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Received: 23 December 2024

Revised: 24 January 2025

Accepted: 28 January 2025

Published: 30 January 2025

Citation: Wang, R.; Du, W.; Li, P.;

Yao, Z.; Tian, H. High-Resolution

Mapping of Cropland Soil Organic

Carbon in Northern China. Agronomy

2025, 15, 359. https://doi.org/

10.3390/agronomy15020359

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

High-Resolution Mapping of Cropland Soil Organic Carbon in
Northern China
Rui Wang 1,*, Wenbo Du 1, Ping Li 2, Zelong Yao 2 and Huiwen Tian 3

1 Shanxi Farmland Quality Monitoring and Protection Center, Taiyuan 030001, China
2 College of Resources and Environment, Shanxi Agricultural University, Taigu 030800, China
3 College of Urban and Rural Construction, Shanxi Agricultural University, Taigu 030800, China
* Correspondence: wangruisxty@126.com

Abstract: Mapping the high-precision spatiotemporal dynamics of soil organic carbon
(SOC) in croplands is crucial for enhancing soil fertility and carbon sequestration and
ensuring food security. We conducted field surveys and collected 1121 soil samples from
cropland in Changzhi, northern China, in 2010 and 2020. Random Forest (RF) models
combined with 19 environmental covariates were used to map the topsoil (0–20 cm) SOC
in 2010 and 2020, and uncertainty maps were used to calculate the dynamic changes in
cropland SOC between 2010 and 2020. Finally, RF and Structural Equation Modeling (SEM)
were employed to explore the effects of climate, vegetation, topography, soil properties,
and agricultural management on SOC variation in croplands. Compared to the prediction
model using only natural variables (RF_C), the model incorporating agricultural manage-
ment (RF_A) significantly improved the simulation accuracy of SOC. The coefficient of
determination (R2) increased from 0.77 to 0.85, while the Root Mean Square Error (RMSE)
decreased from 1.74 to 1.53 g kg−1, and the Mean Absolute Error (MAE) was reduced from
1.10 to 0.94 g kg−1. The uncertainty in our predictions was low, with an average value
of only 0.39–0.66 g kg−1. From 2010 to 2020, SOC in the Changzhi croplands exhibited
an overall increasing trend, with an average increase of 1.57 g kg−1. Climate change,
agricultural management, and soil properties strongly influence SOC variation. Mean
annual precipitation (MAP), drainage condition (DC), and net primary productivity (NPP)
were the primary drivers of SOC variability. Our findings highlight the effectiveness of
agricultural management for predicting SOC in croplands. Overall, the study confirms
that improved agricultural management has great potential to increase soil carbon stocks,
which may contribute to sustainable agricultural development.

Keywords: soil organic carbon; soil science; digital soil mapping; random forest;
agricultural management

1. Introduction
Soil Organic Carbon (SOC) is a crucial factor for maintaining the stability and function

of terrestrial ecosystems and serves as a bridge between various natural components [1].
The total SOC stock (within 1 m depth) is estimated to be 2- to 3-fold higher than that of
the terrestrial vegetation carbon pool and more than twice that of the atmospheric carbon
pool [2]. Even small changes in SOC can exert significant effects on atmospheric CO2

concentrations. The decomposition and transformation of organic carbon are accompanied
by the release, utilization, and redistribution of life elements that influence plant growth
on the surface. In agricultural ecosystems, SOC is commonly used as an indicator of soil
fertility, agricultural production potential, and land degradation [3,4]. Therefore, mapping
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SOC in croplands is important for regional ecosystem stability, improving agricultural
management, increasing crop yields, and promoting sustainable agricultural development.

According to the soil formation theory, SOC can be considered a function of environ-
mental factors such as climate, topography, and soil properties [5,6]. Digital Soil Mapping
(DSM) has utilized these environmental covariates to create dynamic maps of soil organic
carbon at regional, national, and global scales [7–11]. Stockmann et al. employed this
method to develop a global surface soil organic carbon model, with land cover as the
primary driver of SOC variation, resulting in global SOC change maps at 1 km resolution
for the years 2001 and 2009 [7]. Similarly, Wang et al. and Liu et al. used legacy soil
data and the CENTURY model to map soil organic carbon in China and its alpine regions,
providing insights into SOC stock changes over the past three decades [8,9]. However,
these studies overlooked the impact of human activities on SOC, particularly in agricultural
areas where human activities are intensive. In fact, agricultural practices have a significant
influence on the changes in SOC in cropland areas [12,13]. Specifically, once agricultural
activities such as irrigation levels and fertilization practices interfere with the soil, SOC
undergoes changes within a short time, leading to greater spatial heterogeneity of SOC
in croplands [14,15]. Therefore, the integration of agricultural management information
possesses the potential to reveal dynamic changes in cropland SOC and improve the accu-
racy of SOC predictions. However, due to the large workforce and time required to collect
agricultural management data, most DSM studies overlook these factors, limiting the accu-
racy of the results and reducing their value for guiding agricultural production at the field
scale. Although some researchers have attempted to incorporate agricultural management
information, in addition to natural environmental covariates, into SOC mapping—where
agricultural management information mainly includes indirect relationship data such as
distances to roads, rivers, irrigation canals, and villages [16], or panel data from statistical
yearbooks [17]—the coarse spatial resolution of these data may introduce biases into DSM
products and limit predictive accuracy [18]. Finally, these studies have predominantly
focused on the spatial variability of cropland SOC rather than its temporal changes [15,19].
This gap makes it challenging to accurately capture the dynamics of the SOC over time.
Thus, it is possible to model dynamic changes in cropland SOC by combining direct mea-
surements of SOC changes over two periods from regional-scale resampling activities and
integrating regional agricultural management information. This approach can provide key
information regarding how agricultural management practices and natural environmental
variables influence the SOC of croplands.

