A Draft Genome Sequence for Ensete ventricosum, the Drought-Tolerant “Tree Against Hunger”
Abstract
:1. Introduction
2. Results and Discussion
2.1. Whole-Genome Sequencing
2.2. Estimation of the Enset Genome Length
2.3. Conservation of Protein-Coding Sequences between Enset and Banana
GenBank accession number and description | Depth |
---|---|
HM118700.1 TCP-1-eta subunit gene | 80.71 |
HM118740.1 mRNA capping enzyme large subunit family protein gene | 79.26 |
HM118605.1 electron transport protein gene | 79.06 |
HM118577.1 ATP:citrate lyase gene | 75.76 |
HM118779.1 succinoaminoimidazole-carboximide ribonucleotide synthetase family | 74.08 |
HM118753.1 methylcrotonyl-CoA carboxylase beta chain-like gene | 72.01 |
HM118766.1 annexin-like protein gene | 71.61 |
HM118805.1 initiation factor 2B family protein gene | 68.05 |
HM118660.1 zeaxanthin epoxidase gene | 67.67 |
HM118646.1 CASP protein-like gene, partial sequence | 65.98 |
HM118632.1 endoribonuclease dicer protein-like gene, partial sequence | 65.39 |
HM118673.1 Na/H antiporter gene | 65.16 |
HM118591.1 stomatal cytokinesis defective protein gene | 64.52 |
HM118819.1 DNA polymerase delta catalytic subunit gene | 63.05 |
HM118713.1 NAD+ synthase domain protein gene | 61.95 |
HM118619.1 non-phototropic hypocotyl 3-like gene, partial sequence | 61.72 |
HM118686.1 DUF89 family protein gene | 57.14 |
2.4. Heterozygosity and Single-Nucleotide Polymorphisms (SNPs)
2.5. De Novo Assembly of the Enset Genome Sequence
Complete assembly | Subset of assembly submitted to GenBank (AMZH00000000.1) | |
---|---|---|
Number of scaffolds | 123,779 | 14,787 |
N50 scaffold length | 11,149 | 13,657 |
NG50 scaffold length (bp) | 9,954 | n.a. * |
Shortest scaffold (bp) | 200 | 5,000 |
Longest scaffold (bp) | 105,416 | 103,995 |
Sum of scaffold lengths (bp) | 458,655,998 | 172,241,963 |
Mean scaffold length (bp) | 3,705 | 15,952 |
Median scaffold length (bp) | 1,056 | 13,404 |
Number of contigs | 259,028 | 19,109 |
N50 contig length (bp) | 8,724 | |
NG50 contig length (bp) | 2,428 | n.a. * |
Shortest contig (bp) | 201 | 5,000 |
Longest contig (bp) | 56,178 | 56,178 |
Sum of contig lengths (bp) | 390,884,093 | 163,735,150 |
Mean contig length (bp) | 1,509 | 8,568 |
Median contig length (bp) | 555 | 7,448 |
Number of gene models | 42,749 | 23,423 |
Mean length of predicted protein (aa) | 311.64 | 353.84 |
G + C (%) | 38.95 | 39.14 |
GenBank accession number | Scaffold name | Start and end positions | Strand | Rfam ID (and accession number) | Rfam scan E value |
---|---|---|---|---|---|
