroporosity (>30 µm) (Figure 6c,d, Table 6) at the four investigated depths (p < 0.05). At
the 0–20 cm depth, CT had generally greater total porosity compared to DT and NT, whereas
both CT and DT tended to have significantly greater macroporosity than NT (p < 0.05).
At the depth of 20–40 cm, NT resulted in the greatest total porosity and macroporosity
(NT > DT > CT). In general, the organic amendments increased the total porosity and
macroporosity relative to those of the control. A significant variation in total porosity
was detected at 0–20 cm, where MWS and MWH had higher total porosity than the MFS
and MBF treatments. The advantages of the MWS and MWH treatments were significant
(p < 0.05) at 0–10 cm, yet non-significant at 10–20 cm (p > 0.05). However, significant effects
of the organic amendments on the macroporosity were generally found across all soil depths
compared with those of the control (p < 0.05). On average, MWS resulted in significantly
(p < 0.05) greater macroporosity than the other organic amendments at 0–40 cm. The
benefits of MWS on the macroporosity were mostly noticeable at 0–10 cm, whereas MBF
resulted in a similar improvement to MWS in the macroporosity at larger depths.
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The air permeability was significantly (p < 0.05) impacted by tillage at all soil depths
except the 10–20 cm depth (Figure 6e,f, Table 6). At the 0–10 cm depth, CT and DT resulted
in significantly (p < 0.05) larger air permeability than NT. However, at depths of 20–30 cm
and 30–40 cm, NT produced significantly (p < 0.05) larger air permeability than CT and DT
(NT > DT > CT). As a result, the mean value of air permeability was the largest under NT
in 0–40 cm (p < 0.05). The organic amendments significantly influenced the air permeability
across all depths (p < 0.05). Compared to the control, the organic amendment treatments
significantly (p < 0.05) enhanced the air permeability by 31.26–367.89% (except for MFS at
0–10 cm). Among the organic amendment treatments, the air permeability was significantly
(p < 0.05) higher for MWS and MWH than for MFS and MBF (MWH > MWS > MBF > MFS)
at 0–20 cm, while it decreased in the order MBF > MFS > MWH > MWS at 20–40 cm
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(p < 0.05). On average, MWS and MWH had significantly larger air permeability than MFS
(119.36% and 173.52%) and MBF (75.61% and 118.97%) at 0–40 cm.
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significantly (p < 0.05) greater than those for MWH (53.26–269.92%) and MFS (49.12–
259.93%). At a depth of 20–40 cm, greater Ks values were found only for MBF and MFS 
compared to the control (MBF > MFS > control, 27.75–130.04%, p < 0.05). On average, the 
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CT-MWS and DT-MWS were found to be more effective treatments in terms of increasing 

Figure 6. Responses of soil total porosity (a,b), macroporosity (c,d), air permeability (e,f) and pore
organization (g,h) to tillage and organic amendments at 0–40 cm. Different letters indicate significant
differences at p < 0.05. No letter annotation indicates no significant difference. CT, conventional
tillage; DT, deep tillage; NT, no tillage. Control, mineral fertilizer; MWS, mineral fertilizer with wheat
straw; MWH, mineral fertilizer with wheat husk; MFS, mineral fertilizer with farmyard soil; MBF,
mineral fertilizer with bioorganic fertilizer.

The PO continuity index exhibited significant (p < 0.05) differences in both the tillage
systems and organic amendments at all depths (Figure 6g,h, Table 6). At 0–10 cm, the
PO was the highest in CT, followed by DT and NT. At deeper soil depths, NT produced
the highest PO. The organic amendments also increased the PO compared to the control.
MWS and MWH resulted in significantly (p < 0.05) higher PO values than MFS and
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MBF at 0–20 cm. However, the opposite results were recorded at a depth of 20–40 cm
(MBF > MFS > MWH > MWS). On average, MWS and MWH had significantly (p < 0.05)
larger PO values than MFS (55.99% and 109.62%) and MBF (33.60% and 79.54%) at 0–40 cm.
The interaction effects of tillage and organic amendments on the pore characteristics were
evident at the 20–30 cm and 30–40 cm depths, with NT-MBF showing higher macroporosity,
air permeability and PO values than the other treatments (Table S5).

