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Abstract: Accurate assessment of forage quality is essential for ensuring optimal animal 
nutrition. Key parameters, such as Leaf Area Index (LAI) and grass coverage, are 
indicators that provide valuable insights into forage health and productivity. Accurate 
measurement is essential to ensure that livestock obtain the proper nutrition during 
various phases of plant growth. This study evaluated machine learning (ML) methods for 
non-invasive assessment of grassland development using RGB imagery, focusing on 
ryegrass and Timothy (Lolium perenne L. and Phleum pratense L.). ML models were 
implemented to segment and quantify coverage of live plants, dead material, and bare 
soil at three pasture growth stages (leaf development, tillering, and beginning of 
flowering). Unsupervised and supervised ML models, including a hybrid approach 
combining Gaussian Mixture Model (GMM) and Nearest Centroid Classifier (NCC), were 
applied for pixel-wise segmentation and classification. The best results were achieved in 
the tillering stage, with R2 values from 0.72 to 0.97 for Timothy (α = 0.05). For ryegrass, 
the RGB-based pixel-wise model performed best, particularly during leaf development, 
with R2 reaching 0.97. However, all models struggled during the beginning of flowering, 
particularly with dead grass and bare soil coverage. 

Keywords: machine learning; RGB imagery; forage crops; image segmentation; Leaf Area 
Index; grass coverage 
 

1. Introduction 
Forages are critical for animal production systems, particularly for ruminants, due to 

their role in economic nutrition and environmental conservation. Despite regional 
variations in their use, forages are vital for sustainable and cost-effective animal 
production [1]. Furthermore, grasslands cover 26% of the world’s land area and 70% of 
the global agricultural area, supporting over 800 million people [2,3]. These lands often 
include unmanaged or partially managed mixed grasses, legumes, and forbs, alongside 
millions of hectares of highly managed pasture, hay, and silage crops. However, 
compilation of forage crops’ global acreage and value do not usually encompass all forage 
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crops, and comprehensive data are sometimes lacking [4]. Global climate change poses a 
significant challenge for forage crop management and breeding, with northern regions 
expected to experience a faster warming rate than the global average [5]. In Norway, rising 
winter and summer temperatures may extend the grassland growing season. Precipitation 
changes, including extreme weather events and unstable winters, further complicate 
adaptation strategies. These climatic shifts, whose most significant positive and negative 
changes are predicted to occur in northernmost Europe, will introduce abiotic stresses that 
could negatively impact forage yields [6]. Hence, given the complexity and contrasting 
effects of climate change, more accurate information is needed to efficiently manage 
forage crops in light of the current and forthcoming challenges. Norway, in particular, 
exhibits one of the highest global demands for quality livestock production of meat, milk, 
and dairy products [7]. Thus, substantial resources are allocated to forage production, 
indicating severe environmental damage [8]. Hence, in Scandinavian countries, significant 
attention has been directed towards the requirements and needs for food production 
based on ruminants [9]. Forage production demands an increasingly substantial amount 
of resources, and this situation is considered a bottleneck in the system [8]. Consequently, 
the relationship between the requirements for grassland production and the degradation 
of natural resources has been examined [10]. This examination has involved implementing 
precision agriculture (PA) processes [11] to contrast qualitative information obtained 
through traditional methods, such as field sampling or supervised visual estimation, 
which are often destructive and costly. 

Efficient management of forage crops and grasslands is crucial for sustainable 
agriculture. PA techniques facilitate the implementation of different approaches to rapid 
and accurate estimates of biomass, forage quality, and grassland productivity indicators. 
These are essential in decision-making about cutting dates, fertilization, and grassland 
renovation. For example, Dusseux et al. [12] evaluated the potential of Sentinel-2 satellite 
data to estimate dry grassland biomass using grassland height as a measurement. Within 
the electromagnetic spectrum, the Red-edge, Near Infra-Red, and Short Wave Infra-Red 
spectral bands appeared to contain substantial information that could be utilized for the 
estimation of grassland biomass. Moreover, Rueda-Ayala and Höglind [13], using 
unmanned aerial vehicles (UAVs), conducted a research study to determine the ideal 
grass conditions for successfully establishing Trifolium pratense L. through sod-seeding. 
The study highlighted the challenges of introducing red clover into dense swards and 
emphasized the importance of site-specific considerations for grassland renovation. 
Similarly, Rueda-Ayala et al. [14] assessed grass ley fields using UAVs and on-ground 
methods (RGB-D information). Plant height, biomass, and volume using digital grass 
models were estimated. The sensing systems accurately determined parameters by 
comparing estimated values with ground truth, considering basic economic 
considerations. 

Fricke et al. [15] explored the use of ultrasonic sensors, both statically and mounted 
on vehicles, to estimate sward heights and correlate these measurements with forage 
mass. This approach provides a non-destructive method for yield mapping in precision 
agriculture. Additionally, laboratory studies assessed forage crops to predict quality 
parameters, further enhancing the application of these technologies. Building on this, 
Berauer et al. [16] introduced visible-near-infrared spectroscopy (vis-NIRS), which 
demonstrated high accuracy in predicting forage quality parameters, such as ash, fat, and 
protein, in bulk samples from species-rich montane pastures. This method also proved 
valuable for detecting the impacts of climate change and land management on forage 
quality. On the other hand, RGB imagery, while effective for many agricultural 
applications, faces notable limitations, particularly in scenarios involving leaf overlap. 
Overlapping leaves can obscure key sections of the plant, reducing the accuracy of feature 
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detection and analysis. This issue is particularly pronounced in grass mixtures, where the 
uniformity of vegetation can further complicate segmentation and classification tasks. In 
contrast, distance sensors [16], which operate based on principles like time-of-flight, offer 
complementary advantages by enabling the measurement of plant height and the indirect 
estimation of biomass through height–biomass relationships. These sensors are typically 
categorized into two main types: ultrasonic devices and LiDAR (Light Detection and 
Ranging) systems. Ultrasonic sensors rely on sound waves to measure distances, while 
LiDAR employs laser pulses, providing higher resolution and precision [17]. Both 
ultrasonic and LiDAR technologies have seen widespread adoption in modern 
agricultural practices due to their versatility and efficiency. Their ability to rapidly collect 
data across extensive field areas makes them particularly valuable for applications like 
crop monitoring, yield estimation, and resource optimization. LiDAR can also be 
implemented by supplementing spectral data with structural and intensity information, 
enabling higher accuracy in species classification and mapping. This integration enhances 
the use of LiDAR in ecological studies and its potential to streamline operational species 
monitoring [18,19]. 