KB218331.1 | scf_22030_17941 | 4842–4920 | + | Intron_gpII (RF00029) | 2.89e−04 |
KB218832.1 | scf_22030_39767 | 2365–2435 | − | Intron_gpII (RF00029) | 3.47e−08 |
KB218412.1 | scf_22030_21016 | 944–1028 | + | mir-156 (RF00073) | 7.66e−17 |
KB220497.1 | scf_22030_77035 | 4888–4971 | − | mir-156 (RF00073) | 1.34e−17 |
KB220497.1 | scf_22030_77035 | 4888–4971 | + | mir-156 (RF00073) | 4.11e−09 |
KB220618.1 | scf_22030_78211 | 2918–3003 | − | mir-156 (RF00073) | 1.57e−14 |
KB220618.1 | scf_22030_78211 | 2918–3003 | + | mir-156 (RF00073) | 8.68e−09 |
KB220859.1 | scf_22030_80462 | 10702–10791 | + | mir-156 (RF00073) | 1.65e−17 |
KB220859.1 | scf_22030_80462 | 10702–10791 | − | mir-156 (RF00073) | 7.33e−09 |
KB220860.1 | scf_22030_80478 | 14044–14147 | + | mir-156 (RF00073) | 3.70e−17 |
KB220947.1 | scf_22030_81257 | 2331–2413 | + | mir-156 (RF00073) | 2.41e−16 |
KB220073.1 | scf_22030_72447 | 11922–12159 | − | MIR159 (RF00638) | 1.44e−35 |
KB220073.1 | scf_22030_72447 | 11924–12161 | + | MIR159 (RF00638) | 9.81e−22 |
KB220655.1 | scf_22030_78562 | 4140–4330 | − | MIR159 (RF00638) | 1.15e−37 |
KB220655.1 | scf_22030_78562 | 4142–4332 | + | MIR159 (RF00638) | 2.01e−21 |
KB218508.1 | scf_22030_25031 | 13232–13319 | + | mir-160 (RF00247) | 3.76e−23 |
KB218508.1 | scf_22030_25031 | 13231–13319 | − | mir-160 (RF00247) | 1.52e−09 |
KB219059.1 | scf_22030_50116 | 8622–8711 | + | mir-160 (RF00247) | 3.16e−23 |
KB219059.1 | scf_22030_50116 | 8622–8711 | − | mir-160 (RF00247) | 1.35e−11 |
KB218046.1 | scf_22030_5366 | 30669–30758 | − | mir-160 (RF00247) | 7.21e−21 |
KB218046.1 | scf_22030_5366 | 30669–30756 | + | mir-160 (RF00247) | 3.20e−08 |
KB219346.1 | scf_22030_59171 | 24014–24101 | + | mir-160 (RF00247) | 1.18e−20 |
KB219346.1 | scf_22030_59171 | 24014–24101 | − | mir-160 (RF00247) | 6.30e−09 |
KB218895.1 | scf_22030_42834 | 6184–6270 | − | MIR164 (RF00647) | 5.38e−19 |
KB218895.1 | scf_22030_42834 | 6184–6270 | + | MIR164 (RF00647) | 3.11e−12 |
KB219508.1 | scf_22030_63187 | 11271–11378 | + | MIR164 (RF00647) | 1.12e−18 |
KB219508.1 | scf_22030_63187 | 11271–11378 | − | MIR164 (RF00647) | 1.02e−12 |
KB218104.1 | scf_22030_8363 | 10326–10443 | − | MIR164 (RF00647) | 6.46e−23 |
KB218104.1 | scf_22030_8363 | 10326–10443 | + | MIR164 (RF00647) | 6.71e−16 |
KB217991.1 | scf_22030_2485 | 3315–3401 | − | mir-166 (RF00075) | 5.93e−21 |
KB217991.1 | scf_22030_2485 | 3315–3401 | + | mir-166 (RF00075) | 2.53e−10 |
KB218022.1 | scf_22030_4161 | 21528–21639 | + | mir-166 (RF00075) | 3.99e−20 |
KB218022.1 | scf_22030_4161 | 21528–21639 | − | mir-166 (RF00075) | 1.31e−10 |