3.5. Soil Hydraulic Properties

The soil saturated hydraulic conductivity (Ks) was remarkably influenced by the tillage
practices and organic amendments across all depths (Table 8). At the 0–20 cm depth, CT
had the highest Ks values compared to DT and NT (p < 0.05). In contrast, DT and NT had
higher Ks values than CT (NT > DT > CT) at 20–40 cm (p < 0.05). Compared to the control,
the organic amendments significantly (p < 0.05) increased Ks by 43.79%~431.92% at 0–20 cm.
Among all of the organic amendments, the Ks values for MWS and MBF were significantly
(p < 0.05) greater than those for MWH (53.26–269.92%) and MFS (49.12–259.93%). At a
depth of 20–40 cm, greater Ks values were found only for MBF and MFS compared to
the control (MBF > MFS > control, 27.75–130.04%, p < 0.05). On average, the Ks values
decreased in the order of MWS > MBF > MFS > MWH > control. Interaction effects between
tillage and organic amendments on Ks were found at all depths (Table S6). CT-MWS and
DT-MWS were found to be more effective treatments in terms of increasing the Ks values
compared to other combined treatments at the depth of 0–10 cm. However, this advantage
was mostly exhibited in the CT-MBF and NT-MBF treatments at the 10–20 cm depth, with
NT-MBF displaying the greatest Ks values at the 20–30 cm and 30–40 cm depths.

Table 8. Responses of soil saturated hydraulic conductivity to tillage and organic amendments at
0–40 cm.

Treatment
Ks (cm h−1)

0–10 cm 10–20 cm 20–30 cm 30–40 cm 0–40 cm

Tillage
CT 20.02 ± 15.68 a 18.67 ± 10.57 a 0.50 ± 0.22 c 0.56 ± 0.09 c 9.94 ± 5.67 a
DT 18.97 ± 16.18 b 16.91 ± 9.22 c 1.12 ± 0.49 b 1.16 ± 0.39 b 9.54 ± 5.47 b
NT 11.32 ± 4.23 c 17.98 ± 10.32 b 1.82 ± 0.58 a 1.90 ± 0.32 a 8.26 ± 3.66 c

Organic amendments
Control 7.33 ± 1.10 d 7.12 ± 0.66 e 0.83 ± 0.42 d 0.99 ± 0.44 c 4.07 ± 0.32 e
MWS 38.99 ± 16.25 a 22.86 ± 1.81 b 0.93 ± 0.45 cd 1.13 ± 0.56 c 15.98 ± 3.90 a
MWH 10.54 ± 1.37 c 11.62 ± 1.03 d 1.00 ± 0.56 bc 1.06 ± 0.60 c 6.06 ± 0.29 d
MFS 10.83 ± 1.77 c 13.25 ± 1.07 c 1.06 ± 0.61 b 1.28 ± 0.62 b 6.61 ± 0.47 c
MBF 16.15 ± 1.41 b 34.40 ± 1.90 a 1.92 ± 0.88 a 1.57 ± 0.78 a 13.51 ± 0.52 b

Two-way ANOVA (p values)
T 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **
O 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **

T × O 0.000 ** 0.005 ** 0.000 ** 0.001 ** 0.000 **

Different letters indicate significant differences at p < 0.05. T, tillage method; O, organic amendment. **, significant
at p < 0.01. CT, conventional tillage; DT, deep tillage; NT, no tillage. Control, mineral fertilizer; MWS, mineral
fertilizer with wheat straw; MWH, mineral fertilizer with wheat husk; MFS, mineral fertilizer with farmyard soil;
MBF, mineral fertilizer with bioorganic fertilizer. Ks, soil saturated hydraulic conductivity.

