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Abstract: Developing vegetable agriculture is crucial for ensuring a balanced dietary struc-
ture and promoting nutritional health. However, remote sensing extraction in open-field
vegetable planting areas faces several challenges, such as the mixing of target crops with
natural vegetation caused by differences in climate conditions and planting practices, which
hinders the development of large-scale vegetable field mapping. This paper proposes a
classification method based on vegetable phenological characteristics (VPC), which takes
into account the spatiotemporal heterogeneity of vegetable cultivation in Northeast China.
We used a two-step strategy. First, Sentinel-2 satellite images and land use data were
utilized to identify the optimal time and key indicators for vegetable detection based on
the phenological differences in crop growth. Second, spectral analysis was integrated with
three machine learning classifiers, which leveraged phenological and spectral features ex-
tracted from satellite images to accurately identify vegetable-growing areas. This combined
approach enabled the generation of a high-precision vegetable planting map. The research
findings reveal a consistent year-by-year increase in the planting area of vegetables from
2019 to 2023. The overall accuracy (OA) of the results ranges from 0.81 to 0.93, with a
Kappa coefficient of 0.83. Notably, this is the first 10 m resolution regional vegetable map
in China, marking a significant advancement in economic vegetable crop mapping.

Keywords: vegetable mapping; machine learning; phenological features

1. Introduction

Vegetables are an essential part of the balanced diet recommended by the World Health
Organization (WHO) and the Food and Agriculture Organization of the United Nations
(FAO) [1]. According to the “2023 China Vegetable Industry Development Report”, as of
2022, the national vegetable planting area reached 336 million hectares, with a total output
of 791 million tons. Recent data show that greenhouse vegetables account for approximately
40% of the total vegetable planting area in China, while outdoor vegetables make up about
60%. However, compared to greenhouse vegetables, large-scale, detailed mapping studies
of open-field vegetables remain limited, which in turn restricts the efficiency and accuracy
of agricultural management, environmental monitoring, and agricultural decision-making
to some extent.

With the growing maturity of algorithm applications and the continuous advancement
of multi-source data fusion technologies, the accuracy and reliability of crop mapping
have significantly improved. This progress has enabled agricultural managers to monitor
crop growth distribution more effectively. However, despite significant progress in spatial
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mapping of major crops such as maize, rice, and soybeans, the study of small-scale crops,
particularly open-field vegetables, still faces numerous challenges. These challenges in-
clude substantial variations in climatic conditions and planting practices across different
regions, the mixed distribution of target crops with natural vegetation, and the wide di-
versity of vegetable types, along with their short growth cycles, small planting areas, high
dispersion, and strong sensitivity to environmental factors. Collectively, these issues limit
the applicability of traditional feature extraction methods and machine learning models in
mapping open-field vegetables.

Current research on minor crops primarily focuses on facility vegetable agriculture [2—4],
orchard management [5,6], and precise monitoring of horticultural crops and outdoor
vegetables. Only a small number of studies set the target objects as vegetables. For instance,
using drone data and point cloud data combined with deep learning instance segmentation
techniques, researchers have achieved precise monitoring of broccoli canopy structures and
plant quantities within individual plots [7,8]. Similarly, unmanned aerial vehicle (UAV)
RGB images and vegetation—soil height estimation methods have been employed for spatial
and temporal monitoring of cabbage plant height development [9]. Hyperspectral and
multispectral sensors have proven valuable in evaluating the biological characteristics,
nutritional status, and physiological parameters of young cabbage seedlings, leveraging
their detailed spectral band information [10]. For smaller vegetable varieties such as car-
rot [11], eggplant [12], and onion [13], the study areas were limited to research bases and
individual fields in Australia, Turkey, and Italy, respectively. These studies primarily fo-
cused on crop productivity, growth morphology, and nutritional parameters in small areas.
UAV [14] and ground sensor data were predominantly used in these studies. However,
these investigations are often confined to small-scale, specific vegetable type analyses and
lack large-scale, systematic mapping studies. While drones are capable of providing high-
resolution images, they face significant limitations for large-scale applications, particularly
in terms of scalability. Due to constraints such as limited flight time, high operational
costs, and flight area restrictions (e.g., climate, terrain complexity), drones are often less
efficient than satellite data over larger regions. Additionally, drones require extensive
ground support and operators, which increases the potential for human error and data
collection inconsistencies. In contrast, Sentinel-1/2 satellites can cover vast areas without
being constrained by terrain, climate, or other factors, and offer high spatio-temporal
consistency. Their data are well-suited for large-scale monitoring and long-term trend
analysis, making them particularly effective for agricultural monitoring across wide areas
and diverse climatic conditions.