KB219071.1 | scf_22030_50479 | 2432–2530 | − | mir-166 (RF00075) | 2.04e−22 |
KB219071.1 | scf_22030_50479 | 2432–2530 | + | mir-166 (RF00075) | 1.27e−12 |
KB219643.1 | scf_22030_65797 | 40153–40244 | − | mir-166 (RF00075) | 2.40e−22 |
KB219643.1 | scf_22030_65797 | 40153–40244 | + | mir-166 (RF00075) | 9.30e−12 |
KB220445.1 | scf_22030_76496 | 6198–6315 | − | mir-166 (RF00075) | 2.47e−23 |
KB220445.1 | scf_22030_76496 | 6198–6315 | + | mir-166 (RF00075) | 5.31e−12 |
KB220707.1 | scf_22030_79012 | 6213–6322 | − | mir-166 (RF00075) | 2.17e−24 |
KB220707.1 | scf_22030_79012 | 6213–6322 | + | mir-166 (RF00075) | 8.47e−13 |
KB221155.1 | scf_22030_81490 | 17577–17697 | + | mir-166 (RF00075) | 6.47e−17 |
KB221155.1 | scf_22030_81490 | 17577–17697 | − | mir-166 (RF00075) | 4.00e−08 |
KB218667.1 | scf_22030_31606 | 22038–22152 | + | MIR167_1 (RF00640) | 6.27e−22 |
KB218667.1 | scf_22030_31606 | 22039–22153 | − | MIR167_1 (RF00640) | 4.21e−16 |
KB218973.1 | scf_22030_46697 | 19560–19671 | + | MIR167_1 (RF00640) | 2.76e−17 |
KB218973.1 | scf_22030_46697 | 19561–19672 | − | MIR167_1 (RF00640) | 9.11e−14 |
KB220367.1 | scf_22030_75599 | 1–83 | + | MIR167_1 (RF00640) | 1.83e−11 |
KB220367.1 | scf_22030_75599 | 1–81 | − | MIR167_1 (RF00640) | 5.81e−09 |
KB220896.1 | scf_22030_80878 | 14228–14335 | + | MIR168 (RF00677) | 1.12e−22 |
KB220896.1 | scf_22030_80878 | 14227–14333 | − | MIR168 (RF00677) | 2.28e−14 |
KB218337.1 | scf_22030_18159 | 17587–17690 | − | MIR169_2 (RF00645) | 1.07e−26 |
KB218337.1 | scf_22030_18159 | 13143–13246 | − | MIR169_2 (RF00645) | 2.24e−21 |
KB218337.1 | scf_22030_18159 | 12902–12993 | − | MIR169_2 (RF00645) | 3.40e−21 |
KB218337.1 | scf_22030_18159 | 17589–17692 | + | MIR169_2 (RF00645) | 2.10e−15 |
KB218337.1 | scf_22030_18159 | 12904–12995 | + | MIR169_2 (RF00645) | 2.36e−15 |
KB220127.1 | scf_22030_72989 | 786–899 | − | MIR169_2 (RF00645) | 9.28e−18 |
KB220321.1 | scf_22030_74988 | 935–1052 | + | MIR169_2 (RF00645) | 7.84e−18 |
KB220321.1 | scf_22030_74988 | 933–1050 | − | MIR169_2 (RF00645) | 9.12e−11 |
KB218337.1 | scf_22030_18159 | 17584–17696 | − | MIR169_5 (RF00865) | 3.86e−08 |
KB218337.1 | scf_22030_18159 | 17583–17695 | + | MIR169_5 (RF00865) | 5.88e−08 |
KB220127.1 | scf_22030_72989 | 780–906 | + | MIR169_5 (RF00865) | 1.94e−19 |
KB220127.1 | scf_22030_72989 | 781–907 | − | MIR169_5 (RF00865) | 1.46e−06 |
KB220321.1 | scf_22030_74988 | 928–1058 | − | MIR169_5 (RF00865) | 7.73e−20 |
KB220321.1 | scf_22030_74988 | 927–1057 | + | MIR169_5 (RF00865) | 9.15e−06 |
KB220807.1 | scf_22030_80059 | 3863–3990 | + | MIR169_5 (RF00865) | 4.61e−11 |
