Variation in Protein Content and Amino Acids in the Leaves of Grain, Vegetable and Weedy Types of Amaranths
Abstract
:1. Introduction
2. Results and Discussion
2.1. Variation of Protein Content and Amino Acids in the Leaves of Grain, Vegetable and Weedy Types of Amaranths
Nr. | GRAIN (N = 12) | VEGETABLE (N = 37) | WEEDY (N = 27) | F-value | P > F | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Traits | Unit | Min. | Mean | Max. | S.D. | Min. | Mean | Max. | S.D. | Min. | Mean | Max. | S.D. | |||
1 | BMS | (%) | 13.20 | 15.55 | 17.81 | 1.68 | 7.57 | 14.83 | 27.57 | 4.64 | 5.85 | 17.94 | 25.42 | 4.33 | 4.13 | * |
2 | Leaves’ DM | (%) | 12.64 | 19.69 | 24.37 | 3.10 | 10.97 | 19.16 | 29.22 | 5.31 | 11.55 | 23.23 | 37.70 | 6.34 | 4.37 | ** |
3 | Protein | (g 100 g−1 DW) | 10.78 | 15.71 | 20.31 | 2.82 | 11.59 | 16.22 | 28.03 | 3.56 | 11.84 | 19.40 | 29.06 | 4.71 | 6.29 | ** |
4 | Leu | (g 100 g−1 DW Protein) | 6.71 | 7.46 | 8.19 | 0.53 | 6.82 | 7.81 | 8.48 | 0.37 | 5.44 | 7.87 | 8.40 | 0.55 | 3.34 | * |
5 | Ala | (g 100 g−1 DW Protein) | 5.59 | 5.97 | 6.55 | 0.34 | 5.21 | 6.07 | 1.72 | 0.28 | 5.37 | 6.59 | 7.69 | 0.60 | 14.42 | *** |
6 | Lys | (g 100 g−1 DW Protein) | 5.50 | 5.92 | 6.42 | 0.30 | 5.18 | 6.05 | 6.63 | 0.36 | 5.63 | 6.13 | 6.54 | 0.25 | 1.77 | n.s. |
7 | Gly | (g 100 g−1 DW Protein) | 5.59 | 6.15 | 6.96 | 0.38 | 5.42 | 5.88 | 6.34 | 0.22 | 5.26 | 5.85 | 6.70 | 0.36 | 4.51 | ** |
8 | Ser | (g 100 g−1 DW Protein) | 4.55 | 5.40 | 5.69 | 0.30 | 2.63 | 5.33 | 6.08 | 0.52 | 5.02 | 5.54 | 6.11 | 0.32 | 1.89 | n.s. |
9 | Arg | (g 100 g−1 DW Protein) | 4.27 | 4.73 | 5.27 | 0.35 | 4.50 | 5.15 | 6.01 | 0.27 | 4.66 | 5.21 | 5.80 | 0.26 | 13.35 | *** |
10 | Thr | (g 100 g−1 DW Protein) | 4.41 | 4.86 | 5.28 | 0.28 | 4.67 | 5.00 | 5.22 | 0.13 | 4.68 | 5.03 | 5.39 | 0.19 | 3.88 | * |
11 | Phe | (g 100 g−1 DW Protein) | 4.12 | 4.49 | 4.92 | 0.28 | 4.04 | 4.63 | 5.12 | 0.25 | 4.38 | 4.83 | 5.36 | 0.20 | 9.93 | *** |
12 | Pro | (g 100 g−1 DW Protein) | 4.08 | 4.53 | 5.09 | 0.28 | 3.89 | 4.72 | 5.67 | 0.36 | 3.99 | 4.68 | 5.53 | 0.35 | 1.31 | n.s. |
13 | Val | (g 100 g−1 DW Protein) | 3.67 | 4.43 | 5.18 | 0.44 | 4.03 | 4.76 | 5.25 | 0.32 | 3.25 | 4.45 | 5.32 | 0.65 | 4.01 | ** |
14 | Ile | (g 100 g−1 DW Protein) | 3.18 | 3.78 | 4.33 | 0.37 | 3.48 | 4.04 | 4.76 | 0.32 | 2.67 | 3.86 | 6.25 | 0.75 | 1.60 | n.s. |
15 | Tyr | (g 100 g−1 DW Protein) | 2.74 | 3.65 | 4.19 | 0.40 | 2.87 | 3.62 | 4.15 | 0.32 | 3.30 | 3.73 | 4.46 | 0.24 | 1.10 | n.s. |
16 | His | (g 100 g−1 DW Protein) | 1.87 | 1.99 | 2.10 | 0.07 | 1.41 | 1.78 | 2.10 | 0.17 | 1.68 | 1.84 | 2.22 | 0.11 | 9.65 | *** |
17 | Cys | (g 100 g−1 DW Protein) | 0.45 | 0.53 | 0.62 | 0.05 | 0.00 | 0.42 | 0.83 | 0.22 | 0.00 | 0.50 | 1.06 | 0.22 | 1.92 | n.s. |
18 | Met | (g 100 g−1 DW Protein) | 0.00 | 0.27 | 0.75 | 0.25 | 0.00 | 0.32 | 1.22 | 0.32 | 0.00 | 0.52 | 2.39 | 0.48 | 2.90 | n.s. |
19 | Total AA | (g 100 g−1 DW Protein) | 80.35 | 85.37 | 91.24 | 3.48 | 79.77 | 88.60 | 91.39 | 2.23 | 84.40 | 90.42 | 92.96 | 1.68 | 20.15 | *** |
20 | Total NPAA | (g 100 g−1 DW Protein) | 1.05 | 2.04 | 3.10 | 0.63 | 0.93 | 2.03 | 3.32 | 0.65 | 0.89 | 1.78 | 3.63 | 0.76 | 1.19 | n.s. |
3. Experimental Section
3.1. Plant Materials
3.2. Experimental Site
3.3. Sample Preparation
3.4. Biomass (BMS)
3.5. Leaves’ Dry Matter (DM)
3.6. Protein Analysis
3.7. Amino Acids Determination
3.7.1. Sample Preparation