Recent studies on large-scale crop mapping methods has primarily focused on major
crops such as corn, rice, wheat, and soybeans. Using machine learning algorithms, map-
ping studies have been conducted to analyze coverage areas. For example, by combining
Sentinel-2 (5-2) satellite data and Global Ecosystem Dynamics Investigation (GEDI) data,
researchers employed the Random Forest (RF) algorithm to extract spectral features, achiev-
ing an overall accuracy of 0.91 for maize mapping from 2019 to 2022 [15]. Similarly, using
the same data sources and classifiers, the mapping precision has been further improved
by effectively distinguishing crop height differences, resulting in an accuracy rate of at
least 0.87 [16]. Additionally, S-2 data have been used to extract rice growth characteristics
across three regions: Guangdong, Chongqing, and Heilongjiang. Using the RF classifier, the
overall accuracy ranged from 95.16% to 97.54%, enabling cross-regional rice mapping [17].
In feature extraction, researchers derived time-series data, texture, phenological features,
and terrain characteristics from S-2 data and evaluated these features using RF, SVM, and
artificial neural networks. Multiple crop maps were produced with an overall accuracy
of 0.93 [18]. However, due to the wide variety of vegetable varieties, short growth cycles,
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small planting areas, and high sensitivity to environmental factors, the applicability of
traditional feature extraction and machine learning models is limited.

In response to the above theory, this study aimed to utilize Sentinel-2 satellite imagery
to model and analyze the growth and distribution of various vegetables in farmland.
Specifically, this study aimed to address the following research questions: How can the
information of open-field vegetables be accurately extracted in the complex and dynamic
farmland environment? How can a high-precision, large-scale distribution map of open-
field vegetables be generated? And how does the distribution of open-field vegetables
change over time, from year to year? To achieve these objectives, this study proposes a
novel extraction strategy that combines phenological and spectral index characteristics to
more accurately identify open-field vegetables. Additionally, machine learning techniques
were employed to generate vegetable distribution maps with a spatial resolution of 10 m
for Northeast China from 2019 to 2023. By comparing and analyzing the mapping results
across different years, this study also extracted and examined the interannual changes in
the distribution of open-field vegetables.

Compared to other similar studies in this field, this research is relatively novel in
the following aspects: (1) A novel extraction strategy was proposed, incorporating both
phenological and spectral index features. (2) A vegetable crop distribution map, with a
spatial resolution of 10 m, was generated for Northeast China covering the period from 2019
to 2023 using machine learning techniques. (3) The interannual variations in the mapping
results across different years were extracted and analyzed. This research provides valuable
insights and foundational data for large-scale, precision-based vegetable crop management.

2. Materials
2.1. Study Area

The study area is located in the northeast region of China (40° N to 54° N, 114° E
to 130° E). Average annual temperatures range north to south from —4 °C to 11 °C and
average annual precipitation from 800 mm-300 mm [19]. This temperate monsoon climate
is characterized by hot and rainy summers, which coincide with the rainy season, creating
favorable conditions for crop growth. At the same time, the cold winters cause plants to
enter a dormant period, resulting in a distinct seasonal phenological change.

The terrain is flat and extensive, with fertile black soil containing high levels of
nutrients such as ammonia, phosphorus, and potassium, suitable for plant growth. Spring
snowmelt provides additional water for plant growth and spring recovery. Based on a
series of field surveys (23 April-24 August 2023) and visual interpretations of the latest
Google Earth images, the planting types in the entire study area vary, mainly divided
into bulk crops and minor crops. The growth cycle and phenological characteristics of
these crops are strongly influenced by local climatic conditions. For instance, the hot and
humid summer conditions promote the rapid growth and maturation of staple crops such
as rice, corn, and soybeans, while the cold winter causes these crops to enter dormancy,
awaiting recovery in the spring. Similarly, the growth cycle and phenological traits of
smaller crops, including fruits, oilseeds, and vegetables, are significantly affected by the
local climate. Vegetable-growing areas, in particular, are primarily located in farmland
regions, where the growth and harvest periods of these crops are closely linked to local
rainfall and temperature patterns. For example, hardy crops such as cabbage, radishes,
and kale thrive in cooler climates, whereas others, like potatoes and cauliflower, are better
suited to warm, moist conditions.