KB218810.1 | scf_22030_38865 | 27461–27559 | + | MIR171_1 (RF00643) | 1.79e−16 |
KB218810.1 | scf_22030_38865 | 27459–27557 | − | MIR171_1 (RF00643) | 8.90e−14 |
KB220711.1 | scf_22030_79061 | 2105–2214 | + | MIR171_1 (RF00643) | 2.74e−19 |
KB220711.1 | scf_22030_79061 | 2103–2212 | − | MIR171_1 (RF00643) | 4.15e−13 |
KB219420.1 | scf_22030_61010 | 2619–2748 | − | mir-172 (RF00452) | 2.11e−19 |
KB219420.1 | scf_22030_61010 | 2619–2748 | + | mir-172 (RF00452) | 1.03e−15 |
KB218089.1 | scf_22030_7511 | 28886–28982 | − | mir-287 (RF00788) | 3.04e−04 |
KB218983.1 | scf_22030_47118 | 10649–10756 | − | MIR390 (RF00689) | 1.99e−21 |
KB218983.1 | scf_22030_47118 | 10649–10756 | + | MIR390 (RF00689) | 1.75e−14 |
KB219488.1 | scf_22030_62701 | 16710–16837 | + | MIR390 (RF00689) | 3.68e−23 |
KB219488.1 | scf_22030_62701 | 16710–16837 | − | MIR390 (RF00689) | 8.85e−12 |
KB218810.1 | scf_22030_38865 | 36369–36475 | + | MIR394 (RF00688) | 9.23e−14 |
KB219360.1 | scf_22030_59359 | 18185–18287 | − | mir-395 (RF00451) | 5.48e−14 |
KB219360.1 | scf_22030_59359 | 18185–18287 | + | mir-395 (RF00451) | 6.44e−11 |
KB219922.1 | scf_22030_70572 | 3837–3927 | + | MIR396 (RF00648) | 1.03e−20 |
KB219922.1 | scf_22030_70572 | 1415–1528 | + | MIR396 (RF00648) | 1.35e−17 |
KB219922.1 | scf_22030_70572 | 3836–3926 | − | MIR396 (RF00648) | 2.37e−15 |
KB219922.1 | scf_22030_70572 | 1414–1527 | − | MIR396 (RF00648) | 2.41e−13 |
KB219961.1 | scf_22030_71131 | 9924–10008 | − | MIR396 (RF00648) | 1.30e−15 |
KB219961.1 | scf_22030_71131 | 9925–10009 | + | MIR396 (RF00648) | 3.38e−12 |
KB220512.1 | scf_22030_77233 | 7423–7504 | + | MIR396 (RF00648) | 1.50e−20 |
KB220512.1 | scf_22030_77233 | 7422–7503 | − | MIR396 (RF00648) | 6.96e−17 |
KB221106.1 | scf_22030_81441 | 12748–12911 | + | MIR408 (RF00690) | 2.85e−09 |
KB219476.1 | scf_22030_62392 | 5876–5979 | + | MIR535 (RF00714) | 4.25e−19 |
KB219838.1 | scf_22030_69379 | 8499–8600 | + | MIR535 (RF00714) | 1.44e−23 |
KB219838.1 | scf_22030_69379 | 8497–8598 | − | MIR535 (RF00714) | 1.83e−17 |
KB220694.1 | scf_22030_78899 | 5550–5652 | − | MIR535 (RF00714) | 3.74e−18 |
KB220154.1 | scf_22030_73255 | 538–819 | + | Plant_SRP (RF01855) | 1.43e−24 |
KB220490.1 | scf_22030_76954 | 17439–17650 | + | Plant_U3 (RF01847) | 2.04e−36 |
KB219898.1 | scf_22030_70290 | 25811–25954 | + | snoF1_F2 (RF00482) | 1.49e−19 |
KB218033.1 | scf_22030_4706 | 9374–9436 | − | snoJ33 (RF00315) | 4.02e−07 |
KB219471.1 | scf_22030_62284 | 16444–16526 | − | snoJ33 (RF00315) | 5.63e−09 |
KB219426.1 | scf_22030_61169 | 69226–69316 | − | snoR11 (RF00349) | 1.31e−17 |