However, the integration of non-invasive technologies—including vis-NIRS, 
ultrasonic and depth sensors, UAVs, and satellite sensing—has created a robust 
foundation for more precise, efficient, and sustainable management of grasslands and 
forage crops. Furthermore, advancements in artificial intelligence (AI) have driven 
significant progress in feature extraction techniques, enabling better assessment of key 
traits, like leaf area index (LAI), plant height, and biomass. These innovations collectively 
represent a leap forward in optimizing forage crop management. In AI, machine learning 
(ML) has become the standard for image analysis [19]. Recent ML advances have opened 
new avenues for enhancing these processes, leveraging remote sensing technologies, 
advanced algorithms, and diverse datasets to derive valuable insights. In the context of 
forage crop management, ML algorithms have been increasingly used and achieved 
remarkable success in various forage crop assessment and management. For example, 
Oliveira et al. [20] demonstrated the potential of UAV remote sensing for managing and 
monitoring silage grass swards. Their study utilized drone photogrammetry and spectral 
imaging to estimate biomass, nitrogen content, and other quality parameters in 
grasslands. Training machine learning models, such as Random Forest (RF) and multiple 
linear regression (MLR), with reference measurements achieved promising accuracy in 
biomass estimation, nitrogen uptake, and digestibility. Similarly, Lussem et al. [21] 
 utilized UAV-based imaging sensors and photogrammetric structure-from-motion 
processing to estimate dry matter yield (DMY) and nitrogen uptake in temperate 
grasslands. They compared linear regression, Random Forest (RF), support vector 
machine (SVM), and partial least squares (PLS) regression models. Combining structural 
and spectral features improved prediction accuracy across all models, with RF and SVM 
outperforming PLS. This study underscored the efficacy of integrating various data 
features for robust grassland monitoring. In contrast, Xu et al. [22] focused on the use of 
terrestrial laser scanning (TLS) for estimating aboveground biomass (AGB) in grasslands. 
TLS provides detailed canopy structural information, which can be used to build 
regression models. Their study compared four regression methods: simple regression 
(SR), stepwise multiple regression (SMR), Random Forest (RF), and artificial neural 
network (ANN). The SMR model achieved the highest prediction accuracy, indicating that 
incorporating multiple structural variables from TLS data can significantly enhance 
biomass estimation. Chen et al. [23] explored the integration of Sentinel-2 imagery with 
advanced ML techniques for estimating pasture biomass on dairy farms. Their sequential 
neural network model incorporated time-series satellite data, field observations, and 
climate variables. The model achieved a reasonable prediction accuracy, with an R2 of ≈0.6, 
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suggesting that high spatio-temporal resolution satellite data, when combined with ML 
models, can provide valuable insights for pasture management. On the other hand, other 
authors have employed alternative techniques, such as multispectral imaging. Zwick et 
al.  [24] focused on remote sensing-based approaches for forage monitoring in rural 
Colombia. Using multispectral bands from Planetscope acquisitions and various 
vegetation indices (VIs), they developed models to predict crude protein (CP) and dry 
matter (DM). The study highlighted the importance of site-specific model optimization, 
with different regression algorithms performing best at different sites. The integration of 
multiple regression techniques and feature selection methods demonstrated the 
adaptability required for diverse climatic conditions. Interestingly, Defalque et al. [25] 
introduced a novel approach by incorporating cattle parameters and environmental and 
spectral data to estimate biomass and dry matter in grazing systems. Their study utilized 
Pearson’s correlation analysis and Recursive Feature Elimination (RFE) for variable 
selection. Non-linear models achieved the best prediction results, particularly Extreme 
Gradient Boosting (XGB) and Support Vector Regressor (SVR). This research highlighted 
the significant impact of herd characteristics on pasture quantity estimation, providing a 
comprehensive approach to pasture monitoring. 

The aforementioned literature highlights the potential of ML to significantly enhance 
the assessment and evaluation of forage crops and grasslands within the agricultural sector. 
However, there is a recognized need for further development, particularly concerning 
ground truth measurements. This advancement specifically aims to reduce reliance on 
traditional field-based methods, such as destructive sampling and visual assessment, which 
are known to be labor-intensive, time-consuming, and prone to error [22]. This study 
presents a low-cost and rapid non-destructive estimation of grassland productivity 
parameters using ML-based analysis of RGB imagery through artificially generated sward 
images, specifically focusing on the forage crops ryegrass and Timothy (Lolium perenne L. 
and Phleum pratense L., respectively). The proposed methodology enabled the accurate 
segmentation and quantification of live plant material, dead plant material, and bare soil 
cover coverage. Furthermore, this approach facilitated the determination of LAI, a critical 
biophysical indicator of vegetation health and photosynthetic capacity. By leveraging ML 
algorithms, this study addresses the challenges of traditional field sampling, making the 
process more efficient and accurate. Hence, the utilization of RGB imagery allowed for rapid 
and cost-effective data acquisition, enabling frequent monitoring of grassland dynamics. 

2. Materials and Methods 
2.1. Methodology Overview 

In this study, a hybrid approach combining Gaussian Mixture Model (GMM) and 
Nearest Centroid Classifier (NCC) algorithms was employed for image segmentation and 
classification (Figure 1). The process begins with acquiring images capturing vegetative 
structures, followed by image preprocessing to enhance the quality of the input data. 
Preprocessing ensures that the images are cleaned and prepared for analysis, removing 
any distortions or noise that might affect the accuracy of the results. Next, the features 
from the images are extracted using various segmentation parameters. Three different 
approaches are employed for feature extraction: in method A, the pixel values are derived 
from RGB and Y’CbCr color spaces alongside CMYK components. Method B introduces 
the Modified Excess Green Index (ME × G) to enhance the identification of green 
vegetation. In contrast, method C further simplifies the feature extraction by focusing on 
RGB and Y’CbCr, paired with ME × G. Following feature extraction, Principal Component 
Analysis (PCA) is applied for dimensionality reduction, streamlining the dataset by 
reducing the number of variables, making it easier to process without compromising 
essential information. Once the features are extracted, the workflow moves into the 
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segmentation phase, where GMM and NCC are applied to cluster and classify the pixels 
into categories, such as bare soil, living grass, and withered grass. The GMM algorithm 
helps identify pixel groupings based on the extracted features, while NCC fine-tunes the 
classification by comparing the pixel values against pre-defined centroids. Although 
GMM is typically used for unsupervised tasks, its incorporation into this supervised 
pipeline demonstrates its versatility in hybrid frameworks. Similar methods have shown 
that GMM can function well as a preliminary segmentation tool, increasing overall 
accuracy by using pixel groupings as intermediate inputs for supervised classifiers [26,27]. 
For example, GMM has demonstrated superiority in detecting homogenous pixel regions 
in Object-Based Image Analysis (OBIA) before the application of supervised techniques, 
like Random Forest classifiers or SVM [27]. The segmentation results are used to generate 
artificial images that simulate the sward structures, which are further utilized for training 
the machine learning models. In the final stage, the models are evaluated through 
regression analyses to assess their ability to predict key vegetation parameters. 
Specifically, the models aim to estimate the LAI, which provides insights into vegetation 
density and health, as well as the coverage of bare soil, living grass, and withered grass. 
The results from these analyses are used to validate the models’ performance for 
accurately segmenting and quantifying vegetative structures in ryegrass and timothy 
crops, ensuring that the machine learning algorithms provide reliable estimates for 
practical agricultural applications. In the following chapters, each process step, including 
model training, evaluation, and segmentation accuracy, will be explained in detail. 

 

Figure 1. Workflow for an automated image analysis pipeline for segmenting and evaluating 
grassland images. The pipeline leverages image processing, machine learning, and statistical 
analysis to accurately classify and quantify different grass structures. 

2.2. Study Site and Experimental Design 

The study was carried out at the NIBIO Særheim research station (Klepp Stasjon, 
Norway, 58°46′22″ N; 5°40′38″ E) at three fields dedicated to permanent ley grass 
production [13]. Four field trials were implemented based on the most commonly used 
grass species in the region: ryegrass (Lolium perenne L.) and Timothy (Phleum pratense L.). 
After the first cut, one field (25.25 m × 12.50 m) with ryegrass and one of the same 
dimensions with Timothy were evaluated during late summer 2017. Moreover, after the 
first cut, one ryegrass field (16.8 m × 10.5 m) and another of the same dimensions for 
Timothy were evaluated during early spring 2018. Each experiment had 4 replication 
blocks and 10 levels of initial grass plant cover were tested, ranging between 0 and 100%, 
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achieved with a low-dose application of glyphosate [11]. The total amount of precipitation 
for the late-summer 2017 lapse was 402 mm, and for the early-spring 2018 lapse was 138 
mm. Further site characteristics, such as soil type, climatic conditions during the 
experiment, management practices, and experimental design, are described in [13,14]. 
Data collection took place in mid-July through mid-September 2017 (late summer), during 
pasture regrowth after the first cut, and in mid-April through May 2018 (spring), during 
the beginning of the growing season until the end of vegetative development stage, before 
the first cut. About 400 images were acquired per experiment, totaling 1605; the images 
were mainly taken aiming at cloudy and low-sun days to avoid shadows, which could 
affect the segmentation processes (see Table 1). To establish ground truth measurements 
of each plot, a 1 m × 1 m field quadrat, representing the region of interest (ROI), was 
randomly selected across the planned initial coverage plot. Field measurements were 
conducted immediately after image acquisition to obtain ground-truth data, i.e., visual 
plant, dead material and bare soil coverages and destructive samples for LAI 
determination. LAI, which characterizes plant canopies, was determined using a 
systematic approach with image analysis software, following the approach by Nielsen et 
al. [28] relating LAI and crop canopy. It is defined as the total leaf area relative to the 
ground area. The process began by selecting a 1 m × 1 m quadrant and placing it on a 
representative area of the grassland. The grass within the quadrant was then cut at ground 
level, ensuring all leaf material within the sampled area, i.e., the ROI, was collected. After 
harvesting, the leaves were separated from other plant parts, such as stems and flowers, 
to focus solely on leaf material for the LAI calculation. Grass samples were collected 
exclusively from within the designated quadrat to maintain consistency in the analysis, 
even if some plant parts extended beyond its boundaries. This approach ensured 
standardized sample sizes and prevented overestimation. The collected samples were 
then dried in a 65 °C oven until they reached a constant weight, which removes moisture 
and allows for precise measurement of the dry matter content. The leaves were then 
spread out on a white sheet of millimeter graph paper, carefully arranged to avoid overlap 
and ensure even distribution, and marked with a bold black line of 10 cm as reference. 
This prepared sheet with leaves was placed on a flatbed scanner and scanned at high 
resolution to capture detailed images of the leaves. These images were saved in a digital 
PNG format. The scanned images were analyzed using FIJI image analysis software 
(version 2.9.0) to automatically calculate the area covered by the leaves by processing the 
number of pixels corresponding to the leaf material in the image. This calculation 
provided a precise measurement of the total leaf area in cm2. Finally, the LAI was 
determined by comparing the total leaf area, as measured by the software, to the 1 m2 
sampled area, and the values were extrapolated to the area in m2. Ryegrass and Timothy 
sward coverages were also assessed by visual estimation. Images were acquired at the 
three developmental stages of Timothy and ryegrass: leaf development (initial leaf 
formation), tillering (full leaf formation and tillering), and beginning of flowering (end of 
vegetative growth). 