Changzhi, located on the southeastern edge of the Loess Plateau in China, possesses
extensive mountainous areas, leading to a fragmented and scattered cropland distribution.
Therefore, spatiotemporal SOC data from croplands are urgently needed to support precise
soil management and agricultural production. However, relevant information remains
scarce. To fill these gaps, the main objectives of this study are:

(1) To introduce agricultural management information and natural environmental vari-
ables into DSM, using Random Forest (RF) models to map the 30 m resolution SOC in
cropland for 2010 and 2020;

(2) To assess the prediction accuracy and uncertainty of the SOC maps, examine the
effectiveness of agricultural management information in predicting SOC, and estimate
the changes in cropland SOC stocks between the two periods;

(3) To use RF and Structural Equation Modeling (SEM) to quantify the effects of agricul-
tural management and natural environmental variables on SOC variability, identifying
the key factors influencing SOC changes.

This study aimed to produce spatiotemporal SOC change maps for Changzhi, pro-
viding more effective guidance for regional soil quality improvement and agricultural
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development and offering a basis for designing climate change, carbon neutrality, and soil
security policies.

2. Materials and Methods
2.1. Study Area

Changzhi is located in the southeastern Loess Plateau (Figure 1a). The total area of
the city is 13,955 km2, with approximately 3715 km2 of croplands. The elevation varies by
2100 m, and the topography is complex. Mountainous areas account for 50.7% of the total
area, whereas hilly areas cover 33.4%, primarily in the northern part of the city. Plains areas
accounted for 15.9%, primarily in the southern Shangdang Basin and intermontane plains.
The annual average temperature in the city is 9 ◦C, with the hottest month averaging 28 ◦C,
and the coldest month averaging −12.5 ◦C. The annual precipitation is 618.9 mm, and the
annual evaporation is 1578.8 mm. Due to variations in climate and elevation, the region
exhibits diverse soil types, comprising six major soil classes, primarily including Alfisols,
Ochrepts and Lithosols. The main crops grown in this area are maize, winter wheat, and
soybeans. Nitrogen fertilizer application is relatively high, averaging 0.88 kg N km2 yr−1.
Irrigation methods in the croplands mainly include furrow irrigation, flood irrigation, and
ditch irrigation, while drainage conditions and cropland shelterbelts vary with topography.
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2.2. Soil Sampling

In this study, soil samples were collected from croplands in Changzhi in July of 2010
and 2020, totaling 1121 samples. For the 2010 sampling, the sampling scheme was designed
such that one sample point was established approximately every 5 km2 of cropland, with
random sampling conducted at each point, resulting in a total of 711 soil samples. In 2020,
the sampling density was increased based on the 2010 sampling points, with one sample
point placed approximately every 3 km2 of cropland, yielding 410 new sample points. The
distribution of the sampling points for both 2010 and 2020 is presented in Figure 1b. At each
point, surface soil samples (0–20 cm) were collected, sealed, and returned to the laboratory.
The exact coordinates of each soil-sampling point were recorded using a portable GPS
system. After natural air-drying, the soil samples were sieved after removing plant roots
and stones. SOC was determined using the potassium dichromate oxidation method [20].

2.3. Agricultural Management Survey

Agricultural management information for croplands in Changzhi was surveyed in 2010
and 2020. The amount of nitrogen fertilizer applied to the sampled plots was determined
through interviews with landowners. All landowners received basic training to ensure
data accuracy. Additionally, agricultural management information for the sampled plots,
including irrigation and drainage conditions and cropland shelterbelts, was gathered
through field surveys and discussions with local agricultural departments. Actual cropland
vector data at a 1:5000 scale were collected. Using the spatial join tool in ArcGIS 10.8,
the agricultural management information was assigned to the corresponding cropland
polygons. For a small number of cropland polygons for which data could not be surveyed,
information from neighboring polygons was used as a substitute. Finally, the agricultural
management vector data containing nitrogen fertilizer application, irrigation conditions,
drainage conditions, and cropland shelter rates were converted into raster data using
ArcGIS 10.8. These raster data were reprojected to the EPSG:3857—WGS 84/World Mercator
coordinate system, and the nearest-neighbor resampling method was applied to prepare a
30 m resolution raster dataset. All raster data were then masked to the cropland boundaries
of Changzhi.