3.6. Soil Hydraulic Conductivity and Its Relationship with Soil MR and Soil Structure

Pearson correlation coefficients were used to reveal the relationship between soil MR,
soil aggregates, soil pores and Ks at different soil depths (Figure 7). Ks was slightly (p > 0.05)
correlated with soil MR, whereas it was significantly (p < 0.05) correlated with the soil PAD,
dry MWD, porosity, macroporosity and ka at the 0–10 cm soil depth. The SEM analysis
also demonstrated that MR had an indirect, rather than direct, influence on the Ks changes
at the 0–10 cm depth (Figure 8). Soil MR primarily influenced Ks by modifying the soil’s
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water-stable aggregates and macroporosity. Importantly, the macroporosity exerted a direct
positive effect on the Ks changes at 0–10 cm (p < 0.05). Similarly, soil MR had an indirect
effect on Ks at a 10–20 cm depth, where Ks was positively correlated with the MWD and
macroporosity. Furthermore, direct positive correlations between the macroporosity and Ks
were found at a depth of 20–40 cm, with standardized coefficients of 0.35 at 20–30 cm and
0.45 at 30–40 cm, respectively (p < 0.05). Additionally, direct positive correlations between
the PO and Ks were detected, with standardized coefficients of 0.52 at 20–30 cm and 0.55 at
30–40 cm, respectively.
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Figure 7. Heatmap indicating Pearson’s correlations between soil microbial respiration, soil aggre-
gates, soil pores and soil saturated hydraulic conductivity across all depths. PAD, percentage of
aggregate destruction; Dry-MWD, mean weight diameter of aggregates obtained by dry sieving
analysis; Wet-MWD, mean weight diameter of aggregates obtained by wet sieving analysis; Ks, soil
saturated hydraulic conductivity. ***, significant at p < 0.001; **, significant at p < 0.01; *, significant at
p < 0.05.

A PCA biplot was constructed to integrate the thirteen variables and evaluate the
overall effects of the combined treatments on the soil microbial respiration, structure and
Ks (Figure 9). In the PCA, three principal components having eigenvalues >1 contributed
to 83.9% of the variation in the selected variables at 0–10 mm and 87.7% of the variation
at 10–20 cm. Most of the experimental variance was explained by the first two principal
components at the 20–30 cm (87.5%) and 30–40 cm (87.5%) depth. The PCA figure further
illustrates the correlation results between Ks and soil MR and the soil structure at each
depth. Interestingly, the combined treatments were located in different regions of the factor
space due to different loads in the variables. The DT-MWS treatment demonstrated the best
comprehensive improvement in the selected soil properties at 0–10 cm, attributed to the
highest scores for PC1 (SOC, dry->0.25 mm, wet->0.25 mm, wet MWD, macroporosity, Ks)
and PC3 (PAD, dry MWD, ka and PO). Additionally, the DT-MWS treatment was identified
as the most effective at 10–20 cm, primarily due to obtaining the highest score for PC1 (MR,
qmC, dry->0.25 mm, wet->0.25 mm, dry MWD and wet MWD). However, the NT-MBF
treatment emerged as the most effective in enhancing the selected properties, primarily
due to obtaining the highest score for PC1 at the 20–40 cm depth. The PCA also revealed
that combined mineral fertilizer and CT had the lowest comprehensive scores across all
soil depths.
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Figure 8. The direct and indirect effects of soil microbial respiration, aggregates and pores on the
saturated hydraulic conductivity at 0–10 cm (a), 10–20 cm (b), 20–30 cm (c) and 30–40 cm (d). The blue
and orange arrows indicate positive and negative relationships, respectively. The solid and dashed
arrows indicate significant and non-significant relationships, respectively. The numbers adjacent to
the arrows represent the path coefficients, while the thickness of the arrows denotes the strength
of the significant standardized path coefficient. R2 indicates the proportion of variance explained
by all predictors. RMSEA, root mean square error of approximation; CFI, comparative fit index;
Wet->0.25 mm and Wet-MWD, >0.25 mm soil aggregates and the mean weight diameter obtained by
wet sieving analysis; PO, pore organization; Ks, soil saturated hydraulic conductivity.
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Figure 9. Principal component analysis of soil properties for different treatment combinations of
tillage and organic amendments in all soil layers. SOC, soil organic carbon; MR, microbial respiration;
qmC, mineralization quotient; Dry->0.25 mm and Wet->0.25 mm, >0.25 mm soil aggregates obtained
by dry and wet sieving analysis; PAD, percentage of aggregate destruction; Dry-MWD and Wet-
MWD, mean weight diameter obtained by dry and wet sieving analysis; ka, air permeability; PO,
pore organization; Ks, soil saturated hydraulic conductivity. CT, conventional tillage; DT, deep tillage;
NT, no tillage. MF (control), mineral fertilizer; MWS, mineral fertilizer with wheat straw; MWH,
mineral fertilizer with wheat husk; MFS, mineral fertilizer with farmyard soil; MBF, mineral fertilizer
with bioorganic fertilizer.
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4. Discussion
4.1. Effects of Tillage Systems and Organic Amendments on Soil Microbial Respiration