Table 1. Field-based image acquisition specifications for data collection setup and conditions for 
grass species ryegrass and Ttimothy imaging. 

Parameter 
Late Summer 2017 Early Spring 2018 

Experiment Experiment 
Location NIBIO Særheim research station, Klepp Stasjon, Norway (58.76° N, 5.65° E) 

Grass Species Ryegrass (Lolium perenne L.) and timothy (Phleum pratense L.) 

Field Size and Layout 
2 fields (each 25.25 m × 12.50 m), 4 

replication blocks per field 
2 fields (each 16.8 m × 10.5 m), 4 replication 

blocks per field 
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Growth Stage and Timing 

Late summer (mid-July to mid-September 
2017), regrowth after first cut; 

phenological stages: leaf development, 
tillering, beginning of flowering 

Early spring (mid-April to June 2018), from 
early season to end of vegetative stage before 

first cut; phenological stages: leaf development, 
tillering, beginning of flowering 

Soil Coverage Treatments 0–100% grass cover achieved via low-dose glyphosate application 
Number of Images 805 800 

Camera Models SONY DSC-HX60V (RGB) and APEMAN A60 (DHP) 
Camera Specifications 
(SONY DSC-HX60V) 

20.4 MP CMOS sensor, focal range 24–720 mm (35 mm eq.), ~2736 × 2736 px image 
resolution 

Camera Specifications 
(APEMAN A60) 

12 MP still images, 170° fish-eye lens, ~2736 × 2736 px image resolution 

Image Acquisition Method 
Cameras mounted at ~1.75 m above ground; handheld and vehicle-mounted platforms to 

ensure consistency 
Acquisition Still images captured manually on cloudy/low-sun days to minimize shadows 

Weather Conditions 
Cloudy, low-sun conditions preferred; 
precipitation for the late-summer-2017 

period: 402 mm 

Cloudy, low-sun conditions preferred; 
precipitation for the early-spring-2018 period: 

138 mm 

Soil and Climate Umbric podzol, sandy loam (63% sand, 28% silt, 9% clay), ~7% OM; cold maritime climate 
(~1180 mm annual precipitation) 

2.3. Sensors and Computing Environment 

Image acquisition was performed using two consumer-grade cameras. The cameras 
were mounted on agricultural machinery, enabling a standardized and quantifiable 
approach to data collection. This setup ensured consistent data acquisition at a height of 
1.75 m, which is particularly advantageous for research applications and large-scale data 
analysis requiring precision and reproducibility. Images were captured with a SONY 
DSC-HX60V. Additionally, Digital Hemispherical Photography (DHP) images were 
obtained using a low-cost camera (APEMAN A60) positioned at a similar height. The 
SONY camera captured high-resolution still images, featuring a 20.4 MP CMOS sensor 
and a 24–720 mm equivalent focal range. The APEMAN A60, equipped with a wide-angle 
(170°) fish-eye lens and producing 12 MP still images, provided complementary 
hemispherical perspectives. All images had an approximate final resolution of 2736 × 2736 
pixels (further details see Table 1). The experiments were conducted in a standard, cost-
effective computing environment using a Dell Tower with an Intel Core i7-7700k 
processor and 16 GB of RAM. The system operated on Linux 18.10, a free and open-source 
operating system, ensuring accessibility and flexibility. All data processing, analysis, and 
model implementation were carried out using Python 2.7, a reliable and widely used 
programming language, and Visual Studio Code (VS Code), a robust and versatile 
programming platform. This configuration was intentionally selected to demonstrate the 
practicality and accessibility of the proposed method, showcasing its capability to operate 
on moderately powered, commercially available hardware without reliance on high-
performance computing clusters or specialized equipment such as GPUs. 

2.4. Image Pre-Procesing 

In preparation for the analysis of the images acquired by the consumer-grade 
cameras SONY DSC-HX60V and APEMAN A60 cameras, the latter equipped with a fish-
eye lens, a meticulous preprocessing stage is implemented. This crucial phase serves to 
rectify distortions inherent to the fish-eye lens and enhance overall image quality. The 
preprocessing workflow encompasses several key steps. Initially, camera calibration is 
executed to ascertain the intrinsic parameters of each camera, including focal length and 
lens distortion coefficients. This calibration is facilitated through the utilization of a 
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calibration grid or checkerboard pattern. The resultant parameters are subsequently 
employed to rectify images and ameliorate lens distortions. The ROI encapsulates the 
analysis target and is delineated following calibration. This delineation can be performed 
manually or automated through image segmentation techniques. To streamline further 
processing, the ROI is partitioned into four quadrants. Corner detection algorithms are 
applied within each quadrant to pinpoint distinct and stable feature points. These 
identified corners function as reference points for subsequent transformations and 
measurements. The final stage involves orthorectification, a process that geometrically 
corrects the ROI and mitigates distortions arising from camera tilt and perspective, 
particularly crucial for images captured with the fish-eye lens. An overview of this 
preprocessing workflow is visually represented in Figure 2. 

 

Figure 2. Structured Workflow for Image Preprocessing, covering all essential steps from defining 
the ROI to ensuring accurate orthorectification. 

The image preprocessing workflow begins with camera calibration as the initial step. 
This step is crucial to ensure accurate measurements and interpretations from the 
captured images. The RGB cameras in this workflow provide high-resolution images with 
an average size of 2736 × 2736 pixels, offering substantial detail and information. One of 
the key distinctions between the two cameras employed is the presence of “fish-eye” 
distortion in the second camera. This distortion is inherent to wide-angle lenses, such as 
those commonly used in action cameras. The “fish-eye” distortion causes straight lines to 
appear curved and objects closer to the edges of the image to be stretched, resulting in a 
characteristic “bulging” effect. This distortion can significantly impact the accuracy of 
measurements and analysis if not properly accounted for. Figure 3 effectively illustrates 
the difference between the images captured by the two cameras. 