3.7.2. Amino Acid Determination
3.8. Statistical Analysis
4. Conclusions
Conflict of Interest
Acknowledgments
References
- Müller, O.; Krawinkel, M. Malnutrition and health in developing countries. Can. Med. Assoc. J. 2005, 173, 279–286. [Google Scholar]
- Chakraborty, S.; Chakraborty, N.; Agrawal, L.; Ghosh, S.; Narula, K.; Shekhar, S.; Naik, P.S.; Pande, P.C.; Chakrborti, S.K.; Datta, A. Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. Proc. Natl. Acad. Sci. 2010, 1–6. [Google Scholar]
- Sari, M.; de Pee, S.; Bloem, M.W.; Sun, K.; Thorne-Lyman, A.L.; Moench-Pfanner, R.; Akhter, N.; Kraemer, K.; Semba, R.D. Higher household expenditure on animal-source and nongrain foods lowers the risk of stunting among children 0–59 months old in Indonesia: Implications of rising food prices. J. Nutr. 2010, 140, 195S–200S. [Google Scholar] [CrossRef]
- Welch, R.M.; Graham, R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar]
- Persson, V. Vitamin A Intake, Status and Improvement Using the Dietary Approach. Ph.D Thesis, Faculty of Medicine Uppsala University, Uppsala, Sweden, 2001. [Google Scholar]
- Huang, J.; Pray, C.; Rozelle, S. Enhancing the crops to feed the poor. Nature 2002, 418, 678–684. [Google Scholar] [CrossRef]
- Gupta, S.; Jyothi Lakshmi, A.; Manjunath, M.N.; Prakash, J. Analysis of nutrient and antinutrient content of underutilized green leafy vegetables. LWT Food Sci. Technol. 2005, 38, 339–345. [Google Scholar] [CrossRef]
- Barba de la Rosa, A.P.; Fomsgaard, I.S.; Laursen, B.; Mortensen, A.G.; Olvera-Martínez, L.; Silva-Sánchez, C.; Mendoza-Herrera, A.; González-Castañeda, J.; De León-Rodríguez, A. Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: phenolic acids and flavonoids with potential impact on its nutraceutical quality. J. Cereal Sci. 2009, 49, 117–121. [Google Scholar] [CrossRef]
- Gupta, K.; Wagle, D.S. Nutritional and antinutritional factors of green leafy vegetables. J. Agric. Food Chem. 1988, 36, 472–474. [Google Scholar] [CrossRef]
- Caselato Sousa, V.M.; Amaya-Farfán, J. State of knowledge on amaranth grain: a comprehensive review. J. Food Sci. 2012, 77, R93–R104. [Google Scholar] [CrossRef]
- Brenner, D.M.; Baltensperger, D.D.; Kulakow, P.A.; Lehmann, J.W.; Myers, R.L.; Slabbert, M.M.; Sleugh, B.B. Genetic resources and breeding of Amaranthus. Plant Breed. Rev. 2000, 19, 227–285. [Google Scholar]
- Coons, M.P. Relationships of Amaranthus caudatus. Econ. Bot. 1982, 36, 129–146. [Google Scholar] [CrossRef]
- Grubben, G.J.H. Amaranthus L. In Plant Resources of South-East Asia No 8 Vegetables; Siemonsma, J.S., Piluek, K., Eds.; Prosea Foundation: Bogor, Indonesia, 1994; pp. 82–86. [Google Scholar]
- Barba de la Rosa, A.P.; Gueguen, J.; Paredes-López, O.; Viroben, G. Fractionation procedure, electrophoretic characterization, and amino acid composition of amaranth seed proteins. J. Agric. Food Chem. 1992, 40, 931–936. [Google Scholar]
- Barba de la Rosa, A.P.; Silva-Sánchez, C.; González de Mejia, E. ACS symposium series: Amaranth: An ancient crop for modern technology. In Hispanic Foods; Tunick, M., Ed.; American Chemical Society: Washington, DC, USA, 2006; pp. 103–116. [Google Scholar]
- Zheleznov, A.V.; Solonenko, L.P.; Zheleznova, N.B. Seed proteins of the wild and the cultivated Amaranthus species. Euphytica 1997, 97, 177–182. [Google Scholar] [CrossRef]