Tillage and organic amendments are the predominant practices employed to influence
the SOC and MR [44]. Both tillage and no tillage induce losses in the SOC, with no tillage
exerting a more significant negative impact [45]. However, the application of organic
amendments can enrich the SOC under tillage systems [46]. Our study revealed that
organic amendments showed a more significant effect on the mean values of the SOC than
tillage at the 0–40 cm depth (Table 5). One reason for this phenomenon is the addition
of organic matter through organic amendments [30]. Additionally, organic amendments
stimulated plant root growth and increased root residues, which were additional sources
of SOC accumulation [33]. The organic amendments primarily enriched the SOC in the
0–20 cm layer, mostly owing to the depth at which the organic materials were mixed during
tillage [45]. The organic materials carried more C in the 0–10 cm soil layer under CT (tillage
depth around 15 cm), whereas the same dose of organic materials mostly remained on
the surface of the soil under NT. DT (tillage depth around 30 cm) could incorporate the
amendments into deeper soil depths. This also explains why the SOC was significantly
higher in CT and NT than in DT at 0–10 cm. Our results are in agreement with the findings
of Govednik et al. [47]. In terms of the organic amendments, MWS had greater SOC content
than MWH, MFS and MBF, predominantly due to the higher organic carbon content of
wheat straw (Table 4). A significant linear correlation was observed between the C input
and SOC (r = 0.849, p < 0.05) [45].

In our study, the organic amendments increased the mean MR values compared with
the control (Figure 2a,b). Our findings are consistent with the observations of previous
researchers, who discovered that applying organic materials might provide additional
sources of energy and nutrients [48]. More energy and nutrients induce the development
of various microbiota, increasing the microbial diversity and stimulating CO2 emissions
in soils [25]. Additionally, the comparative analysis in our study suggested that MBF
had the highest levels of MR. Various organic materials with differing resistant organic
components yield a diversity of decomposition rates [30]. For example, organic materials’
decomposability was controlled by their C/N ratio, with a lower ratio resulting in a faster
rate of C mineralization and CO2 generation [34]. Hence, the low C/N ratio (Table 4)
was most likely responsible for the high MR levels in MBF, as well as the highest qmC
(Figure 2c,d). Compared with CT, NT greatly enhanced the soil surface microbial activity
and MR by retaining organic matter on the surface soil. The retained organic matter also
enhanced SOC mineralization and released CO2 via the “priming effect” in the surface
soil [49]. The positive priming effect not only stimulated MR but also increased the qmC
under NT. Some studies have reported that the “priming effect” of organic amendments is
difficult to observe in the deeper soil under NT [43]. However, our results indicated that NT
promoted soil MR and the qmC at 20–40 cm. Although NT did not have higher SOC than
CT, it improved the total porosity, macroporosity and PO in the subsurface soil. The better
pore structure created a favorable environment for extracellular enzyme activities [29]. Liu
et al. [49] reported the same trend between enzyme activity and carbon mineralization.
Meanwhile, DT significantly increased the MR and mqC compared to CT in both the surface
and subsurface soils. The higher SOC and better pore connectivity also promoted organic
carbon mineralization and increased MR under DT at the 10–40 cm depth compared
to CT. However, CT had lower MR at 0–10 cm than NT and DT, although this depth
contained a high concentration of organic materials. Frequent tillage under CT disintegrated
the macroaggregates, resulting in more microaggregates to preserve the organic matter.
Consequently, this accelerated SOC retention and reduced CO2 production [46,50].
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4.2. Effects of Tillage Systems and Organic Amendments on Soil Structure