 

Figure 3. Comparison of sward field images captured with Apeman A60 (a) and Sony DSC-HX60V 
(b) cameras. 
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In Figure 3, the left image, captured by the camera without barrel distortion, also 
known as the “fish-eye” lens effect, exhibits straight lines and consistent object 
proportions throughout the image. In contrast, the right image, captured by the camera 
with barrel distortion, displays curved lines and distorted object proportions, particularly 
near the edges of the image. The “fish-eye” distortion, evident as a bulging effect that 
elongates objects near the edges, is a critical factor in image preprocessing. Correcting this 
distortion involves calibrating and quantifying distortion parameters, which are then 
applied to transform images for accurate analysis. An adjustment procedure, based on a 
proposed calibration method by [29], was developed to address this issue effectively. The 
algorithm for detecting intersection points and correcting distortion in the calibration 
process was implemented according to [29] to ensure precision and robustness. Multiple 
images of a 14 × 25 cm checkerboard calibration pattern were captured from various 
viewpoints to account for diverse perspectives. The algorithm began by detecting 
intersection points, then images were converted to grayscale to reduce complexity while 
preserving geometric features, and the Shi-Tomasi corner detection method [30] was 
applied to identify prominent corners based on eigenvalues of the gradient covariance 
matrix. In cases where parts of the pattern were obscured by grass or other elements, a 
convex hull algorithm reconstructed missing intersection points by connecting the 
outermost detected features. To further refine the localization of corners, the Canny edge 
detection method [31] was used, enhancing robustness in challenging conditions. Once 
the intersection points were detected, a homography matrix was computed to align these 
points with the undistorted reference checkerboard pattern, assuming zero distortion. To 
address the assumption of zero distortion during the initial calculation of intrinsic and 
extrinsic parameters, preliminary tests were conducted to evaluate the validity of this 
approach. These tests were performed using a standard checkerboard-type calibration 
pattern, captured from multiple views to account for varying perspectives and potential 
distortion effects. This alignment corrected geometric inconsistencies in the images. 
Subsequently, intrinsic and extrinsic parameters of the camera were calculated to achieve 
accurate system calibration. The RANSAC algorithm was used to refine point matching, 
eliminating outliers and ensuring robust accuracy against noise or partial occlusions. The 
distortion correction process, while effective, resulted in slight pixel displacements near 
the image edges. However, this secondary distortion was negligible for the analysis, since 
the ROI was confined to a 1 m2 area within the visible white frame. The ROI was defined 
through a series of image segmentation steps. Initially, the images were transformed into 
the HSV color scale, followed by binarization. Erosion and dilation operations were 
performed as part of opening and closing morphological operations, using a kernel matrix 
of 3 × 5 and 5 × 5 pixels, respectively. The Shi-Tomasi method was then applied to 
delineate the ROI polygon accurately, and when vegetation obscured parts of the frame, 
the convex hull algorithm ensured completeness. Finally, the ROI underwent ortho-
rectification using a vertical plane, where a refined homography matrix was calculated 
with the support of the RANSAC algorithm [32]. The resulting area was cropped, and any 
residual pixels from the white frame were removed. 

2.5. Sward Image Feature Extraction Models 

The methodology employed for plant structure segmentation integrates advanced 
image processing, feature extraction, and the proposed ML techniques. Pixel-wise 
segmentation using color information was implemented, leveraging diverse color 
representations, including the Y’CbCr color space, CMYK color model, and the ME × G, 
to enhance spectral information and feature discrimination. Three models were developed 
for feature extraction: Model A combined RGB, Y’CbCr, and CMYK values; Model B 
added the ME × G index to RGB, Y’CbCr, and CMYK values; and Model C combined 



Agronomy 2025, 15, 356 10 of 26 
 

 

Y’CbCr values with the ME × G index. Vector data were scaled using a Min–Max Scaler to 
fit within a 0–255 range, eliminating the need for explicit normalization while retaining 
key features. A hybrid machine learning approach was employed, utilizing the GMM for 
unsupervised probability distribution modeling and the NCC for supervised pixel 
classification. Dimensionality reduction using PCA isolated two principal components: 
PC1 captured variance related to vegetation health (e.g., chlorophyll content, canopy 
cover), while PC2 captured variance related to soil conditions (e.g., moisture, structure). 
PCA addressed multicollinearity among variables like C, M, Yk, R, G, and Y’, optimizing 
the feature set and ensuring effective data representation. Correlation and statistical 
analyses further refined the methodology. Correlation analysis detected redundancies, 
while ANOVA identified influential variables, the vegetation index being the most 
impactful, followed by Y’, C, M, R, and G channels. The multi-step image processing 
pipeline, which included transformations of RGB data into various color spaces and 
calculated vegetation indices, enabled comprehensive feature extraction and effective 
classification. This approach facilitated accurate segmentation and representation of 
living plants, dead vegetation, and bare soil, despite the inherent complexities and 
variability in the data. 

2.6. GMM–NCC Machine Learning Hybrid Approach 

This study explored a hybrid approach combining GMM and NCC to effectively 
classify plant structures. The GMM was utilized, also considering a smoother version of 
the Kmeans algorithm. The use of GMM was implemented in the three possibilities for 
data generation, i.e., feature extraction models A, B, and C, for the initial classification of 
plant structures. In search of better differentiation, an attempt was made to implement a 
supervised classification method that uses the information provided by the GMM 
segmentation. Due to this, a variant of the KNN algorithm, the nearest centroid classifier 
(NCC), was adapted [33]. This algorithm assigns the class based on the centroid closest to 
it, said centroid, depending on the training samples. The procedure followed for adapting 
the GMM–NCC algorithm is explained in the following sequence: GMM was applied to 
input images, grouping pixels into live plant structures, dead material, and soil. To 
improve the accuracy of these clusters, class boundaries were refined through pixel-level 
corrections using an image manipulation program, resulting in precise reference masks. 
These refined masks served as the basis for a synthetic data augmentation process, 
through which synthetic images were generated to expand the dataset. The augmented 
dataset preserved the original class assignments while simulating a broader range of 
conditions. The mean values of each cluster from these synthetic images were then 
calculated and used as centroids to train the NCC. The application of this procedure 
sought to improve classification, especially in the boundaries between classes, where 
possible misclassifications occur. 

The initial segmentation was applied by applying the GMM algorithm based on the 
artificial images, which were then validated on both forage species. The mean values of 
each cluster were obtained (live plant structures, dead ones, and soil). With the mean 
value of each cluster, the NCC algorithm was applied, in which said mean value was the 
centroid used for discrimination. The application of this procedure sought to improve 
classification, especially in the boundaries between classes, where possible 
misclassifications occur. The initial segmentation was performed using the GMM 
algorithm, which was applied to artificial images (i.e., computer-generated images) 
obtained through a synthetic data augmentation process. This process expanded the 
variability of the input data by simulating realistic scenarios based on previously 
segmented structures. From these clusters, the mean values of each were applied by 
applying the GMM algorithm based on the artificial images, i.e., computer-generated 
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images, and then validated on both forage species. The mean values of each cluster were 
obtained (live plant structures, dead ones, and soil). With the mean value of each cluster, 
the NCC algorithm was applied, in which said mean value was the centroid used for 
discrimination. The application of this procedure sought to improve classification, 
especially in the boundaries between classes, where possible misclassifications occur. 

2.7. Artificial Sward Images Generation 

An automated color image processing tool capable of segmenting intricate grass 
structures in ley swards, including green leaves, straw, and bare soil, which are 
considered in the calculation of the LAI using artificial intelligence techniques, was 
developed. Utilizing data from color scale transformations applied to all RGB channels, 
including transformations to the color space achromatic luminance and blue and red 
chromatic channels (Y’CbCr) and the color model cyan, magenta, yellow, and key 
(CMYK), the GMM in conjunction with NCC achieved excellent classification outcomes. 
Implementing the GMM algorithm created a dataset of 30 artificial images (Figure 4). For 
this purpose, an algorithm was created to convert the images of the GMM grouping into 
binary masks and later generate a label for each pixel value. These labeled images will 
serve as input for training the supervised NCC algorithm, which will ultimately be used 
to estimate parameters such as vegetation coverage and support the calculation of the LAI 
in subsequent analyses. 

 

Figure 4. This figure displays a sample from the dataset of 30 artificial sward images, which includes 
two forage crop species, ryegrass (Lolium perenne L.) and Timothy (Phleum pratense L.). 
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Therefore, image processing and segmentation were conducted utilizing unsupervised 
and supervised machine learning algorithms, including a combination of both. 
Unsupervised algorithms were implemented initially due to the absence of a previously 
classified image dataset. As aforementioned, the GMM based on the expectation–
maximization algorithm with random samples was employed [34]. Original images 
exceeding 2000 pixels in dimension were rescaled to 912 × 912 to concentrate analysis on the 
ROI. The resulting groups from GMM were arranged into a set of 30 artificial images, 
created pixel by pixel through the computational combination of 912 × 912 pixels for each 
artificial image. This artificial dataset served as training data and binary masks for labeling 
living plants, dead plants, and bare soil classes. Each computer-generated image consists of 
labeled segments resulting from GMM-based segmentation. While the GMM provided an 
initial segmentation, minor inaccuracies required refinement, particularly in boundary 
regions. For this purpose, labeling was performed using GIMP version 2.10.10 (developed 
by the GIMP Development Team) to apply targeted pixel-level corrections under the visual 
supervision of the known classes. The initial segmentation, generated by GMM, served as 
an objective reference, and corrections were limited to specific boundary regions where 
ambiguities were identified. To minimize operator error, we adhered to a standardized 
protocol that included systematic visual refinement, cross-validation using a Python 
algorithm to assign class values (0 to bare soil, 1 to living structures, and 2 to dead material), 
and multiple reviews of the corrected regions to ensure accuracy and consistency. It is 
important to note that GIMP was used exclusively for these focused adjustments and not 
for full-scale manual labeling (Figure 5). 