KB219685.1 | scf_22030_66563 | 26216–26343 | − | snoR111 (RF01228) | 1.27e−14 |
KB220857.1 | scf_22030_80459 | 12071–12174 | − | snoR113 (RF01420) | 4.15e−20 |
KB218307.1 | scf_22030_16452 | 15390–15476 | − | snoR118 (RF01424) | 1.15e−15 |
KB218657.1 | scf_22030_31300 | 24736–24824 | + | snoR14 (RF01280) | 8.40e−14 |
KB218015.1 | scf_22030_3847 | 11974–12060 | − | snoR16 (RF00296) | 1.39e−18 |
KB218015.1 | scf_22030_3847 | 12491–12577 | − | snoR16 (RF00296) | 1.11e−17 |
KB220504.1 | scf_22030_77091 | 17217–17303 | − | snoR16 (RF00296) | 4.81e−19 |
KB220504.1 | scf_22030_77091 | 16789–16875 | − | snoR16 (RF00296) | 9.43e−19 |
KB220539.1 | scf_22030_77514 | 2858–2933 | + | snoR160 (RF00203) | 1.40e−15 |
KB219378.1 | scf_22030_59710 | 15789–15866 | + | snoR28 (RF00355) | 4.91e−22 |
KB218307.1 | scf_22030_16452 | 15543–15617 | − | snoR66 (RF00202) | 2.49e−16 |
KB219947.1 | scf_22030_70993 | 16528–16659 | + | snoR80 (RF01224) | 2.92e−20 |
KB220353.1 | scf_22030_75402 | 20181–20308 | − | snoR86 (RF00303) | 1.06e−24 |
KB219338.1 | scf_22030_58993 | 16769–16872 | − | snoR97 (RF01215) | 1.30e−18 |
KB219443.1 | scf_22030_61493 | 32748–32838 | − | SNORD15 (RF00067) | 2.00e−09 |
KB219661.1 | scf_22030_66054 | 15711–15796 | − | SNORD25 (RF00054) | 5.96e−22 |
KB219661.1 | scf_22030_66054 | 15482–15566 | − | SNORD25 (RF00054) | 5.50e−21 |
KB219661.1 | scf_22030_66054 | 14874–14958 | − | SNORD25 (RF00054) | 2.14e−20 |
KB219661.1 | scf_22030_66054 | 15075–15159 | − | SNORD25 (RF00054) | 9.04e−17 |
KB219898.1 | scf_22030_70290 | 25498–25585 | + | SNORD33 (RF00133) | 5.82e−16 |
KB218015.1 | scf_22030_3847 | 12999–13097 | − | SNORD43 (RF00221) | 7.53e−11 |
KB220504.1 | scf_22030_77091 | 17701–17798 | − | SNORD43 (RF00221) | 6.80e−12 |
KB220504.1 | scf_22030_77091 | 17915–18012 | − | SNORD43 (RF00221) | 9.20e−11 |
KB219898.1 | scf_22030_70290 | 25347–25436 | + | snoU31b (RF01285) | 4.66e−17 |
KB220870.1 | scf_22030_80641 | 5915–5999 | + | snoU36a (RF01302) | 5.82e−21 |
KB219426.1 | scf_22030_61169 | 68869–68977 | − | snoZ152 (RF00350) | 2.58e−16 |
KB219947.1 | scf_22030_70993 | 16107–16211 | + | snoZ157 (RF00333) | 1.58e−18 |
KB219898.1 | scf_22030_70290 | 25690–25775 | + | snoZ196 (RF00134) | 2.75e−14 |
KB220870.1 | scf_22030_80641 | 6066–6159 | + | snoZ223 (RF00135) | 1.98e−19 |
KB218327.1 | scf_22030_17743 | 7560–7631 | + | snoZ266 (RF00332) | 8.06e−09 |
KB219338.1 | scf_22030_58993 | 17401–17516 | − | snoZ278 (RF00201) | 1.76e−16 |
KB219338.1 | scf_22030_58993 | 17113–17226 | − | snoZ278 (RF00201) | 9.06e−13 |