- Maughan, P.J.; Sisneros, N.; Luo, M.; Kudrna, D.; Ammiraju, J.S.S.; Wing, R.A. Construction of an Amaranthus hypochondriacus bacterial artificial chromosome library and genomic sequencing of herbicide target genes. Plant Genome 2008, 1, S85–S94. [Google Scholar]
- Pal, M. Evolution and improvement of cultivated amaranths. III. Amaranthus spinosus-dubius complex. Genetica 1972, 43, 106–118. [Google Scholar] [CrossRef]
- Andini, R.; Yoshida, S.; Yoshida, Y.; Ohsawa, R.O. Amaranthus genetic resources in Indonesia: Morphological and protein content assessment in comparison with worldwide amaranths. Gen. Resour. Crop Evol. 2013. Available online: http://link.springer.com/content/pdf/10.1007%2Fs10722-013-9979-y.pdf (accessed on 2 May 2013). [Google Scholar] [CrossRef] [Green Version]
- Grubben, G.J.H. The Cultivation of Amaranth as a Tropical Leaf Vegetable with Special Reference to South Dahomey; Department of Agricultural Research of the Royal Tropical Institute: Amsterdam, The Netherland, 1976; pp. 1–207. [Google Scholar]
- Grubben, G.J.H. Amaranthus dubius Mart. Ex. Thell [Internet] Record from Protabase. In Plant Resources of Tropical Africa (PROTA); Grubben, G.J.H., Denton, O.A., Eds.; Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale (PROTA): Wageningen, The Netherlands, 2004; Available online: http://www.prota.org/index.php?option=com_content&view=frontpage&Itemid=128&lang=en (accessed on 14 March 2013).
- Shukla, S.; Bhargava, A.; Chatterjee, A.; Pandey, A.C.; Mishra, B.K. Diversity in phenotypic and nutritional traits in vegetable amaranth (Amaranthus tricolor), a nutritionally underutilized crop. J. Sci. Food Agric. 2010, 90, 139–144. [Google Scholar] [CrossRef]
- Pfeiffer, W.; McClafferty, B. HarvestPlus: Breeding crops for better nutrition. Crop Sci. 2007, 47, S88–S105. [Google Scholar]
- Becker, R.; Wheeler, E.L.; Lorenz, K.; Stafford, A.E.; Grosjean, O.K.; Betschart, A.A.; Saunders, R.M. A compositional study of amaranth grain. J. Food Sci. 1981, 46, 1175–1180. [Google Scholar] [CrossRef]
- Gorinstein, S.; Moshe, R. Evaluation of four Amaranthus species through protein electrophoretic patterns and their amino acid composition. J. Agric. Food Chem. 1991, 39, 851–854. [Google Scholar] [CrossRef]
- Gorinstein, S.; Delgado-Licon, E.; Pawelzik, E.; Permady, H.H.; Weisz, M.; Trakhtenberg, S. Characterization of soluble amaranth and soybean proteins based on fluorescence, hydrophobicity, electrophoresis, amino acid analysis, circular dichroism, and differential scanning calorimetry measurements. J. Agric. Food Chem. 2001, 49, 5595–5601. [Google Scholar]
- Shukla, S.; Bhargava, A.; Chatterjee, A.; Srivastava, A.; Singh, S.P. Estimates of genetic variability in vegetable amaranth (A. tricolor) over different cuttings. Hort. Sci. 2005, 32, 60–67. [Google Scholar]
- Van Wyk, B.E. The potential of South African plants in the development of new food and beverage products. South Afr. J. Bot. 2011, 77, 857–868. [Google Scholar] [CrossRef]
- Pickersgill, B. Biosystematics of crop-weed complexes. Kulturpflanze 1981, 19, S377–S388. [Google Scholar] [CrossRef]
- Guil, J.L.; Rodriguez-Garcia, I.; Torija, E. Nutritional and toxic factors in selected wild edible plants. Plant Foods Hum. Nutr. 1997, 51, 99–107. [Google Scholar] [CrossRef]
- Introduction to the International Treaty on Plant Genetic Resources for Food and Agriculture, 1st ed; Food and Agriculture Organization: Rome, Italy, 2011; pp. 1–155.