 

Figure 5. Clustering of three classes using the unsupervised GMM classifier. The data was first 
reduced using PCA, and numbers indicate the centroids of each cluster. Black “x” marks represent 
the transformed sample data points. The clusters are categorized as follows: Cluster 0 represents 
bare soil, Cluster 1 corresponds to living structures, and Cluster 2 indicates dead material. 

The implementation of GMM as an unsupervised classifier allowed the artificial 
creation of images with labels for the three classes: living plant, dead plant, and bare soil. 
This class separation was acceptable and especially accurate for the living plant class 
(Figure 6), keeping an undistorted plant shape when segmenting the classes. 
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Figure 6. GMM implementation after supervised labeling on a sample timothy image. (a) Original 
image; (b) Segmentation of the living plants class. 

2.8. NCC Model Training 

Once the artificially generated images were obtained, they were used as “labeled 
segments” to test various supervised classification models, aiming to improve decision 
boundary definition, particularly in edge cases where the GMM clustering was less 
effective. Among the models tested, the NCC outperformed the others. A detailed 
description of this process can be found in Rueda-Ayala et al. [14]. To ascertain the 
independence of the algorithm’s class allocation efficacy from both the image to which it is 
applied and the quantity of each plant structure present within the image, experiments were 
conducted utilizing images of the same experiment captured at three distinct coverage 
stages of the same crop (leaf development, tillering, beginning of flowering). Following the 
evaluation of the segmentation’s efficacy at the various coverage stages, the GMM–NNC 
algorithm was employed. Figure 7 illustrates the segmentation outcome acquired after 
implementing the GMM–NNC algorithm as an example of the analyzed images. 
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Figure 7. The figure consists of four images: (a) the original image, (b) the segmentation of living 
structures, (c) the segmentation of dead structures, and (d) the segmentation of bare soil. These 
images demonstrate the effectiveness of the GMM–NCC algorithm in distinguishing between 
different components within the scene. 

Models A, B, and C were utilized as supervised machine learning models and 
subsequently analyzed in accordance with the threshold of the ME × G. Model A entailed 
the conversion of RGB color values into Y’CbCr and CMYK color spaces to facilitate the 
capture of a more comprehensive range of color information. Model B combined RGB, 
Y’CbCr, and CMYK color values with the ME × G to enhance green areas and enable more 
precise differentiation of plant material. Model C directly converted RGB values to the 
Y’CbCr color space and subsequently calculated the ME × G index based on these Y’CbCr 
values, thereby combining luminance and chrominance data with vegetation-focused 
green intensity. Employing the GMM, the mean values of each cluster (live plant 
structures, dead plant structures, and soil) were obtained. Subsequently, utilizing the 
mean value of each cluster, the NCC algorithm was applied, wherein this mean value 
served as the centroid for discrimination purposes. 

Conversely, the analysis of RGB images, encompassing the color spaces Y’CbCr and 
the CMYK model, necessitates substantial computational power if the analysis is 
conducted on a pixel-by-pixel basis. This requirement is attributable to the number of 
features calculated per pixel in each image, i.e., features resulting from the combination 
of R, G, B, Y’, Cb, Cr, C, M, Y, and K. For instance, if nine features were selected per pixel, 
a 912 × 912 image would yield approximately 7,500,000 features to be analyzed. Reducing 
the dimensionality to only two features per pixel in a 912 × 912 image resulted in 1,500,000 
features per image that underwent analysis and segmentation, thereby significantly 
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reducing the requisite computational power. When classification is executed at the pixel 
level, for the combination GMM–NCC, the classification was initially conducted in 
accordance with the spatial location of pixels, whereby neighboring pixels with 
information about one class were grouped. Subsequently, the classification was executed 
based on the probability that a group of pixels belongs to the same class. 

2.9. Model Comparison 

To assess the effectiveness of the implemented algorithms, a comprehensive 
comparison was conducted between the model estimated percentage results for live 
structures, dead structures, soil, and LAI against the visual coverage and LAI 
destructively calculated. This comparison was performed for all models tested and across 
the three grass growth stages of both grass species in the following manner. First, linear 
regression analyses (with an α = 0.05) comparing the model coverage estimations of live 
plant, dead material, and bare soil versus their corresponding visual coverage 
assessments, each at leaf development, tillering, and beginning of flowering. Similarly, 
destructive LAI measurements (per m2) were compared with their model estimations at 
the same grass development stages. The resulting R2 coefficients indicated the model 
estimation accuracy. Then, to further compare between models, a linear mixed-effects 
model, fitted by the restricted maximum likelihood approach (REML) was applied using 
the statistical software R, version 4.4.1 [35] and the package ‘nlme’[36]. The models (A, B, 
and C) and the grass development stages (leaf development, tillering, and beginning of 
flowering) were assigned as fixed factors. The 10 initially planned grass coverage levels 
nested in the replication blocks were assigned as random. Marginal means were adjusted 
with the Tukey HSD (α = 0.05) method and their corresponding 95% confidence limits 
were calculated with the ‘emmeans’ package [37]. Marginal means compared allowed 
grouping models by their statistical difference. 

3. Results and Discussion 
3.1. Feature Extraction and Initial Model Training 

This section presents the outcomes and insights derived from the application of the 
proposed ML techniques for plant structure segmentation, encompassing living and dead 
vegetative structures as well as bare soil. The analysis builds upon data vectors 
representing features extracted from processed images, which were utilized by the ML 
algorithms to LAI and sward coverage. The performance of these algorithms was 
benchmarked against ground truth data to evaluate their accuracy and reliability. Given 
the significant variability in the shape, dimensions, and structural complexity of living 
plants, traditional segmentation methods based solely on shape or structure recognition 
were found to be inadequate. The results highlight the effectiveness of the employed 
methodologies in overcoming these challenges, providing a robust framework for 
segmenting complex vegetative structures. The presence of overlapping structures further 
complicated the segmentation process, making it challenging to delineate individual 
structures accurately. A pixel-wise segmentation approach utilizing color information 
was employed to overcome these limitations.  Therefore, in the image analysis stage 
aimed at feature extraction, a multi-faceted approach was adopted to extract meaningful 
features and segment plant coverage accurately. A diverse set of color representations, 
including the Y’CbCr color space, the CMYK color model, and the ME × G, were combined 
to capture a wide range of spectral information relevant to identification, i.e., living and 
dead vegetative structures and bare soil. This approach leveraged the strengths of 
different color spaces and vegetation indices to enhance feature discrimination. These 
proposed models for image processing and segmentation pipeline are involved in the next 