The spatial distribution of the research area and samples is shown in Figure 1.
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Figure 1. General information of the research area, including its geographical location and distribution
of various samples.

2.2. Data and Preprocessing
2.2.1. Sentinel-2

S-2 is a high-resolution multispectral imaging satellite jointly launched by the Euro-
pean Space Agency (ESA) and the European Commission (EC). The images we are using
are the Harmonized S-2 series. The HARMONIZED collection shifts data in newer scenes
to be in the same range as in older scenes. The dataset is standardized and aligned with S-2
data through a series of preprocessing steps. These steps include atmospheric correction,
geometric correction, radiometric calibration, cloud detection and removal, as well as data
standardization and fusion. The assets contain 12 UINT16 spectral bands representing SR
scaled by 10,000. We downloaded five different bands among them with a resolution of
10 m and an acquisition time approximately during the vegetable growing season, covering
the entire northeast region of China with 129 surface reflectance images used to construct
the initial time-series image collection. Examples of S-2 satellite imagery and in situ photos
taken from field investigations are shown in Table 1. Among them, the vegetable area
is distributed in a strip shape, mostly concentrated in farmland, usually green in color.
Rice has a similar morphology to vegetable areas during the growing season. Bulk crops
typically have regular texture features.
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Table 1. Examples of different types of data based on phenological information.
Category Description Satellite Image In Situ Photo
. It has a strip like distribution feature and is mostly
Vegetable Growing cr .
concentrated within the farmland, presenting
Area . .
different colors in different seasons
Distributed in multiple concentrations, the

Rice reflectivity is relatively similar to that of vegetable
areas during the growing season

Other Cultivated ~ Featuring regular texture features, often appearing
Land green during the growing season

2.2.2. Land Cover Data

ESRI 10 m Annual Land Cover is generated by the Impact Observatory. From 2017
to 2023, these maps were sourced from 10 m resolution images of the European Space
Agency’s Sentinel-2 spacecraft. Each map is a composite of land use and land cover (LULC)
predictions for 9 classes throughout the year to generate representative snapshots for each
year. The purpose is to extract the mask of cultivated land. All download, access, and
processing tasks are completed on the Google Earth Engine (GEE) platform.

2.2.3. Ground Validation Samples

In 2022 and 2023, we used Global Positioning System (GPS) devices to record veg-
etable plot information and took field photos. Based on the field sampling points and
image features, visual sampling locations were chosen on Google Earth. Table 2 presents
the combined data from both visual recognition sampling points and on-site sampling
information. Finally, for each province in 2023, we generated reference samples as follows:
Jilin Province: 7390 samples (VP: 4010, Non-VP: 3380), Heilongjiang Province: 8002 samples
(VP: 3713, Non-VP: 4289), Liaoning Province: 5230 samples (VP: 4093, Non-VP: 1137), and
Neimeng Province: 972 samples (VP: 314, Non-VP: 658). The sample size of crop types
in the study area is detailed in Table 2. These samples were used to train and test the
results generated by the methods proposed in this study. The annotated land cover types
vary across the entire study area, including vegetables, rice, corn, miscellaneous grains,
grassland, woodland, water bodies, buildings, and saline—alkali land (see Figure 1). We
used a random number generator to ensure the randomness of the data partitioning. By
setting a random seed, we ensured that the same partitioning result was obtained each
time the code was executed, which enhances repeatability. Given that the partitioning
process was random and the data distribution remained consistent, the sample points were
allocated to the training set and test set in an 8:2 ratio.
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Table 2. Quantity of different crop types.

Class Crop Type JiLin HeiLong]Jiang LiaoNing NeiMeng Count
1 Vegetable 4010 3713 4093 314 12,130
2 Rice 236 - 417 - 653
3 Corn 1537 - - - 1537
4 Soybean 185 - - - 185
5 Grassland 135 41 - - 176
6 Saline-Alkali Soil 163 21 - - 184
7 Others 1124 4227 720 658 6729
8 Total 7390 8002 5230 972 21,594

Other crop types in the table mainly include mixed samples of rice, wetland, grassland and other crops.

3. Methods

We designed a classification method based on phenological characteristics. Spectral
features used for classification were extracted according to the differences in time-series
spectral indices of different crop sample points. Effective classification of crops and vegeta-
bles was carried out within the cropped farmland areas. Using this method, we generated
annual maps of vegetable planting areas in the northeast region from 2019 to 2023. Figure 2
presents the overall framework of this study.