KB219250.1 | scf_22030_57131 | 12714–12875 | − | U1 (RF00003) | 9.36e−39 |
KB219770.1 | scf_22030_68191 | 6294–6455 | + | U1 (RF00003) | 3.43e−41 |
KB220529.1 | scf_22030_77416 | 6949–7110 | + | U1 (RF00003) | 5.34e−36 |
KB220746.1 | scf_22030_79451 | 5096–5256 | + | U1 (RF00003) | 2.21e−27 |
KB218084.1 | scf_22030_7289 | 6288–6438 | − | U12 (RF00007) | 1.92e−27 |
KB219620.1 | scf_22030_65416 | 19689–19820 | − | U2 (RF00004) | 2.10e−17 |
KB220509.1 | scf_22030_77120 | 23424–23564 | − | U4 (RF00015) | 1.19e−08 |
KB218936.1 | scf_22030_44766 | 5102–5143 | + | U5 (RF00020) | 2.13e−09 |
KB218979.1 | scf_22030_47021 | 19677–19800 | + | U5 (RF00020) | 4.89e−10 |
KB218084.1 | scf_22030_7289 | 12644–12761 | − | U5 (RF00020) | 4.29e−18 |
KB220567.1 | scf_22030_77768 | 17710–17830 | + | U5 (RF00020) | 3.52e−11 |
KB217934.1 | scf_22030_16 | 16123–16225 | − | U6 (RF00026) | 1.54e−10 |
KB218759.1 | scf_22030_36539 | 4240–4337 | + | U6 (RF00026) | 2.72e−11 |
Ensete Ventricosum | Musa Acuminata | |||||
---|---|---|---|---|---|---|
Class | Count | Bp | % | Count | Bp | % |
Ty1/Copia | 17,446 | 6,064,590 | 1.36 | 5,053 | 2,476,355 | 0.75 |
Copia/Angela | 102,430 | 39,177,431 | 8.78 | 15,025 | 10,764,293 | 3.24 |
Copia/SIRE1Maximus | 102,464 | 27,386,896 | 6.14 | 37,446 | 26,594,658 | 8.01 |
Copia/Tnt1 | 10,144 | 4,915,981 | 1.10 | 2,869 | 3,300,009 | 0.99 |
Ty3/Gypsy | 24,694 | 11,556,851 | 2.59 | 5,047 | 4,552,048 | 1.37 |
Gypsy/CRM | 3,740 | 2,246,235 | 0.50 | 542 | 534,904 | 0.16 |
Gypsy/Galadriel | 12,452 | 6,626,137 | 1.49 | 1,874 | 2,210,611 | 0.67 |
Gypsy/Galadriel-lineage | 16 | 734 | 0.00 | 5 | 237 | 0.00 |
Gypsy/Reina | 65,858 | 23,579,479 | 5.29 | 6,170 | 4,243,784 | 1.28 |
Gypsy/Tekay | 14,043 | 5,490,598 | 1.23 | 4,351 | 3,031,464 | 0.91 |
LINE | 5,833 | 1,346,085 | 0.30 | 1,745 | 552,483 | 0.17 |
RE | 31,224 | 4,967,551 | 1.11 | 9,005 | 2,824,122 | 0.85 |
Satellite/Type1 | 178 | 69,579 | 0.02 | 20 | 30,828 | 0.01 |
Satellite/Type2 | 9,516 | 3,563,409 | 0.80 | 18 | 29,902 | 0.01 |
clDNA | 6,590 | 1,126,726 | 0.25 | 2,652 | 430,368 | 0.13 |
DNA/hAT | 2,910 | 783,511 | 0.18 | 1,916 | 637,668 | 0.19 |
Total | 409,538 | 138,901,793 | 31.14 | 93,738 | 62,213,734 | 19.74 |
2.6. Enset—Specific Genes Include Reverse Transcriptases, Viral Sequences, and a Putative Disease-Resistance Gene
3. Experimental Section
4. Conclusions
Acknowledgments
Conflicts of Interest
References and Notes
- Brandt, S.A.; Spring, A.; Hiebsch, C.; McCabe, J.T.; Tabogie, E.; Diro, M.; Wolde-Michael, G.; Yntiso, G.; Shigeta, M.; Tesfaye, S. The “Tree Against Hunger” Enset-Based Agricultural Systems in Ethiopia; American Association for the Advancement of Science: Washington, DC, USA, 1997; pp. 1–58. [Google Scholar]