Agronomy 2025, 15, 356 16 of 26 
 

 

stage of a hybrid approach utilizing both unsupervised and supervised machine learning 
algorithms. The GMM, initialized with random samples, was employed to model the 
underlying probability distribution of the image data. The GMM algorithm better solves 
the classification stage, being highly used for the unsupervised classification of multi-class 
information. Moreover, the GMM algorithm presents better results for differentiating the 
background from the objects of interest [38]. Due to these advantages, the use of GMM 
was determined, in the three possibilities of data generation, i.e., feature extraction models 
A, B, and C, for the initial classification of plant structures. The NCC algorithm was then 
used to assign pixels to different classes based on their feature vectors and proximity to 
pre-defined cluster centers or labeled training data. Thus, prior to image segmentation, 
three different methods were tested for feature extraction to optimize color information 
and enhance image analysis. The first method involved transforming the RGB color values 
of each pixel into two additional color spaces: Y’CbCr and CMYK. The YCbCr and 
YCMYK color scales were selected owing to their inherent advantages in discerning an 
object from the backdrop of an image. These advantages are attributable to the distinct 
separation of luminance and chrominance values within these scales [39]. The Y’CbCr 
color space separates image luminance (Y’) from chrominance components, with Cb 
representing blue and Cr representing red, making it perceptually uniform. This meant 
that equal changes in these channels correspond to equal changes in perceived color. The 
CMYK model, used primarily in printing, is based on subtractive color mixing and 
represents cyan, magenta, yellow, and black (key). By converting RGB data into these two 
additional color spaces, this method captures a broader range of color information, critical 
for detailed analysis, as described by Equation (1), representing model A henceforth. In 
contrast, the RGB, Y’CbCr, and CMYK color values were further enhanced by calculating 
the ME × G in the second model. The ME × G is an effective vegetation index, particularly 
useful in highlighting green areas by amplifying the green channel while minimizing the 
influence of red and blue channels. This technique allowed for more precise differentiation 
of plant material within the image by combining the detailed color representation of the 
three color models with the focused green intensity provided by the ME × G index. Hence, 
this model (Equation (3), i.e., model B) is a combination that provides a richer set of data 
for image analysis, with the calculations following equations 1 and 2, as defined by 
Burgos-Artizzu et al. [40]. The third model (model C) involved a direct conversion of RGB 
values to the Y’CbCr color space, followed by calculating the ME × G index based on these 
Y’CbCr values. This technique effectively combined the luminance and chrominance data 
from Y’CbCr with the vegetation-focused green intensity provided by the ME × G index. 
This method enabled the extraction of color and luminance information, offering a 
comprehensive image content analysis outlined in Equation (4). Notably, all vector data 
generated through these methods were scaled using a Min–Max Scaler to fit within a 
standard range of 0–255, eliminating the need for explicit normalization [41]. This 
approach preserves the inherent characteristics of certain variables, such as vegetation 
indices, which could be distorted by standard normalization techniques [42]. This is 
advantageous as it allows the data to be directly used in subsequent analyses without 
requiring additional preprocessing steps while ensuring that key features are retained. 

Model A: Pixelij = [R, G, B, Y′, Cb, Cr, C, M, Y, K] (1)

ME × G = 1.262G − 0.884R − 0.311B  (2)

Model B: Pixelij = [R, G, B, Y′, Cb, Cr, C, M, Y, ME × G]  (3)

Model C: Pixelij = [R, G, B, Y′, Cb, Cr, ME × G]  (4)
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Dimensionality reduction was performed using PCA to optimize the feature set and 
address multicollinearity issues. PCA, a statistical technique for identifying patterns in high-
dimensional data, was applied to isolate the most influential vectors from the ME × G feature 
set. This ensured that critical information was retained while reducing redundancy. PCA 
revealed two principal components that are pivotal in categorizing the three classes of 
interest: living plants, dead plants, and bare soil. The first principal component (PC1) 
primarily captured variance related to vegetation health and vitality, emphasizing features 
such as chlorophyll content, leaf area index, and canopy cover. High values indicated 
healthy vegetation, while low values corresponded to dead or sparse vegetation. The second 
principal component (PC2) captured variance associated with soil conditions and moisture 
levels, distinguishing bare soil from living and dead plants. Features such as soil structure, 
moisture content, and surface roughness were highlighted, with high values indicating dry, 
compacted soil and low values representing moist, porous soil. Correlation analysis among 
variables in the dataset identified high negative correlations among the C, M, Yk, R, G, and 
Y’ channels in the color scales, indicating multicollinearity. To refine the analysis, a subset 
of images was manually labeled, and a correlation analysis was conducted between 
independent variables and the target classes (living plants, dead plants, and soil). ANOVA 
results demonstrated that the vegetation index was the most influential variable, followed 
by the Y’, C, M, R, and G channels. PCA reduced the dimensionality of the feature set, 
minimizing redundancy and improving interpretability. This reduction was essential due 
to the increased data volume per image, allowing effective classification and enhanced data 
representation for subsequent analyses. 

3.2. Evaluation of Supervised and Unsupervised Learning Outcomes 

The hybrid approach used in this study, integrating an unsupervised GMM with a 
supervised NCC, effectively segmented and classified the grass components of live plant 
material, dead plant material, and soil. The GMM was initially employed for clustering 
and segmenting pixels based on the extracted features, i.e., models A, B, and C, which 
provided an unsupervised classification of RGB imagery. This stage identified the 
preliminary groupings of different elements in the grassland ecosystem. Artificial sward 
images were generated from those groups to enhance the supervised learning stage and 
avoid manual labeling of grass structures. These artificial images, created by pixel-wise 
segmentation, simulated real-world sward structures and were used to train the NCC. 
The supervised stage of the NCC algorithm refined the segmentation by assigning pixels 
to specific classes—live grass, dead grass, or soil—based on their proximity to pre-defined 
cluster centroids derived from the GMM output. The artificial images were generated by 
manually correcting, on a pixel-by-pixel basis, the groups identified by the GMM. These 
corrected images were then employed as ‘labelled segments’ to subsequently test various 
supervised classification models as complementary approaches to the GMM. A detailed 
description of this process can be found in Rueda-Ayala et al. [14]. Among the evaluated 
supervised algorithms, the NCC yielded favorable results, demonstrating speed and 
precision. Furthermore, we chose the NCC approach to highlight the practical and 
accessible nature of the proposed methodology. Specifically, the classification tasks were 
conducted on a moderately powered, commercially available computer, without the need 
for high-performance computing clusters or specialized GPU equipment. Tables 2–5 show 
the models’ estimation accuracy, indicated by the R2 values of the model estimations 
versus the ground truth measurements at different Timothy and ryegrass growth stages. 
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Table 2. Stage-wise Comparison of LAI derived from feature models and LAI measured as ground 
truth (R2). Cursive letters indicate the grouping of marginal means of estimations. If two or more 
share the same letters, they are rather comparable and not statistically different (α = 0.05). 

 Model  
Stage A B C Forage Grass 

leaf development 0.77 ab 0.79 ab 0.79 ab Timothy 
tillering 0.72 ab 0.73 a 0.74 a Timothy 

beginning of flowering 0.52 b 0.52 b 0.52 b Timothy 
leaf development 0.19 Bb 0.39 Bb 0.40 Bb Ryegrass 

tillering 0.74 Aa 0.73 Ac 0.16 Bc Ryegrass 
beginning of flowering 0.32 Bb  0.23 Bb 0.22 Bb Ryegrass 

Table 3. Stage-wise Comparison of Living Grass Structure Coverage: Features Models vs. Visual 
Estimation as ground truth (R2). Cursive letters indicate the grouping of marginal means of 
estimations. Upper-case letters show model comparisons; lower-case show comparisons among 
plant growth stages. If two or more of share the same letters, they are rather comparable and not 
statistically different (α = 0.05). 

 Model  

Stage A B C Forage Grass 
leaf development 0.76 b 0.75 b 0.75 b Timothy 

tillering 0.84 b 0.82 b 0.82 b Timothy 
beginning of flowering 0.84 a 0.84 a 0.84 a Timothy 

leaf development 0.33 Bb 0.71Aa 0.74 Aa Ryegrass 
tillering 0.97 Aa 0.96 Aa 0.18 Bb Ryegrass 

beginning of flowering 0.52 Bb 0.42 Bb 0.4 Bb Ryegrass 

Table 4. Stage-wise Comparison of dead Grass Structure Coverage: Features Models vs. Visual 
Estimation as ground truth (R2). Cursive letters indicate the grouping of marginal means of 
estimations. Upper-case letters show model comparisons; lower-case show comparisons among 
plant growth stages. If two or more share the same letters, they are rather comparable and not 
statistically different (α = 0.05). 