Harmonized Sentinel-2 HJ ‘ESRI 10m Annual Land CoverUJ

: Ground -
l Samples l

Step 1 Cropping
Cloud Removal Farmland -
GNDVI EVL RVL NDWL NDBL LSWI Range Mask )
50 | j ot L 3
= ¢}
= ) =y
7 ’ Index analysis =
) 3 ) ) o
8 Zos ()
= 1%, / J\ les|
[al ! A
3 ’ Crop Calendar ‘ . 5
< AL )
Q \\ | . =
| _ S}
_ : Vegetable Planting Area =
Phenological analysis P J
1 [19.15-10.15
¥
Method Accuracy Evaluation

Step 3 . - - - - - ; ; ;

‘ Confusion matrix ‘ ’ Comparative experiment ‘ ’ Time series mapping analysis ‘

Figure 2. Overall framework for the Vegetable Phenological Feature-based Classification method
(VPC) developed in this paper.

3.1. Remote Sensing Imagery and Indices

By combining the unique spectral characteristics of various land cover types, feature
indices were selected for differentiation. Vegetation indices were used to generate index
curves with time-series characteristics, further revealing the differences between vegetables
and other land cover types, providing effective variables for classification. The indices
we used included the Green Normalized Difference Vegetation Index (GNDVI), Enhanced
Vegetation Index (EVI), Ratio Vegetation Index (RVI), Normalized Difference Water Index
(NDWI), and Normalized Difference Built-up Index (NDBI). The index list is shown in
Table 3.

GNDVI quantifies vegetation greenness by leveraging the difference between the
red and near-infrared spectral bands. As plants grow and mature, their chlorophyll con-
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centration increases, leading to higher GNDVI values [20]. Therefore, the GNDVI value
is directly proportional to the growth status of the vegetable. NDWI is primarily used
to identify water bodies and water-rich areas. For vegetable growing areas, NDWI can
reflect the degree of irrigation and soil moisture. During the flourishing period of paddy
field crops, irrigation is frequent, and soil moisture is high, which causes the NDWI value
to differ from that of vegetables. This distinction helps to differentiate between areas of
vegetable cultivation and paddy fields based on their water content and irrigation patterns.
It provides auxiliary information for distinguishing these features [21] and differentiates
urban built-up areas from natural surfaces by comparing the reflection differences between
near-infrared and shortwave infrared bands. In areas near vegetable growing zones, the
presence of artificial structures such as buildings or roads leads to relatively high NDBI
values for these impervious surfaces [22]. By comparing the GNDVI with NDB], it becomes
possible to further distinguish vegetable growing areas from the surrounding urban envi-
ronment, enhancing the accuracy of identifying agricultural zones amidst urban landscapes.
Primarily used to distinguish urban built-up areas from natural surfaces, NDBI can identify
natural surfaces after field harvesting, effectively separating vegetable planting areas from
their surrounding backgrounds. The RVI index correlates strongly with leaf area index
(LAI), leaf dry biomass (DM), and chlorophyll content, making it a reliable indicator for
monitoring vegetation growth and health. RVI helps exclude crops with relatively low
chlorophyll content or distinct growth cycles, such as certain early or late maturing varieties
of vegetables [23]. EVI accurately captures vegetation greenness, offering a significant
advantage in eliminating weeds or low-growing crops that share similar growth envi-
ronments with vegetables but have lower biomass. Additionally, EVI performs well in
vegetation monitoring under varying lighting conditions [24,25]. LSWI serves as a reference
for irrigation management, reflecting the water status of crops. It is particularly useful for
crops with pronounced seasonal characteristics, such as rice. By distinguishing mature
rice plants, LSWI maximally highlights the differences between vegetable fields and rice
fields [26].

Table 3. List of indices.

Index Equation References
GNDVI g 20
NDWI H [27]
NDBI b 28]
EVI 2.5 x pn[r+6fp)rn¢j;:‘l7)i/§t:7bhm+1 [29]
RVI % [30]
LSWI % [31]

Where 0,04, Ogreens Pblues Pnir, and gy represent the green (560 nm), red (665 nm), blue (490 nm), near-infrared
(842 nm), and shortwave infrared (1610 nm) bands of the S-2 image, respectively.

3.2. Phenological Features Analysis

We selected the maturity period of vegetables with significant differences in vegetation
indices as the optimal identification period for crop classification. Due to geographical
differences in climate, there are different phenological periods for vegetable crop growth in
the different provinces. Vegetables exhibit two growth patterns, unimodal and bimodal, on
individual vegetation index time series. Although vegetables with bimodal growth curves
show significant differences from bulk crops during late June to mid-August, vegetables
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with unimodal curves overlap with them. Therefore, we chose vegetables with bimodal
curves as effective sample indicators for distinguishing crop categories.