- Fomsgaard, I.S.; Añon, M.C.; Barba de la Rosa, A.P.; Christophersen, C.; Dusek, K.; Délano-Frier, J.; Espinoza Pérez, J.; Fonseca, A.; Janovská, D.; Kudsk, P.; et al. Adding value to holy grain: Providing the key tools for the exploitation of amaranth-the protein rich grain of the Aztecs, Results from a joint European-Latin American Research Project. In Amaranth: Future Food; Department of Integrated Pest Management, Faculty of Agricultural Sciences, Aarhus University: Aarhus, Denmark, 2009; pp. 1–77. [Google Scholar]
- Protein and Amino acid Requirements in Human Nutrition; Report of a Joint WHO/FAO/UNU Expert Consultation (WHO Technical Report Series; No. 935); World Health Organization: Geneva, Switzerland, 2007; pp. 1–284.
- Hadisoeganda, R.W.W. Amaranth: Livelihood Support for Farmers in Indonesia; (in Indonesian). No 8; A Monograph Produced by the Indonesian Vegetable Research Institute: Lembang, Indonesia, 1996. [Google Scholar]
- Pedersen, B.; Kalinowski, L.S.; Eggum, B.O. The nutritive value of amaranth grain (Amaranthus caudatus). Plant Foods Hum. Nutr. 1987, 36, 309–324. [Google Scholar] [CrossRef]
- Coultate, T.P. Food, the Chemistry of Its Composition, 4th ed; RSC publication: Cambridge, Country, 2002; p. 138. [Google Scholar]
- National Academy of Science, Lost Crops of Africa: Grains; The National Academies Press: Washington, DC, USA, 1996; Volume I, pp. 1–408.
- Bressani, R.; García-Vela, L.A. Protein fractions in amaranth grain and their chemical characterization. J. Agric. Food Chem. 1990, 38, 1205–1209. [Google Scholar] [CrossRef]
- Wargiono, J.; Richana, N.; Hidajat, A. Contribution of cassava leaves used as a vegetable to improve human nutrition in Indonesia. 2002. Available online: http://webapp.ciat.cgiar.org/asia_cassava/workshop_pdf/Paper16_J_Wargiono_N_Richana_and_A_Hidajat_Contribution_of_c.pdf (accessed on 14 March 2013).
- National Academy of Sciences, Lost Crops of Africa: Vegetables; The National Academies Press: Washington, DC, USA, 2006; Volume II, pp. 1–379.
- United States Department of Agriculture—Agriculture Research Service (USDA-ARS), National Genetic Resources Program Germplasm Resources Information Network (GRIN). [Online Database]; National Germplasm Resources Laboratory: Beltsville, Maryland, 2011. Available online: http://www.ars-grin.gov/npgs/ (accessed on 14 March 2013).
- Brenner, D.M. Amaranth Descriptor; Descriptor Site(s):NC7. USDA: Iowa City, IA, USA, 2002; pp. 1–13. Available online: http://www.ars-grin.gov/npgs/descriptors/amaranth (accessed on 14 March 2013). [Google Scholar]
- AOAC, Kjeldahl method for nitrate containing samples—Official final action. In Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Washington, DC, USA, 1980; p. 15.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Andini, R.; Yoshida, S.; Ohsawa, R. Variation in Protein Content and Amino Acids in the Leaves of Grain, Vegetable and Weedy Types of Amaranths. Agronomy 2013, 3, 391-403. https://doi.org/10.3390/agronomy3020391
Andini R, Yoshida S, Ohsawa R. Variation in Protein Content and Amino Acids in the Leaves of Grain, Vegetable and Weedy Types of Amaranths. Agronomy. 2013; 3(2):391-403. https://doi.org/10.3390/agronomy3020391
Chicago/Turabian StyleAndini, Rita, Shigeki Yoshida, and Ryo Ohsawa. 2013. "Variation in Protein Content and Amino Acids in the Leaves of Grain, Vegetable and Weedy Types of Amaranths" Agronomy 3, no. 2: 391-403. https://doi.org/10.3390/agronomy3020391
APA StyleAndini, R., Yoshida, S., & Ohsawa, R. (2013). Variation in Protein Content and Amino Acids in the Leaves of Grain, Vegetable and Weedy Types of Amaranths. Agronomy, 3(2), 391-403. https://doi.org/10.3390/agronomy3020391