2.4. Selection of Environmental Covariates

Cropland soil organic carbon exhibits significant heterogeneity at both regional and
global scales, with this variability being controlled by soil formation factors. Jenny proposed
that environmental conditions govern soil development, asserting that soil is a natural
body formed through the combined actions of climate, biology (vegetation), topography,
parent material, and other soil properties [5]. Additionally, cropland SOC is influenced by
agricultural activities, particularly irrigation and drainage conditions, shelterbelt coverage,
and fertilizer application, all of which directly affect the soil environment. Therefore, we
selected a total of 19 covariates for the Digital Soil Mapping (DSM) model, including both
natural environmental variables and agricultural management variables. Table 1 provides
the categories, resolution, and sources of all environmental covariates.

The topographic factors we selected were elevation (Ele), slope (Slope), aspect (Aspect)
and topographic humidity index (TWI). These variables were derived using SAGA GIS
software (https://saga-gis.org/, accessed on 16 August 2024) from the digital elevation
model (DEM) obtained from the Shuttle Radar Topography Mission (SRTM) with a res-
olution of 30 m. The DEM data were accessed via the Geospatial Data Cloud platform
(https://gscloud.cn, accessed on 11 August 2024).

https://saga-gis.org/
https://gscloud.cn
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Table 1. Composition of environmental covariates.

Variable Categories Factor Resolution Year Source

Natural variables

Topography

Elevation(Ele) 30 m - USGS ASTGTM

Slope 30 m - Calculated from Elevation

Aspect 30 m - Calculated from Elevation

Topographic Wetness Index
(TWI) 30 m - Calculated from Elevation

Climate

Mean Annual Temperature
(MAT) 1 km 2010, 2020

https://data.tpdc.ac.cn/,
accessed on 21 August
2024

Mean Annual Precipitation
(MAP) 1 km 2010, 2020

Mean Annual
Evapotranspiration (MAE) 1 km 2010, 2020

Vegetation

Net primary productivity
(NPP) 250 m 2010, 2020

https://www.resdc.cn/,
accessed on 21 August
2024

Normalized difference
vegetation index (NDVI) 30 m 2010, 2020 USGS ASTGTM

Soil property

Bulk density (BD) 250 m - SoilGrids250m 2.0

Soil type (STP) 250 m - SoilGrids250m 2.0

Sand 250 m - SoilGrids250m 2.0

Silt 250 m - SoilGrids250m 2.0

Clay 250 m - SoilGrids250m 2.0

Geology Parent material (PM) 1:1,000,000 -
https://soil.geodata.cn,
accessed on 16 August
2024

Agricultural management

Application amount of
nitrogen fertilizer (NF) Vector data 2010, 2020 This study

Irrigation condition (IC) Vector data 2010, 2020 This study

Drainage condition (DC) Vector data 2010, 2020 This study

Cropland shelterbelt (CS) Vector data 2010, 2020 This study

Geology and soil property data, including parent material (PM), were sourced from
the China Soil and Water Digital Database (https://soil.geodata.cn, accessed on 16 August
2024) managed by the National Earth System Science Data Center at a scale of 1:1,000,000.
This dataset includes a 1:1,000,000 rock-type vector distribution map of China from the
1990s onward. Using ArcGIS 10.8 software, the vector layer was converted into a 30 m
resolution raster map. Other soil properties such as soil type (STP) and soli texture (Clay,
Silt, and Sand) were obtained from SoilGrids 250m v2.0 (https://soilgrids.org/, accessed
on 21 August 2024), with 0–20 cm soil texture data derived using depth-weighted averaging
functions [21].

The climate covariates, including mean annual temperature (MAT), mean annual
precipitation (MAP) and mean annual evapotranspiration (MAE) for 2010 and 2020, were
sourced from the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/, accessed
on 21 August 2024). For vegetation data, the mean annual normalized difference vegetation
index (NDVI) and mean annual net primary productivity (NPP) for 2010 and 2020 were
selected. The NDVI data were generated from Landsat imagery available through the
United States Geological Survey (USGS) website with a spatial resolution of 30 m. NPP
data were obtained from the China Resource Environment and Scientific Data Center

https://data.tpdc.ac.cn/
https://www.resdc.cn/
https://soil.geodata.cn
https://soil.geodata.cn
https://soilgrids.org/
https://data.tpdc.ac.cn/
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(http://www.resdc.cn, accessed on 21 August 2024) with a spatial resolution of 250 m.
These datasets are pre-existing. Agricultural management data were obtained as described
in Section 2.3.

To address the differences in coordinate reference systems and resolutions, all datasets
were resampled to 30 m × 30 m raster data using the nearest-neighbor resampling method
in ArcGIS 10.8, and the data were projected onto the EPSG:3857—WGS 84/World Mercator
coordinate system.

2.5. Random Forest

Random Forest (RF) is a machine learning technique that utilizes multiple decision
trees in an ensemble approach. It is widely adopted in various fields, including Digital Soil
Mapping (DSM), owing to its simplicity, interpretability, and robust performance [22,23].
RF is capable of handling both classification and regression tasks and processing high-
dimensional datasets. Furthermore, it allows for the assessment of variable importance in
predicting the target variable [24]. In this study, the RF model was employed to estimate the
spatial distribution of Soil Organic Carbon (SOC) in the surface layer (20 cm) of cropland in
Changzhi for the period from 2010 to 2020.