 Model  
Stage A B C Forage Grass 

leaf development 0.63 B 0.64 B 0.64 B Timothy 
tillering 0.83 A 0.8 A 0.79 A Timothy 

beginning of flowering 0.82 B 0.81 B 0.81 B Timothy 
leaf development 0.37 b 0.79 a 0.80 a Ryegrass 

tillering 0.97 a 0.97 a 0.03 c Ryegrass 
beginning of flowering 0.38 b 0.30 b 0.29 b Ryegrass 
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Table 5. Stage-wise Comparison of bare soil Coverage: Features Models vs. Visual Estimation as 
ground truth (R2). Cursive letters indicate the grouping of marginal means of estimations. Upper-case 
letters show model comparisons; lower-case show comparisons among plant growth stages. If two or 
more share the same letters, they are rather comparable and not statistically different (α = 0.05). 

 Model  
Stage A B C Forage Grass 

leaf development 0.58 a 0.66 a 0.66 a Timothy 
tillering 0.09 b 0.11 b  0.13 b  Timothy 

beginning of flowering 0.53 a 0.56 a 0.56 a Timothy 
leaf development 0.15 Ba 0.35 Ba 0.38 Ba Ryegrass 

tillering 0.79 Aa 0.81 Aa 0.81 Aa Ryegrass 
beginning of flowering 0.04 Bb 0.03 Bb 0.02 Bb Ryegrass 

The comparison of Models A, B, and C in predicting various vegetation metrics for 
timothy and ryegrass revealed key insights into the performance of each model across 
different growth stages. The analysis was based on four key parameters: LAI, living grass 
structure coverage, dead grass structure coverage, and bare soil coverage. In each case, 
the models were compared against ground truth data measured in the field. Regarding 
growth stages, i.e., grass coverage, the proposed data collection method is designed to 
provide standardized and objective measurements, addressing the limitations of human 
perception as identified in the literature. Andújar et al. [43] demonstrated that, while 
visual estimations of weed cover are generally accurate for broad assessments, they can 
be inconsistent and subject to observer bias. Their study found a good correlation between 
visual estimates of weed cover and objective parameters, such as actual weed cover and 
biomass. Additionally, their analyses of reliability and repeatability revealed no 
significant differences in visual estimations made by different observers, or the same 
observer, at different times, regardless of the scale used. Thus, in our study, by using a 
camera-based, standardized methodology (the cameras were mounted in agricultural 
machinery, ensuring a constant height), this approach minimizes subjective variability 
and enhances the accuracy and repeatability of data collection, making it well-suited for 
both scientific research and practical agricultural applications. On the other hand, in 
contrast to the SONY camera, the choice of the APEMAN A60 fish-eye camera was 
intentional to demonstrate the flexibility and adaptability of the proposed system, 
highlighting that it is not constrained by the type or cost of the camera used. The system 
is designed to function effectively with any camera, ranging from high-end professional 
models to affordable, widely available consumer-grade devices. The inclusion of a fish-
eye camera in this study serves as a clear example of its adaptability to diverse optical 
configurations, showcasing its robustness across different imaging setups. While fish-eye 
cameras require additional post-processing to correct for distortion, this is a minor trade-
off compared to the significant advantage of enabling a wide range of users to implement 
the system using the equipment they already have access to. This approach ensures that 
the system remains accessible and scalable, meeting the needs of both resource-
constrained and well-equipped users alike. 

In Table 2, the performance of the models in predicting LAI for Timothy and ryegrass 
was examined. For Timothy, all three models performed similarly during the initial and 
middle stages, with R2 values ranging from 0.52 to 0.79, showing that they all captured 
the LAI effectively during these early growth periods. The REML analysis showed no 
difference among models but a decrease in accuracy when estimates are done on images 
at the beginning of flowering (R2 values of 0.52). This indicated that estimating LAI 
became more challenging as the grass finished the vegetative growth, likely due to the 
increased complexity, density and overlapping of leaves. In contrast, the performance for 
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ryegrass showed a poor performance in general, except for models A and B at tillering 
stage, ranking first on their marginal means grouping. Models A, B and C performed 
poorly with R2 ranging between 0.16 and 0.40. This suggested that Model A struggled to 
capture LAI for ryegrass accurately in its early and full vegetative development stages. At 
the beginning of flowering the estimation becomes challenging, since ryegrass does not 
have a completely vertical development by the end of its vegetative period. At this stage, 
many leaves and tillers overlap, producing a shadowing effect that is captured as a darker 
color in the acquired image, which was misclassified as bare soil. All models had an 
acceptable performance on Timothy at leaf development and tillering, being statistically 
similar (R2 s > 0.72 and similar grouping, Table 2). The models performed poorly at the 
beginning of floweringR2 ranging between 0.22 to 0.32). Although Timothy has a vertical 
growth at the end of the vegetative stage, leaves overlap much, thus resulting in the 
aforementioned issue. This issue does not influence destructive LAI assessment, because 
the observer removes the true number of leaves present in the sample. This issue poses a 
huge limitation to ML algorithms in estimating coverage and LAI during advanced grass 
growth stages. On the other hand, Table 3 presents the models’ accuracies to estimate 
living grass coverage against visual estimation. For Timothy, all models performed 
similarly and consistently well across the growth stages, with R2 values around 0.75 to 
0.84. A slight decrease in model performance was observed for the stages of leaf 
development and tillering (b marginal means grouping), being different than at the 
beginning of flowering (a grouping). In contrast, the performance for ryegrass coverage 
estimation was more variable. At leaf development, Model A performed poorly (R2 = 0.33; 
grouping Bb), while Models B and C delivered significantly better results (R2 = 0.71 and 
0.74, respectively; grouping Aa). At tillering stage, models A and B performed 
exceptionally well (R2 > 0.96), being statistically different than Model C (R2 = 0.18; 
grouping Bb). All models declined in their performance at the beginning of flowering (R2 
ranging from 0.40 to 0.52; grouping Bb). 

In Table 4, the accuracy of the models in predicting dead grass structure coverage 
was summarized. A similar pattern was observed for Timothy’s live plant coverage 
estimation. All models performed similarly at all grass growth stages, but particularly at 
tillering (R2 between 0.79 and 0.83). For ryegrass at leaf development, Models B and C 
outperformed Model A. At tillering, the accuracy of Model C was significantly poor (R2 = 
0.03), while Models A and B achieved the best results (R2 = 0.97). However, all models 
declined in accuracy at the beginning of flowering, but there were no differences among 
them. Estimates of bare soil coverage (Table 5) were of acceptable accuracy at leaf 
development and beginning of flowering for timothy (group a) and good at tillering for 
ryegrass (grouping Aa). In the remaining stages, all models showed a similarly poor 
performance. This can be explained by the fact that thresholding methodologies are 
characterized by their relative simplicity but may not exhibit adequate adaptability and 
robustness in dynamic field environments and multitemporal instances, especially for 
images acquired under diverse illumination conditions [44]. 