Based on year-round S-2 images and corresponding ground reference data in the
four provinces of the northeast region, land cover types include three main vegetables
(Chinese cabbage, potatoes, and cabbage, collectively referred to as “vegetables” hereafter).
The phenological calendars of these three main vegetables and other crops are shown in
Figure 3. Specifically, the potato planting stage typically occurs in late April, followed by
germination, growth, filling, and maturation stages. Chinese cabbage is sown in August,
followed by germination, seedling stage, heading stage, and balling stage [32]. Cabbage
generally goes through the bolting stage, flowering stage, and fruiting stage [33], similar
to the growth cycle of Chinese cabbage. From the graph, it can be seen that there is some
overlap in the phenological characteristics of the three main crops, mainly concentrated in
the maturity period of potatoes, the heading period of Chinese cabbage, and the fruiting
period of cabbage. Therefore, based on the Sentinel-2 (S-2) images and the corresponding
ground reference data from the four provinces in Northeast China throughout the year,
we selected the maturity stages of the vegetables, which show significant differences in
vegetation indices, as the optimal classification period for crop classification. The window
period was limited to mid-June to late October, when these differences in vegetation indices
were most pronounced.

Sowing Germinate Seeding . growing

2023
Start End Jan Feb Mar Apr May Jun Jul Aug Sept Oct_ Nov

Tomato 15-Mar 30-Sep

Crop

Potato 15-Apr 15-Oct
Zucchini 1-Apr  30-Oct
Early-Scallion  25-Mar 30-Aug
Late-Scallion 10-Apr 30-Sep
Chinese Cabbage 15-Aug 30-Oct
Radish 1-Mar 30-Jun

Green Bea 15-Mar 30-Aug ‘ !
Celery 15-Jan  15-Jul a
Onion 25-Mar 15-Jul

Solanaceous 1-Mar 15-Oct

Cabbage  20-Aug 15-Oct B
Rice 20-Aug 15-Oct -
blossom fruiting heading harvest

Figure 3. Phenological calendars for vegetables. Based on year-round field surveys and data
collection results, we established the phenological calendars of the main crop types in the study area
and analyzed the phenological information of different crops.

During this time interval, the contrast between the target and background in the image
is higher, which can effectively filter out easily confused crops through vegetation indices
and reflect the information differences between vegetable areas and other land cover types
to the maximum extent possible, accurately reflecting the growth range of vegetables.

Subsequently, we used the GEE platform to obtain data at a 5 day frequency through-
out the year. Based on the performance characteristics of different land cover types,
vegetable crops exhibited two distinct growth patterns in the vegetation index time se-
ries: single peak and double peak. Upon observation, from mid-June to late October,
vegetable crops with bimodal growth curves showed clear differences from bulk crops,
while vegetable crops with unimodal growth curves partially overlapped with bulk crops.
Therefore, vegetable crops with bimodal curves were selected as valid sample indicators
for distinguishing crop categories. Finally, this study defined the time window from the
end of September to early October each year as the key period for crop classification. This
period coincides with the harvest of bulk crops and the peak growth of vegetable crops.
During this time, the contrast between the target crops and the background is high, allow-
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ing easily confused crops to be effectively filtered using the vegetation index. This time
window maximizes the differentiation between vegetable areas and other land cover types,
providing an accurate reflection of the vegetable growing range.

3.3. Machine Learning Methods

Random Forest (RF) [34], Support Vector Machine (SVM) [35], and k-Nearest Neigh-
bors (KNN) [36] are three popular machine learning algorithms used for remote sensing
classification tasks. First, as an ensemble learning method, RF improves model accuracy
and generalization by constructing a “forest” of decision trees trained on random subsets
of data and features, reducing the risk of overfitting. It excels in processing complex remote
sensing data, especially for vegetable planting areas with diverse vegetation and complex
growth environments, enabling more accurate classification. We initialized a random
forest classifier with 25 trees due to its strong processing capabilities and adaptability to
high-dimensional data.

Second, SVM aims to find an optimal hyperplane that separates different categories
while maximizing the margin between them. It performs well in both binary and multi-class
tasks, especially when distinguishing vegetable planting areas with clear vegetation differ-
ences. SVM also generalizes well to unseen data and handles nonlinear classification prob-
lems, which is crucial for vegetable mapping with complex growth patterns and terrain. We
chose SVM for its ability to handle nonlinear data and define clear classification boundaries.