To validate the RF model’s predictive capability (or robustness), SOC sample observa-
tions from two different years were randomly divided, with 80% used for training and 20%
for testing (The SOC sample points for 2010 and 2020 were divided separately). The sample
division was performed using the “Subset Features” tool in the “Geospatial Analysis”
toolbox of ArcGIS 10.8 to ensure the non-bias and uniformity of the model sampling and
point distribution.

2.6. Model Construction and Accuracy Evaluation

In this study, dynamic environmental covariate values (climate, vegetation, and agri-
cultural management factors that vary by year) and static environmental covariate values
(topography and soil properties that do not change over a considerable period) were ex-
tracted for each soil sample point corresponding to the sampling time. The Random Forest
(RF) model was employed to establish the relationship between SOC sample data and
environmental covariates. The testing set was then used to evaluate the model’s predictive
performance for SOC. Finally, the model’s simulation accuracy was assessed using statisti-
cal indicators, including the coefficient of determination (R2), mean absolute error (MAE),
and root mean square error (RMSE) [25,26]. A higher R2 and lower MAE and RMSE values
were considered indicative of superior model performance. The formulas for calculating
MAE, RMSE, and R2 are as follows:

MAE =
1
n ∑n

i=1 |oi − pi| (1)

RMSE =

√
∑n

i=1 (oi − pi)
2

n
(2)

R2 = 1 − ∑n
i=1 (pi − oi)

2

∑n
i=1

(
oi −

↼
o
)2 (3)

where n represents the total number of soil samples, pi denotes the observed value for the
i-th sample, oi is the predicted value of the i-th soil sample, and

↼
o indicates the average of

all the sample values.
Building the RF model requires setting several key parameters, including the number

of trees (ntree), the minimum number of terminal node (node size), and the number of
covariates that are randomly selected at each tree (mtry) [27]. In this study, the ntree, node

http://www.resdc.cn
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size, and mtry parameters were optimized through cross-validation to achieve the best
estimation performance. We used 10-fold cross-validation to select the optimal combination
of model parameters, with ntree set to 500 and mtry set to 5. Additionally, the RF model
evaluates variable importance through two methods: Mean Decrease Accuracy (MDA) and
Mean Decrease Gini (MDG). In this study, MDA was chosen due to its generally higher
reliability compared to MDG. For further details on these methods, please refer to [28,29].
The RF model was constructed, trained, and optimized using the ’Random Forest’ package
in R version 4.2.2 [30].

2.7. SOC Mapping and Its Uncertainty

In this study, the spatiotemporal substitution method (that is, the dynamic variables
corresponding to each year were used to simulate the SOC of the corresponding year) was
used to map the SOC distribution of the surface 20 cm depth of the cropland in Changzhi
for 2010 and 2020. Specifically, the dynamic environmental covariate raster maps for 2010
and 2020 (dynamic environmental variables) were input into the trained RF model. The RF
model was run 100 times annually, generating 100 SOC maps per year. The final SOC map
was derived by averaging these outputs.

The uncertainty reflects the robustness of the model in terms of spatial predictions and
the errors caused by random sampling. The uncertainty in SOC predictions was quantified
by calculating the standard deviation across all SOC maps produced by the RF model for
each period [31]. Finally, the spatiotemporal distribution maps of SOC and their associated
prediction uncertainty maps were created using ArcGIS 10.8.

2.8. Partial Least Squares Structural Equation Modeling

Structural Equation Modeling (SEM) is highly suitable for evaluating the relationships
between variables, as it presumes causal links among latent variables and decomposes
correlations into direct and indirect effects within the model [32]. In this study, PLS-SEM
was employed to assess the direct and indirect impacts of various variable categories on
cropland SOC in Changzhi.

The initial hypothesis for the PLS-SEM model is as follows: agricultural management,
topography, climate, vegetation, soil properties, and geology all have direct causal relation-
ships with soil organic carbon formation. Agricultural management also exerts an indirect
causal effect on SOC through its influence on soil properties or geology. Topography has
an indirect causal effect on SOC through its impact on agricultural management. Climate
influences SOC indirectly by affecting vegetation, soil properties, and geology. Vegetation
also affects SOC indirectly through its impact on soil properties and geology. Based on this
hypothesized mechanism, we incorporated the SOC data for both 2010 and 2020, along
with the corresponding environmental covariates, into the constructed PLS-SEM model
based on the hypothesized mechanisms. The ’piecewiseSEM’ package in R was applied
to evaluate the direct and indirect effects of variables on SOC. Model fit quality across
iterations was assessed using the chi-squared/degrees of freedom ratio (χ2/df ∈ [0, 3]) and
the Comparative Fit Index (CFI > 0.9) [33]. The optimal fit results were obtained, and all
analyses were conducted using R version 4.2.2.