- Pijls, L.T.J.; Timmer, A.A.M.; Wolde-Gebriel, Z.; West, C.E. Cultivation, preparation and consumption of ensete (Ensete ventricosum) in Ethiopia. J. Sci. Food Agric. 1995, 67, 1–11. [Google Scholar]
- Asfaw, B.T. Studies on Landraces Diversity in vivo and in vitro Regeneration of Enset: (Enset ventricosum Welw.); Köster: Milan, Lombardy, Italy, 2002; p. 127. [Google Scholar]
- Biruma, M.; Pillay, M.; Tripathi, L.; Blomme, G.; Abele, S.; Mwangi, M.; Bandyopadhyay, R.; Muchunguzi, P.; Kassim, S.; Nyine, M.; et al. Banana Xanthomonas wilt: A review of the disease, management strategies and future research directions. Afr. J. Biotechnol. 2007, 6, 953–962. [Google Scholar]
- Cheesman, E. Classification of the bananas: The genus ensete horan. Kew Bull. 1947, 2, 97–106. [Google Scholar] [CrossRef]
- D’Hont, A.; Denoeud, F.; Aury, J.-M.J.; Baurens, F.-C.F.; D’Hont, A.; Carreel, F.; Garsmeur, O.; Noel, B.; Bocs, S.; Droc, G.; et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 2012, 488, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Ethiopian Institute of Agricultural Research (EIAR). Enset Research and Development Experiences in Ethiopia. In Proceedings of Enset National Workshop, Wolkite, Ethiopia, 19–20 August 2010; Yesuf, M., Hunduma, T., Eds.; Ethiopian Institute of Agricultural Research (EIAR): Addis Ababa, Ethiopia, 2012. [Google Scholar]
- Tsegaye, A. On Indigenous Production, Genetic Diversity and Crop Ecology of Enset (Ensete ventricosum (Welw.) Cheesman). Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 22 April 2002; p. 198. [Google Scholar]
- Negash, A.; Niehof, A. The significance of enset culture and biodiversity for rural household food and livelihood security in southwestern Ethiopia. Agric. Human Values 2004, 21, 61–71. [Google Scholar] [CrossRef]
- Birmeta, G.; Nybom, H.; Bekele, E. RAPD analysis of genetic diversity among clones of the Ethiopian crop plant Ensete ventricosum. Euphytica 2002, 124, 315–325. [Google Scholar] [CrossRef]
- Birmeta, G.; Nybom, H.; Bekele, E. Distinction between wild and cultivated enset (Ensete ventricosum) gene pools in Ethiopia using RAPD markers. Hereditas 2004, 140, 139–148. [Google Scholar] [CrossRef]
- Davey, M.W.; Gudimella, R.; Harikrishna, J.A.; Sin, L.W.; Khalid, N.; Keulemans, J. A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genomics 2013, 14. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/ (accessed on 22 December 2013).