Finally, KNN is a simple and effective classification method, suitable for smaller
datasets. In vegetable mapping, KNN classifies based on the feature space distance of
remote sensing data without complex model training. However, for large-scale datasets,
KNN'’s computational complexity can be high. Despite this, we included KNN as a
comparison algorithm to evaluate its performance in specific cases. In this study, we
set the K value to 1, considering only the nearest neighbor’s category for classification to
simplify calculations and compare algorithm performance.

3.4. Accuracy Assessments

The classification results from our VPC method showed strong agreement with ground
validation samples. To evaluate the accuracy of the vegetable map we generated, we
compared ground sampling data with existing results. We calculated the OA [37,38] and
KAPPA [39] of the map area using statistical data from 2019-2023. The formulae are
as follows:

TP + TN
Overall Accuracy = TP + FN + FP + TN g
Po — Pe
KAPPA = ———— ?
2 L ()

where TP is the number of correctly identified positive samples, FP is the number of
negative samples with false positives, TN is the number of correctly identified negative
samples, FN is the number of missed positive samples, pg is the sum of the number of
correctly classified samples for each class divided by the total number of samples, and p, is
an accidental consistency error, which refers to the expected consistency rate.

4. Results Analysis
4.1. Index Effectiveness Analysis

We analyzed the characteristic changes of rice, maize, soybean, and vegetable sample
points during the 2023 growing season by combining six spectral indices: GNDVI, EVI,
RVI, NDWI, NDBI, and LSWI (Figure 4). During the peak growing season (late September
to early October), vegetables exhibit their highest GNDVI values, significantly differing
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from those of corn crops. At this time, corn enters the maturing stage, with leaves turning
yellow, a reduction in leaf area, and decreased ground coverage. In contrast, vegetables are
at their growth peak, with the highest biomass content and maximum leaf area, resulting
in markedly higher GNDVI values compared to other land cover types.

15 (b) 021 (c)

&

—0.5
6/22 717 8/11  9/5  9/30 10725 6/22 717 811 9/5 930 10/25 622 7/17 &11 95  9/30 10/25
02 16

(d 141 ()

LSWI

\

.8
622 717 811 9/5 9/30 1025 6/22 717 8/11 9/5 9/30  10/25 6/22 717 811 9/5 930 1025

= Vegetable e Rice Corn Soybean

Figure 4. Spectral index characteristics of five-day time series datasets (GNDVI, EVI, RVI, NDWI,
NDBI, LSWI); subfigures (a—f) show the differences in spectral index characteristics between vegeta-
bles and other samples. The error band represents the standard deviation of the sample.

Similar to GNDVI, vegetables generally exhibit higher EVI and RVI values due to
their high chlorophyll content and rapid growth, which effectively distinguishes green
vegetation from non-vegetation areas. As part of natural vegetation, vegetables typically
have low NDBI values, which can help differentiate vegetable planting areas from periods
when bulk crops are in the bare soil stage. During the middle and later stages of the study
period, significant differences in NDWI values were observed between vegetables and
other crops. And wetlands, rice fields, and grasslands may be misclassified as vegetable
planting areas due to their similar spectral characteristics. To address this, NDWI and
LSWI should be used to further eliminate interference from areas such as rice fields. By
intersecting the classification results of existing farmland mapping with the exclusion of
rice reflectance, rice field targets can be filtered out, enabling the exclusion of irrigated
areas and paddy fields, allowing for the accurate extraction of vegetable planting areas.

4.2. Classification Result Analysis

The confusion matrix presented in Table 4 details the classification results of vegetable
planting areas across various provinces from 2019 to 2023. Each pair of rows represents
the classification results for a year and crops in different provinces. The four indicators for
different years and provinces, listed in order from left to right and from top to bottom, are
as follows: (1) the area that is actually a vegetable and correctly predicted by the model as
a vegetable, (2) the area that is actually a vegetable but incorrectly classified by the model
as another crop, (3) the area that is actually another crop but incorrectly classified by the
model as a vegetable, and (4) the area that is actually another crop and correctly predicted
by the model as another crop. It is important to note that the quantity of different crops
shows fluctuations over the years. In 2021, there was a significant decline in classification
performance, which may be attributed to specific environmental factors or data quality
issues during that year. In Liaoning Province, over time, the degree of confusion between
vegetables and other crops has gradually increased. This confusion may result from changes
in crop planting structures, variations in crop growth cycles, or the model’s limitations in
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adapting to new data. Furthermore, there are significant differences in the distribution
of vegetables and other crops across different cities and years. This variation is evident
not only in the diversity of crop species but also in the fluctuations of planting areas. In
the Inner Mongolia region, although the sample size is relatively small, leading to a lower
absolute number of classifications, the model still exhibits good overall performance. This
suggests that our model can maintain a certain level of accuracy and stability, even with
limited sample sizes. In contrast, Jilin Province exhibits the best classification performance
among all provinces. This may be closely linked to its favorable local climate conditions,
fertile soil, high-quality image data, and a sufficient sample size. These advantageous
factors in Jilin collectively provide a solid foundation for the training and validation of the
model, ensuring optimal classification performance.