The workflow of this study is shown in Figure 2, which primarily consists of three
parts: the collection of cropland soil organic carbon and environmental covariates, digital
mapping and uncertainty analysis of soil organic carbon, and the analysis of the driving
factors of soil organic carbon.
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3. Results
3.1. Descriptive Statistics

Table 2 presents the descriptive statistics of the SOC in Changzhi. The SOC range for
the 1121 soil samples in Changzhi was from 2.03 g kg−1 to 41.44 g kg−1, with a mean value
of 11.25 g kg−1 and a standard deviation of 3.62 g kg−1. The coefficient of variation (CV)
was 32.22%. Based on the CV, the degree of variability was classified into three categories
that included high variability (CV > 100%), moderate variability (10% < CV < 100%), and
low variability (CV < 10%) [14]. From a temporal perspective, from 2010 to 2020 the average
SOC value in Changzhi increased by 2.10 g kg−1, whereas the CV increased from 23.10% to
42.69%, indicating a higher degree of SOC variability in 2020.

Table 2. Descriptive statistics of SOC.

Sampling Point Min (g kg−1) Max (g kg−1) Mean (g kg−1) SD (g kg−1) CV (%)

All 1121 2.03 41.44 11.25 3.62 32.22
2010 829 2.57 37.40 10.70 2.47 23.10
2020 292 2.03 41.44 12.80 5.46 42.69

3.2. Model Performance Evaluation

To evaluate the effectiveness of agricultural management factors for predicting crop-
land SOC, we constructed an RF model that excluded agricultural management factors.
Here, RF_A represents the RF model using all 19 covariates, whereas RF_C represents
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the RF model that uses only natural variables (i.e., excluding agricultural management
information). Table 3 presents the performance evaluation results for the RF models with
two different variable combinations. The results indicate that, compared to the model
using natural variables (RF_C.), the inclusion of agricultural management variables (RF_A)
improved the prediction accuracy, with an R2 increase of 0.08 (0.77 vs. 0.85), a reduction in
RMSE (1.74 g kg−1 vs. 1.53 g kg−1), and a decrease in MAE (1.10 g kg−1 vs. 0.94 g kg−1).
Specifically, incorporating agricultural management variables resulted in a higher predic-
tion performance for cropland SOC.

Table 3. Predicted values and accuracy evaluation of RF model under two different variable combinations.

Model MAE (g kg−1) RMSE (g kg−1) R2

RF_A 0.94 1.53 0.85
RF_C 1.10 1.74 0.77

3.3. Relative Importance of Variables

Previous studies have demonstrated that the importance of environmental variables
varies depending on region and scale [34]. In this study, the relative importance of each
variable in the RF model was determined, with their contributions adjusted to total 100%.
In the RF_A model, mean annual precipitation (15.71%) emerged as the most influential
factor for SOC variation, followed by IC (10.32%), MAT (8.20%), NPP (7.18%), clay (6.51%),
and NF (6.09%). These variables accounted for 54.02% of the total relative importance,
indicating that they were the primary environmental variables influencing variation in
cropland SOC in the study area (Figure 3). Climate variables contributed the most (28.03%),
followed by agricultural management (24.59%), soil properties and geology (20.98%),
vegetation (13.28%), and topographic variables (13.12%) (Figure 3). Compared to the
relative importance results of the RF_A model, in the RF_C model, the importance ranking
of the other four categorical variables remains unchanged, except for the exclusion of the
agricultural management variable. Regarding individual covariate factors, MAP still holds
the highest relative importance, with NPP, MAT, NDVI, and Clay remaining as factors
with relatively strong importance. Aside from MAE, the relative importance ranking of the
individual factors does not change significantly.
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3.4. Spatiotemporal Distribution of Soil Organic Carbon

The spatial distributions of cropland SOC in Changzhi from 2010 to 2020, as predicted
by both RF_A and RF_C models, showed similar patterns, with pronounced spatial variabil-
ity in carbon content (Figure 4). The mean values predicted by both models were very close
to the observed SOC values. We analyzed the spatiotemporal distribution map, generated
using the optimal model (RF_A), was conducted (Figure 4a,b). Overall, surface SOC in
the croplands increased from north to south, with a significant difference between the
northern and southern regions. The southern Shangdang Basin has higher SOC, whereas
the northern mountainous and hilly areas have lower SOC. In 2010, the surface SOC in
the croplands was relatively low, with an average of 10.70 g kg−1 (Figure 4a). In 2020,
the surface SOC in cropland generally increased to varying degrees, with an average of
12.27 g kg−1 (Figure 4b). According to estimates, the average organic carbon content in
China’s cropland surface soil ranges from 11.95 to 12.67 g kg−1 [35], and the SOC content
in this study is within this range. In the northeastern black soil region of China, SOC
reserves were the highest, at nearly double the national average. However, some studies
reported SOC loss in the northeastern region due to agricultural practices [36]. Our study
demonstrated an increasing trend in cropland SOC in the Loess Plateau (Changzhi) from
2010 to 2020, suggesting that this region, as one of China’s most important soil carbon
reservoirs, will play a more critical role in the future.
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3.5. Uncertainty Analysis