3.3. Practical Implications and Future Directions 

Canopy cover estimation has previously utilized ML-based classification methods. 
Unsupervised methods, such as k-means clustering, and supervised methods, like 
Decision Tree (DT), SVM, and Random Forest (RF), have been employed. These methods 
have often outperformed the thresholding method. However, classification methods 
necessitate a degree of human intervention, hindering automation. Moreover, sample 
selection can be time-consuming, and model training and application may be 
computationally intensive [45]. In contrast to ML approaches that rely on pixel-level 
features, certain scenarios exist where color alone is insufficient for classification. For 
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instance, soil may appear green when partially covered by vegetation or brown due to 
plant aging, which involves visual changes in vegetation transitioning from green to 
yellow, beige, or brown. This overlap in color ranges further complicates the distinction 
between soil, crop residues, and aging vegetation, presenting significant challenges for 
color-based classification approaches. To overcome these challenges, incorporating 
textural and contextual information becomes necessary for improved segmentation of 
vegetation and background in RGB images. One approach to enhance the results of our 
study could involve methodologies based on color–texture–shape characteristics. These 
methods incorporate contextual and spatial information alongside pixel values extracted 
from images. Initially, researchers employed handcrafted features, such as Bag of Words, 
SIFT, GLCM, and Canny Edge Detectors, to address the limitations of pixel-level features. 
However, the high dimensionality of these features required substantial amounts of data 
for effective training of algorithms that distinguish between vegetation and background 
[46]. Although these techniques enhanced segmentation quality, their complexity and 
high-dimensional nature demanded large, meticulously curated datasets and substantial 
parameter fine-tuning, making them less adaptable to diverse conditions commonly 
found in agricultural imagery [47]. Deep learning (DL) has revolutionized feature 
extraction by enabling automated, end-to-end learning directly from raw input data, 
eliminating the need for manual feature selection based on domain expertise and 
leveraging multiple layers of abstraction to identify relevant representations [48,49]. 
Furthermore, t he advent of DL has revolutionized feature extraction, allowing for the 
automated extraction of essential features from datasets. DL approaches, particularly 
Convolutional Neural Networks (CNNs), excel at learning multi-scale and task-specific 
representations directly from raw data. While deep learning models are also heavily 
dependent on large, high-quality datasets, recent advancements in generative models, 
such as Stable Diffusion and Generative Adversarial Networks (GANs), offer a viable 
solution to mitigate data limitations. These methods can produce artificial imagery that 
mimics real-world patterns, effectively expanding training datasets and enhancing model 
generalization. By augmenting real data with synthetic samples, deep learning models 
can achieve robust performance even when real data availability is constrained. This 
advancement highlights a distinct advantage of deep learning approaches over traditional 
methods, particularly in domains where data collection is re-source-intensive or limited 
by environmental factors [50,51]. DL approaches outperform traditional handcrafted 
features and ML techniques in vegetation segmentation tasks, making them a promising 
solution [52]. State-of-the-art approaches, such as Extreme Learning Machines (ELM) [53] 
custom Convolutional Neural Network (cCNN) [54], and semi-supervised Multilayer 
Perceptron models (MLP) [55], have achieved significant accuracy improvements. 
Nonetheless, these approaches often rely on extensive labeled datasets, specialized 
computational infrastructures (e.g., GPUs), and complex feature engineering pipelines. 
These dependencies present practical limitations in real-world field conditions, where 
such resources may not be readily available. On the other hand, the calculation of intrinsic 
and extrinsic camera parameters is a critical aspect of distortion correction, as errors in 
estimating these parameters significantly influence the effectiveness of the correction 
applied to images. ML algorithms allow for a better differentiation between live 
vegetation, dead structures, and soil, compared to using vegetation indices for 
segmentation. In the generation of data for the segmentation of plant structures, the 
YCbCr color scale plays a fundamental role in achieving notable separability between live 
vegetation structures and the image background due to the YCbCr scale’s ability to better 
represent chrominance. The combined use of vegetation indices with different color scales 
provides the necessary data for structure segmentation through the application of ML 
algorithms. While this approach required higher computational resources compared to 
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shape-based methods, it effectively minimized the risk of erroneously assigning a larger 
area of pixels to a particular class. Thus, by classifying each pixel independently, this 
method allows for fine-grained analysis. This strategy ensured greater precision and 
accuracy in segmenting complex living structures, allowing researchers to gain valuable 
insights into their organization and function. However, due to the implementation of 
PCA, data dimensionality reduction was essential for decreasing processing time, 
potentially reducing the time from 90 s to 17 s when processing an image. A ratio of 0.9 
for the cumulative explained variance was used during PCA implementation, ensuring 
that the majority of the original information was preserved while minimizing 
computational overhead [56]. This method ensures that no important details are lost 
during dimensionality reduction, allowing efficiency and data quality to be balanced. The 
GMM algorithm offers better class separability and greater data uniformity within each 
class. In contrast, supervised algorithms allow for a segmentation of plant structures that 
closely approximates field truth. Still, they also distort the shapes present in the resulting 
segmentation as they learn on a pixel scale. The high correlation between visual estimation 
and the measured LAI suggests a dependent relationship between these variables, with 
slight differences arising because, in visual estimation, weeds are not discarded, as they 
are during LAI measurement through field sampling. This demonstrates that weeds in the 
analyzed images directly impact the estimation of the Leaf Area Index, representing an 
advantage of using Machine Learning algorithms for plant structure segmentation over 
the traditional field sampling method. The main differences in correlation values between 
coverage obtained by algorithms and visual estimation occur during the early stages of 
coverage, as human perception of structure percentage is subjective. In contrast, values 
obtained through any of the analyzed ML algorithms provide greater certainty in 
determining the percentage of plant structures. Similarly, visual estimation and the field 
measurement method of LAI do not exclude early-stage plant structures, which is why 
using ML algorithms for coverage estimation provides a result closer to ground truth. 

Manually segmenting vegetation structures in grasslands is highly time-consuming, 
making labeling of each image a challenging and resource-intensive task. The current 
approach—employing a clustering algorithm (GMM) followed by a fine-tuning step using 
an NCC—was specifically chosen to enable image segmentation on a moderately 
powered, commercially available computer without requiring dedicated GPU resources. 
This methodological choice provides a practical solution that can be broadly implemented 
without the need for high-end computational infrastructures. While recent deep learning 
segmentation models have demonstrated remarkable performance in various domains of 
image analysis, this study focused on establishing a baseline method that is less complex 
and computationally demanding. Furthermore, the novelty of the proposed algorithm lies 
in its ability to operate without an initially labeled dataset. The GMM + NCC generates 
synthetic images that enable accurate plant structure segmentation on conventional 
computing hardware by applying minimal pixel-level corrections. Compared to 
traditional supervised methods (e.g., DT, SVM, RF), which yield higher accuracy but 
demand extensive and time-consuming labeling, the GMM + NCC approach is resource-
efficient. Evenly, cutting-edge methods, such as ELM, cCNN, or MLP variations, achieve 
outstanding accuracy, they also require more specialized computational resources and 
large volumes of labeled data. In contrast, the proposed approach offers a balanced 
strategy between performance and practical feasibility. 

4. Conclusions 
In Norway, Sweden, and Denmark, both ryegrass (Lolium perenne L.) and timothy 

grass (Phleum pratense L.) are particularly significant as forage crops, owing to their 
adaptability to the region’s cool temperate climates and where dairy and beef production 
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are prevalent. Similarly, ryegrass holds a notable position in Canada’s forage industry, 
thriving in Asian countries predominantly due to the cultivation of timothy grass. In the 
United States, these grasses are essential, with ryegrass and timothy grass being widely 
cultivated across various regions as primary sources of livestock feed. Additionally, 
Timothy grass is significant in New Zealand, and ryegrass is notable in Brazil. Thus, 
gaining insights into key parameters, such as LAI and grass coverage, are essential for 
effectively managing these forage crops. These parameters provide critical information 
about the health, productivity, and sustainability of forage systems, enabling farmers and 
researchers to make informed decisions that optimize crop performance, animal nutrition, 
and land use. This study successfully developed an automated image processing tool 
capable of segmenting intricate grass structures in ley swards using a combination of 
artificial intelligence techniques to assess LAI and grass coverage. By leveraging both 
unsupervised and supervised machine learning algorithms, specifically GMM and NCC, 
the tool demonstrated strong performance in distinguishing between living plants, dead 
material, and bare soil across various growth stages of Timothy and ryegrass. The 
integration of multiple color spaces (RGB, Y’CbCr, CMYK) and vegetation indices, such 
as the ME × G, further enhanced the model’s ability to segment plant structures accurately. 
The results highlighted the utility of GMM–NCC for ground coverage and LAI estimation, 
providing reliable segmentation outcomes at leaf development and tillering stages of crop 
development. However, the study also identified challenges with model performance 
during the beginning of the flowering stage due to increased vegetation density and 
structure complexity, particularly for ryegrass. Model B emerged as the most consistent 
among the evaluated models, although improvements are necessary for greater accuracy 
in later stages. Future work should focus on refining the models by incorporating 
additional spectral bands, advanced vegetation indices like NDVI, and deep learning 
techniques for more robust feature extraction and segmentation. Enhancing the model’s 
ability to process multitemporal data and handle varying environmental conditions 
would further improve segmentation reliability. Overall, this study underscores the 
potential of machine learning algorithms for automated vegetation analysis, offering a 
significant advantage over traditional manual methods in speed, precision, and 
scalability. On the other hand, the study employs a GMM–NCC approach for grassland 
image segmentation, offering a practical and computationally efficient solution on 
standard hardware, avoiding the complexity and resource demands of deep learning 
models. Furthermore, new research lines can focus on integrating and comparing 
advanced DL approaches into this pipeline. The segmented images obtained through the 
proposed solution can efficiently generate training datasets to support the development, 
training, and evaluation of state-of-the-art deep learning models. 
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