Table 4. Confusion matrix of crop type maps from 2019 to 2023.

Province JiLin LiaoNing HeiLong]Jiang NeiMeng
Year Cro Vegetable Other Vegetable Other Vegetable Other Vegetable Other
P Samples Samples Samples Samples Samples Samples Samples Samples
Vegetable 692 85 826 19 510 168 48 6
Samples
2019 o
ther 55 369 26 163 53 792 1 83
Samples
Vegetable 709 80 830 26 471 173 46 6
Samples
2020 .
Other 56 233 2 150 51 735 4 104
Samples
Vegetable 696 64 766 24 468 144 49 5
Samples
2021 .
Other 58 320 24 179 83 763 6 102
Samples
Vegetable 725 69 800 20 510 142 54 5
Samples
2022 o
ther 59 359 19 165 53 740 6 91
Samples
Vegetable 762 90 756 21 590 101 52 6
Samples
2023 .
Other 43 351 19 147 35 811 8 )
Samples

4.3. Comparison Accuracy of Different Models

We introduced three different classifiers and conducted comparative tests. The re-
sults indicated that the RF classifier demonstrated optimal performance in distinguishing
these easily confused crops. This approach significantly enhanced classification accuracy,
enabling us to more precisely identify low-growing crops and vegetable planting areas.
Using the classification results from 2023, which are the most representative, our study
demonstrated that the RF model outperformed other methods in terms of OA and KAPPA
evaluation metrics. Specifically, RF achieved improvements of approximately 4% to 9%
compared to the K-Nearest Neighbors (KNN) and SVM algorithms (Figure 5). The OA of
vegetable area classification exceeded 85%, with the KAPPA coefficient consistently above
0.75, indicating high reliability in mapping vegetable planting areas.
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Figure 5. The classification accuracy of different classifiers in the four provinces in 2023.

4.4. Time Series Mapping and Analysis

In this study, we generated a detailed spatial distribution map and an intuitive area
distribution chart covering vegetable planting areas in Northeast China from 2019 to 2023.
As illustrated in Figure 6, vegetable cultivation exhibited a distinct clustering pattern across
the region, primarily concentrated in five key areas: Qigihar City in Heilongjiang Province,
Baicheng City and Siping City in Jilin Province, and Shenyang City and Dalian City in
Liaoning Province. These regions, with their unique natural conditions, rich agricultural
resources, and long history of cultivation, have become the core areas for vegetable farming
in Northeast China. Collectively, these areas account for over 45% of the total vegetable
cultivation area in the region. To further visualize the proportion of vegetable cultivation
relative to arable land and total land area, we created bar charts and line charts. As shown in
Figure 6f, the bar chart clearly illustrates the vegetable planting area across different years.
From 2019 to 2023, vegetable fields expanded by 7000 square kilometers, underscoring the
significant role and development trend of vegetable cultivation in agricultural production.
Meanwhile, the line chart depicts the change in the ratio of vegetable planting area to
total cultivated land over time, showing a year-on-year increase of two percentage points.
This trend intuitively reflects the growth and scaling of the vegetable planting industry in
Northeast China. We observed a year-on-year increase in vegetable planting areas, aligning
with the expansion of arable land in the region in recent years.
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Figure 6. The vegetable distribution maps of Northeast China in 2019 (a), 2020 (b), 2021 (c), 2022 (d),
and 2023 (e). Proportion of vegetable area in 2019 to 2023 (f). Based on the proportion of vegetables
to cultivated land, we divide vegetables into four distribution intensities, represented by yellow, red,
green, and blue from low to high.