Figure 5 indicates the uncertainty in SOC mapping for Changzhi in 2010 and 2020
based on the RF_A and RF_C models. Regions with low uncertainty indicated reliable pre-
dictions, where the SOC differences after 100 RF model simulations were small. However,
areas with high uncertainty suggest relatively large variability in the prediction results
after 100 simulations. From a spatiotemporal perspective, the spatial distribution of the
uncertainty in Changzhi exhibited similar trends (Figure 5). The average uncertainty of
the topsoil (0–20 cm) SOC in Changzhi ranges from 0.39 g kg−1 to 0.66 g kg−1, with the
uncertainty in most regions being less than 1.00 g kg−1. This suggests that the SOC maps
generated in this study are highly reliable. Generally, the density of soil sample points
influences the uncertainty in SOC maps. In the RF_C model predictions (Figure 5c,d), the
relationship between sample point density and uncertainty is notable. Larger uncertainties
are observed in the sparse sampling regions of the east and west, particularly in 2010. In
areas with higher sampling point density, except for parts of the northern plains, uncer-
tainty is relatively higher. This is primarily due to the higher SOC in the plains (Shangdang
Basin), which may lead to larger errors in multiple prediction results. It is noteworthy
that the RF_A model, which incorporates agricultural management information, does not
exhibit this pattern. Compared to RF_C, RF_A shows lower uncertainty, both in 2010 and
2020. The main difference between the two models is that RF_A exhibits consistently lower
uncertainty across the entire region, with a significant reduction in uncertainty in the south-
ern Shangdang Basin. This can be attributed to improvements in agricultural management
practices such as irrigation and drainage conditions, cropland shelterbelts, and fertilization
in the low-altitude basin. These measures significantly enhanced the SOC in the region.
Therefore, incorporating agricultural management practices into SOC prediction models
can effectively reduce mapping uncertainty, particularly in low-altitude areas.
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3.6. PLS-SEM of Soil Organic Carbon and Covariates

In addition to using the RF model to quantify the relative importance of covariates
for predicting cropland SOC, we explored the complex causal relationships between the
environmental covariates and SOC using a PLS-SEM model. Based on existing soil knowl-
edge, the paths of the PLS-SEM model were adjusted, resulting in the best-fitting structural
equation model (χ2/df = 1.147, CFI = 0.996) that explained 62.20% of the variance in
SOC (Figure 6). The influence of different categories of covariates on SOC variation was
ranked as follows: climate > agricultural management > soil properties and geology >
vegetation > topography. This was consistent with ranking the importance of different cate-
gories of covariates in the RF model. Specifically, climatic factors (path coefficient = 0.669,
p < 0.001), agricultural management (path coefficient = 0.461, p < 0.01), soil properties and
geology (path coefficient = 0.339, p < 0.01), and vegetation factors (path coefficient = 0.214,
p < 0.05) were significantly positively correlated with SOC, whereas topography (path
coefficient = 0.187, p < 0.05) was significantly negatively correlated. This result indicates
that SOC content is not controlled by a single environmental factor but by the combined
effects of climate, soil, geology, vegetation, topography, and agricultural management.
This further confirmed the effectiveness of agricultural management for improving the
prediction of cropland SOC in Changzhi. It is important to note that the ranking of the
relative importance of the factors in the RF model does not precisely match the ranking of
the path coefficients in the PLS-SEM model due to differences in the model’s principles or
evaluation perspectives. However, both models indicated that MAT, IC, and NPP were the
key variables influencing cropland SOC.
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Figure 6. PLS-SEM path analysis results for the effects of climate, vegetation, topography, soil
properties, and agricultural management on SOC. The names in the rectangles represent individual
variables or categories. Rectangles denote variables or categories, with numbers in parentheses
indicating loading scores. Positive and negative path coefficients or loadings are shown by blue and
red lines, respectively. Solid lines represent direct effects, while dashed lines indicate indirect effects,
with line widths proportional to path coefficients or loadings. Statistical significance is denoted by
asterisks: *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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4. Discussion
4.1. Dynamics of Cropland SOC

We subtracted the 2010 SOC from the 2020 SOC (simulated using the optimal RF_A
model) to map the dynamic changes in SOC in the Changzhi croplands from 2010 to 2020
(Figure 7). Over the ten years from 2010 to 2020, the SOC of croplands in Changzhi exhibited
an overall increasing trend. The southern region exhibited a larger increase, the northern
region exhibited a smaller increase, and the central region experienced a slight decrease
in SOC. Specifically, 68.38% of the cropland area exhibited an increase in SOC, with the
increase primarily concentrated between 1–2 g kg−1 and >2 g kg−1. The areas with the
largest increase in surface SOC (>2 g kg−1) were located in the southern Shangdang Basin
and northern mountain plains. Although urban construction, greenhouse gas emissions,
and industrial development in these areas may cause SOC loss in croplands, the Chinese
government has implemented a series of basic high-standard farmland construction projects
to ensure food security. These projects prioritize areas such as plains or basins that are
relatively flat and involve measures such as reasonable fertilization, improved irrigation
and drainage conditions, and the construction of cropland shelterbelts. These management
practices have promoted SOC accumulation, compensating for losses caused by urban
construction and other factors.
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Areas with a decrease in SOC accounted for 32.62% of the cropland area, with the
largest decrease in surface SOC (−1 to −2 g kg−1) occurring in the transitional zones
between the central basin and hilly mountainous areas. Although the disturbance from
urban construction in these regions is relatively small compared to that in the plains and
basins, it still leads to SOC loss in croplands. The lack of significant improvements in
agricultural management practices in these areas has hindered the effective accumulation
of SOC, resulting in a net decline in the cropland SOC content. The SOC change was
relatively small in the northern mountainous regions, at within 1 g kg−1. These areas are
less accessible and, apart from agricultural activities, are less disturbed by other human
activities. Moreover, agricultural management practices in the mountains have remained
relatively stable with fewer external environmental changes, thus contributing to the overall
balance of cropland SOC in these regions from 2010 to 2020.
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Overall, changes in cropland SOC in Changzhi from 2010 to 2020 were influenced by
multiple factors. Although there were areas within the region where SOC loss occurred due
to urbanization and industrialization, the agricultural sustainability measures implemented
by the government compensated for these losses to some extent, particularly in the plains
and basin areas. Concurrently, some transitional zones and mountainous areas continue to
face the challenges of SOC depletion due to relatively lagging agricultural management. In
the future, efforts should be made to strengthen agricultural management in these regions,
particularly in key areas where SOC loss is significant, and more effective measures should
be implemented to achieve sustainable growth of cropland SOC.