Soil aggregates and soil pore characteristics are the primary indicators used to assess
the soil structure, which influences soil nutrients and water transport [3]. For tillage, CT
disintegrated macroaggregates and disrupted the pore network through strong mechanical
forces from consecutive rotary tillage [51]. Combining CT and organic amendments could
effectively mitigate the negative effects on the soil structure in the surface soil but not in
the subsurface soil [18]. We observed that CT had the lowest PAD at 0–10 cm and the
largest total porosity at 10–20 cm (Table 7 and Figure 6). However, DT and NT significantly
decreased the PAD and increased the MWD of dry and wet sieving aggregates at 20–40 cm.
A lower PAD and higher MWD generally led to larger soil aggregates and greater soil
stability [3,52]. Moreover, greater aggregate stability would produce a better soil pore
structure, with higher total porosity, macropores, PO and air permeability. Mechanical
modifications of the soil profiles in DT could decrease the bulk density and enrich the
SOC [53], thereby increasing the proportions of macroaggregates and macropores in the
subsurface soil [54]. The little or no soil disturbance caused by NT promoted microag-
gregation to form macroaggregates and then improved the soil aggregate stability, thus
enhancing the pore radius, biotic macropores and pore connectivity [50].

The enhanced structural stability and optimized pore properties are largely due to
the addition of organic amendments [3,5,14,25]. Compared with the control, the organic
amendments significantly decreased the mean PAD values and increased the mean MWD
values for both dry and wet sieving in the 0–40 cm soil layer (Table 7 and Figure 4). The
incorporation of organic materials provided organic colloids for soil aggregates, thus in-
creasing the proportion of macroaggregates and improving the soil aggregate stability [55].
This was confirmed by the positive correlation between the MWD and C input [52]. Addi-
tionally, the total porosity, macroporosity, air permeability and PO were generally increased
by the addition of organic materials (Figure 6). Li et al. [3] also indicated that the short-term
application of compost and corn stover improved the CT-measured pores and their connec-
tivity in comparison with inorganic fertilization. This phenomenon could be caused by a
variety of mechanisms. A given dose of organic material applied to soils could dilute denser
soil mineral fractions, which leads to a decrease in soil bulk density and an increase in
macropores [56]. Moreover, organic materials could increase the humic acid concentration,
which may also increase the total porosity and macroporosity [28]. Lastly, the improved
pore structure might be attributed to the deposition of organic acids and polysaccharides
derived from organic materials, which facilitate the binding of soil mineral particles with
organic components, thereby promoting the formation of soil aggregates. Moreover, the
improvement in the soil structure could be ascribed to the organic amendment types [25].
MWS had the highest MWD values for dry and wet sieving compared to the other amend-
ment treatments at 0–20 cm, while MBF improved the MWD more than the other organic
amendments at 20–40 cm. Wheat straw generally remained in the topsoil, owing to its
lower bulk density (Table 4) compared to other organic materials. This would lead to
the best improvement in the aggregates and macropores of the surface soil under MWS.
However, the improvement in the soil structure caused by MBF might be accomplished by
more vigorous roots [26,57], continuous biopores [18] and soil MR and the decomposability
of bioorganic fertilizer in the subsurface soil. The great MR and decomposability of bioor-
ganic fertilizer also enhanced the pore connectivity [25]. The significant interaction effect
between the tillage methods and organic amendments on the pore characteristics at depths
of 20–40 cm was remarkable. NT-MBF had the largest macroporosity, air permeability and
PO, improving the air and water transport properties.
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4.3. Microbial Respiration and Soil Structure’s Impacts on Soil Hydraulic Properties

The soil hydraulic properties describe the physical aspects of the soil that enable air
and water to be stored and transmitted. Tillage significantly affected the soil profile’s
hydraulic conductivity. The highest Ks values were found in CT at 0–20 cm and in NT at
20–40 cm, respectively (Table 8). Under CT, a large amount of organic amendment was
added to the 0–10 cm soil layer, increasing the macroaggregates (>5 mm, 2–5 mm and
1–2 mm) and MWD for wet sieving [51]. Enhancing the soil aggregation resulted in an
optimized pore distribution, thereby augmenting the Ks [58]. However, frequent tillage
led to subsurface soil compaction and altered the soil structure, ultimately decreasing
the conductivity under CT [20]. Under NT, all organic materials were retained in the soil
surface, yet the highest saturated hydraulic conductivity was recorded in the subsurface
soil compared with CT (Table 8). This could be due to the increased biological activity in
subsurface soil [21]. The hydraulic conductivity increased as the soil MR and qmC increased
(Figure 7). Higher soil microbial activity resulted in more water-stable aggregates (>1 mm),
following the greater MWD, which in turn increased the soil macroporosity [25]. More
macropores provide more space and air for crop root systems and microflora, which are
advantageous for the hydraulic conductivity [21]. The hydraulic conductivity of saturated
and nearly saturated soils is presumably governed by macropores, accounting for 53% of
the total water flow [59].