5. Discussion

Figure 7 presents a visual comparison of vegetable images using various classification
methods and classifiers across four representative regions in 2023. In sparse vegetable
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planting areas in Figure 7(al-a3), other classifiers showed considerable omissions and
misclassifications. In contrast, our Random Forest classifier performed better in these
situations. In regions where rice and vegetables are interplanted in Figure 7(b1-b3), the
similar peak biomass periods of both crops resulted in a relatively small or even absent pixel
area for vegetables. Nevertheless, the Random Forest classifier successfully eliminated rice
crops, minimizing classification confusion. In large vegetable planting areas that intersect
with complex urban environments in Figure 7(c1-c3), our algorithm effectively reduced
missed classifications and ensured overall accuracy. Furthermore, in densely planted
vegetable areas in Figure 7(d1-d3), our hierarchical classification method, combined with
the RF classifier, accurately removed bulk crops used for spacing in vegetable fields, further
enhancing classification precision.

Source Image

SVM

Wi -
hS _
. o L X :
YA o8
b e "
o £ T ]

Figure 7. Visual comparison of different classification methods and classifiers for vegetable maps
in 2023: The lush growth period of vegetables is composed of multiple bands in S-2, including NIR
(band 8), RED (band 4), GREEN (band 3) and BLUE (band 2), forming the original image: (a) are
sparse vegetable planting areas; (b) is a vegetable area mixed with rice and with a relatively small
pixel area; (c) is a vegetable area that intersects with complex urban features and has a large planting
area; (d) is a dense vegetable planting area. (1-3) classification mapping, from left to right: RE, SVM,
and KNN.

Based on the observations shown in Figure 6, we found that the vegetable planting
area is increasing year by year, a trend closely linked to the recent expansion of cultivated
land in Northeast China. By 2023, the total vegetable cultivation area in the region reached
26,062 square kilometers, marking significant progress in agricultural development. Given
the current growth trajectory, the vegetable planting area is expected to continue expanding
in the coming years. In this context, the cartographic method proposed in this study



Agronomy 2025, 15, 307

15 of 17

will play an increasingly important role in continuous change monitoring. By regularly
monitoring remote sensing data and integrating machine learning algorithms, changes in
vegetable planting areas and structures can be tracked in real time.

The VPC method has demonstrated good performance with the current dataset, and
we believe it is applicable to regions with similar planting habits in Central China. How-
ever, further validation is needed in Southern China. Additionally, the acquisition and
processing of remote sensing data can be affected by various factors, such as extreme
weather events, cloud cover, and other conditions, which lead to changes in vegetation
spectral characteristics. This can complicate the relationship between spectral indices and
vegetable growth states, making them unstable. Due to differences in planting structures,
crop types, and growth cycles, land cover types are relatively complex, potentially leading
to issues like mixed pixels and loss of detailed information.

To address these limitations, we propose several avenues for future research. First,
expanding the study area and sample size, and focusing on more accurate time windows for
single or multiple crops based on local planting habits and climate conditions, would help
verify the applicability and accuracy of the VPC method in diverse regions. Additionally,
multi-temporal data fusion, meteorological data correction, or incorporating other data
sources (e.g., UAV remote sensing or commercial satellite data), along with ground observa-
tion data and advanced image processing techniques (e.g., super-resolution reconstruction),
could enhance classification accuracy and resolution. For different climate regions, more
granular regional models and high-resolution climate data could improve model accuracy.
Considering the potential impacts of climate change, adopting multi-scenario forecasting
methods to simulate agricultural production under various climatic conditions would help
increase the robustness and adaptability of the model.

6. Conclusions

This study, based on the phenological variation patterns of vegetables and other land
cover types, identified suitable spectral indices for vegetable mapping. By combining
machine learning classifiers, we developed the VPC method. This method accurately
distinguishes vegetable areas from other land cover types. RF has the best effect, with an
overall accuracy of 0.87 and a Kappa coefficient of 0.93. By analyzing the results of fine
mapping of vegetables in Northeast China from 2019 to 2022, we observed a year-on-year
increase in the vegetable planting area. Notably, Jilin Province, a major agricultural hub,
saw a significant increase of 171 square kilometers in its vegetable planting area. In contrast,
Inner Mongolia (Eastern Four Leagues) experienced a decline in vegetable cultivation, with
a decrease of 90 square kilometers. Looking ahead, we will continue to explore and optimize
VPC approaches, incorporating localized climate data (such as temperature, precipitation,
humidity, and wind speed), planting structure models (including crop species, planting
density, and growth cycles in different regions), and enhancing ground data collection
(covering crop growth status, chlorophyll content, soil moisture, etc.) to better address
these challenges.
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