4.2. Effects of Different Environmental Covariates on SOC

The PLS-SEM results demonstrated that climate not only exerted a direct impact on
SOC but also indirectly controlled SOC by influencing vegetation (path coefficient = 0.301,
p < 0.01) and soil properties (path coefficient = 0.339, p < 0.01) (Figure 6). The average
precipitation in the study area increased by 95.5 mm from 2010 to 2020. Increased MAP
can reduce soil aeration, creating anaerobic conditions that decrease soil respiration and
slow the rate of soil carbon oxidation, thereby promoting SOC [37]. However, the close
relationship between MAP, MAE, and soil moisture enhances plant uptake of available
water in areas with high soil moisture, increasing plant productivity and leading to more
litter entering the soil, and this in turn increases SOC content [38]. MAT also exerts a strong
effect on cropland SOC primarily due to the observation that temperature is an important
condition for soil development and controls the decomposition of soil humus. Additionally,
climate significantly affects soil microbial activity by regulating the rate at which microbes
decompose plant residues entering the soil, thus altering the quantity and quality of soil
carbon inputs [39,40]. Although climate change in Changzhi has been relatively stable,
climate variables still play a significant role in SOC prediction, further emphasizing the
importance of climate variables in SOC forecasting.

Vegetation factors directly affect cropland SOC (Figure 6), as vegetation is a key source
of SOC, particularly in agricultural ecosystems where organic carbon is continuously input
into the soil through plant residues, root exudates, and other pathways [41]. In SOC
mapping studies, vegetation indices (such as NDVI and NPP) are often used as primary
predictive indicators. Vegetation growth increases aboveground biomass and provides a
carbon source to the soil through root systems, and this alters the soil microenvironment,
enhances biotic and abiotic interactions in underground ecological processes, stimulates
the carbon cycle, and increases soil carbon storage [42]. The RF model demonstrated that
NPP was more important than NDVI (Figure 3), indicating that NPP better reflects the
overall productivity of vegetation and reveals the influence of vegetation growth on soil
carbon input. NPP directly reflects the net primary production of plants, thus capturing
the total amount of fixed carbon during the plant-growing season. In croplands in northern
China, straw return is a common agricultural practice in which leftover crop residues are
directly returned to the soil after harvest. Straw is an important source of organic carbon
in cropland soils, as it contains a large amount of organic carbon that accumulates during
plant growth. NPP controls the amount of carbon fixed by vegetation and determines the
carbon input from returned straw. Therefore, NPP is not only a vegetation index but also
a critical controlling factor for soil carbon input. By contributing to the cropland carbon
cycle, NPP possesses greater application value for predicting SOC stocks.

Agricultural management factors contributed the most to changes in cropland
SOC (Figures 3 and 6) and indirectly affected SOC by influencing soil properties (path
coefficient = 0.282, p < 0.05). This study demonstrated that IC is a key factor influencing
changes in cropland SOC (Figures 3 and 6). Appropriate irrigation increases soil moisture,
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improves crop growth conditions, and promotes microbial activity in soils with adequate
moisture, aiding the decomposition and transformation of soil organic matter [43]. Irri-
gation also regulates soil temperature, particularly during dry or hot periods, by cooling
the soil surface through evaporative cooling. Lower soil temperatures help slow organic
carbon mineralization, thus reducing carbon dioxide emissions and stabilizing organic
carbon. DC and CS are also important for predicting SOC in croplands (Figures 3 and 6),
as they can influence SOC by affecting soil properties. The balance between drainage
and irrigation conditions is crucial for maintaining a good soil structure, enhancing the
stability of soil aggregates, and reducing the risk of erosion, thereby aiding organic carbon
retention and preventing soil salinization [44]. Furthermore, CS improves SOC content
and stability through various mechanisms, such as by improving microclimates, reducing
erosion, enhancing biodiversity, improving soil structure, and increasing microbial activity.
The importance of CS ranked second among the agricultural management factors after IC
(Figure 3). Nitrogen fertilization replenishes the nitrogen lost during agricultural produc-
tion, and the soil nitrogen content is one of the key factors in the soil carbon cycle. Nitrogen
fertilizers promote crop growth and increase biomass, particularly root growth [45]. Conse-
quently, residual roots and crop residues (such as leaves and stems) enter the soil, increasing
the organic carbon input and promoting carbon accumulation. Additionally, the carbon-
to-nitrogen (C/N) ratio influenced the decomposition rate and accumulation of organic
matter. Nitrogen fertilization alters the C/N ratio, and appropriate nitrogen application can
maintain the C/N ratio at levels favorable for organic carbon accumulation [46]. Therefore,
the appropriate management of agricultural infrastructure is essential for enhancing soil
carbon stocks and achieving carbon sink functions in cropland ecosystems.