Higher Ks values were observed in the organic amendment treatments than in the
control, being especially significant at the 0–20 cm depth (Table 8). This phenomenon could
be attributed to the greater MR, macroaggregates and macroporosity promoted by the addi-
tion of organic materials (Figure 7). Chichongue et al. [60] and Eze et al. [61] found that an
increase in SOC not only stimulated biological activity but also promoted soil aggregation,
thereby improving the soil’s pore connectivity and hydrological properties. Yazdanpanah
et al. [25] also revealed significant positive relationships between the MR, mqC, water-stable
aggregates, porosity, macroporosity and hydraulic conductivity following the application
of compost and alfalfa residue. Importantly, variations in pore size exerted a significant
direct influence on Ks (Figure 8). Li et al. [3] showed that the Ks values were enhanced with
the application of organic materials owing to the increase in soil macropores. Consistently,
a simultaneous increase in macroporosity and hydraulic conductivity was observed by
Abdollahi et al. [14] and Li et al. [62]. Thus, the improved Ks values in MWS within the
0–20 cm depth are attributable primarily to the greater macroporosity compared to the
MWH and MFS treatments. Nevertheless, the presence of macroporosity in MWS did not
yield a significant enhancement in the Ks values at the 20–40 cm depth when compared
to the control. This discrepancy might be attributed to reduced pore connectivity. Direct
positive correlations between PO and Ks were also detected by Schlüter et al. [20] and
Thotakuri et al. [63]. Hence, the high Ks values of MBF might be caused by the strong PO
at 20–40 cm as compared to the organic amendments.

Understanding the mechanisms controlling soil hydraulic conductivity in response
to organic amendments and tillage practices is critical in improving soil’s hydrological
conditions, alleviating soil degradation and combating soil compaction [14,25,62]. Our
study demonstrated that the conventional practices aggravated subsurface soil compaction
on the Loess Plateau. DT-MWS and NT-MBF had the greatest comprehensive improvement
effects on the soil’s microbial respiration, structure and hydrology at the 0–20 cm and
20–40 cm depths, respectively (Figure 9). Improving the surface soil hydraulic conductivity
is important, but overlooking subsurface compaction impedes deep water infiltration.
Hence, our study recommends the application of NT-MBF to effectively improve the soil
hydraulic conductivity by enhancing the soil microbial respiration and increasing the soil
macropores and pore connectivity. We hope that our findings offer a theoretical basis
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for local farmers to achieve enhanced soil hydrology. However, the scope of our study
was limited by its relatively short duration, which did not extend beyond five years [49].
Further investigation would be essential to elucidate the long-term, combined impacts of
tillage and organic amendments on the soil profile, microbial respiration, structure and
hydrology, as well as the complex interactions among these elements.

5. Conclusions
The two-year application of organic amendments and tillage methods significantly

affected the soil hydrology, structure and microbial respiration. Organic amendments
significantly improved the Ks at 0–10 cm and 10–20 cm, which was linked to enhanced MR
by modifying the water-stable aggregates and macroporosity. MWS generally showed a
lower PAD and higher MWD and macroporosity, leading to greater Ks values compared
to MWH and MFS. The PCA revealed that DT-MWS resulted in the best comprehensive
improvement in the selected soil properties at the 0–10 cm and 10–20 cm depths. Significant
interactions between tillage and the organic amendments were found for Ks, macroporosity
and PO at 20–40 cm. NT-MBF was the best treatment due to producing the highest Ks,
macroporosity and PO values, which were significant. The soil macroporosity and PO
were directly correlated with Ks, especially PO. Considering the problem of subsurface
soil compaction in our study region, NT-MBF would be the recommended treatment for
local farmers.
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