Topography is a critical factor in soil formation, as it influences water content, tem-
perature, and distribution of the parent materials. Terrain variables derived from digital
elevation models (DEMs) are commonly used as key predictors in soil mapping and digital
soil modeling. In this study, topography directly affected cropland SOC and indirectly
controlled SOC by influencing agricultural management (path coefficient = 0.386; p < 0.01).
The significant topographical variation in Changzhi leads to diverse agricultural practices
across terrains, affecting carbon decomposition and soil transformation, and ultimately
causing SOC variations. Additionally, this study demonstrated that elevation was the most
important topographical factor for predicting cropland SOC (‘Ele’ in Figure 3). Elevation
influences the vertical distribution of water and heat and plays a crucial role in microclimate
development [47], affecting SOC decomposition and transformation [48]. The slope was
almost as important as altitude (Figure 3). The slope typically affects the movement of
solutes, water, sediment, and soil moisture, influencing soil development and the spatial
distribution of soil properties. In previous soil property prediction studies, elevation has
also been identified as the most effective topographical parameter, with slope, aspect, and
TWI being key factors influencing the spatial distribution of SOC [4–50].

Increasing evidence highlights the pivotal role of soil conditions in controlling the
stability of organic carbon, which directly influences its decomposition rate [51]. Variations
in soil properties significantly affect both the quantity and quality of SOC by regulating its
stability through diverse physical and chemical mechanisms. These properties are essential
for the long-term storage of carbon in cropland soils. In the present study, clay and BD
were the most influential soil properties on cropland SOC (Figures 3 and 6). Clay particles
protect organic carbon by forming soil aggregates and adsorbing organic matter, thereby
preventing rapid microbial decomposition. Higher clay content results in more tightly
bound soil particles and a more stable aggregate structure, and this helps to physically
protect the SOC [52]. BD reflects soil compaction, and an increase in bulk density typically
indicates a decrease in soil porosity, tighter soil structure, and lower soil carbon stocks [53].
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When microbial activity in the soil is low, the rate of organic carbon decomposition is
reduced, and this slows carbon mineralization and release. Although the importance of
soil texture parameters (e.g., sand, silt, ST, PM) for predicting cropland SOC was slightly
lower in this study (Figure 3), these soil properties remain crucial for SOC accumulation
and stability.

4.3. Limitations and Perspectives

Although the model validation and uncertainty results suggest that the SOC simula-
tions in this study are reasonable and acceptable, certain limitations remain. One potential
issue is the differing initial spatial resolutions of the input data. This study used multisource
data to predict SOC distribution and dynamics, some of which were sourced from global-
scale datasets. For instance, the SoilGrids 250m soil parameters, derived from a large global
field survey (150,000 soil profiles), provide a higher spatial resolution compared to other
global soil property datasets [54]. Although methods were employed to ensure dataset
accuracy, the performance and precision of such high-resolution global datasets may be less
reliable in the regional context of China, potentially introducing biases and contributing to
uncertainty in the study results. Another limitation was that the predictive model did not
include some factors potentially influencing SOC changes. For example, variables such as
the amount of straw returned to the soil and potassium (K) fertilizer and phosphorus (P)
fertilizer application were difficult to quantify accurately during the survey. It is difficult to
combine comprehensive agricultural management information to improve the accuracy
of the DSM. Additionally, the effects of dynamic variables such as climate, vegetation,
and agricultural management on farm SOC may exhibit time lags. Therefore, establishing
long-term monitoring stations to study their impact on SOC mapping is important.

5. Conclusions
In this study, we applied the Random Forest (RF) model to map SOC in Changzhi’s

croplands at a 30 m resolution for 2010 and 2020. The conclusions are as follows.
(1) Incorporating agricultural management information into the RF model improves the
spatiotemporal prediction accuracy of SOC for this study area. (2) The spatial distribution
trend of SOC in Changzhi’s cropland was consistent between 2010 and 2020, with the aver-
age SOC increasing from 10.70 g kg−1 in 2010 to 12.27 g kg−1 in 2020. (3) Climate variables,
agricultural management, soil properties and geology were the major contributors to SOC
modeling (73.60%), with MAP, IC, and NPP identified as the most important covariates
affecting SOC changes. Our findings confirm that effective agricultural management can
enhance cropland soil carbon stocks, which may contribute to sustainable agricultural
development. Future research should focus on incorporating laboratory-measured soil
properties and utilizing remote sensing technologies to identify additional agricultural
management information for predicting or mapping regional cropland soil organic carbon.
Similarly, we recommend further improvements in agricultural management practices in
mountainous and hilly areas to enhance both regional cropland soil organic carbon and
soil quality.
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