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Silby, M.W.; Cerdeño-Tárraga, A.M.; Vernikos, G.S.; Giddens, S.R.; Jackson, R.W.; Preston, G.M.; Zhang, X.-X.; Moon, C.D.; Gehrig, S.M.; Godfrey, S.A.C.; et al. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 2009, 10, R51. [Google Scholar] [CrossRef]
- Copeland, A.; Lucas, S.; Lapidus, A.; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Pitluck, S.; Kiss, H.; et al.; US DOE Joint Genome Institute, Walnut Creek, CA, USA Unpublished work. 2008.
- Brzuszkiewicz, E.; Weiner, J.; Wollherr, A.; Thürmer, A.; Hüpeden, J.; Lomholt, H.B.; Kilian, M.; Gottschalk, G.; Daniel, R.; Mollenkopf, H.-J.; Meyer, T.F.; Brüggemann, H. Comparative genomics and transcriptomics of Propionibacterium acnes. PLoS One 2011, 6, e21581. [Google Scholar] [CrossRef]
- Chung, W.-C.; Chen, L.-L.; Lo, W.-S.; Kuo, P.-A.; Tu, J.; Kuo, C.-H. Complete genome sequence of Serratia marcescens WW4. Genome Announc. 2013, 1, e0012613. [Google Scholar]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef]
- Mammadov, J.; Aggarwal, R.; Buyyarapu, R.; Kumpatla, S. SNP markers and their impact on plant breeding. Int. J. Plant Genomics 2012, 2012, 728398. [Google Scholar]
- Studholme, D. Ensete ventricosum Genome Sequence. Available online: http://figshare.com/articles/Ensete_ventricosum_genome_sequence/894306 (accessed on 6 January 2014).
- Kurtz, S.; Phillippy, A.; Delcher, A.L.; Smoot, M.; Shumway, M.; Antonescu, C.; Salzberg, S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004, 5, R12. [Google Scholar] [CrossRef]
- Solovyev, V. Statistical Approaches in Eukaryotic Gene Prediction. In Handbook of Statistical Genetics; John Wiley & Sons, Ltd.: Chichester, West Sussex, UK, 2004; pp. 97–159. [Google Scholar]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J.; et al. Pfam: The protein families database. Nucleic Acids Res. 2013, 42, D222–D230. [Google Scholar]
- Gardner, P.P.; Daub, J.; Tate, J.; Moore, B.L.; Osuch, I.H.; Griffiths-Jones, S.; Finn, R.D.; Nawrocki, E.P.; Kolbe, D.L.; Eddy, S.R.; et al. Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids Res. 2011, 39, D141–D145. [Google Scholar] [CrossRef]
- Tempel, S.; Repeatmasker, U. Using and understanding RepeatMasker. Methods Mol. Biol. 2012, 859, 29–51. [Google Scholar] [CrossRef]
- Earl, D.; Bradnam, K.; St John, J.; Darling, A.; Lin, D.; Fass, J.; Yu, H.O.K.; Buffalo, V.; Zerbino, D.R.; Diekhans, M.; et al. Assemblathon 1: A competitive assessment of de novo short read assembly methods. Genome Res. 2011, 21, 2224–2241. [Google Scholar] [CrossRef]
- Chabannes, M.; Baurens, F.-C.; Duroy, P.-O.; Bocs, S.; Vernerey, M.-S.; Rodier-Goud, M.; Barbe, V.; Gayral, P.; Iskra-Caruana, M.-L. Three infectious viral species lying in wait in the banana genome. J. Virol. 2013, 87, 8624–8637. [Google Scholar] [CrossRef]
- Muller, E.; Dupuy, V.; Blondin, L.; Bauffe, F.; Daugrois, J.-H.; Nathalie, L.; Iskra-Caruana, M.-L. High molecular variability of sugarcane bacilliform viruses in Guadeloupe implying the existence of at least three new species. Virus Res. 2011, 160, 414–419. [Google Scholar] [CrossRef]
- Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-Performance genomics data visualization and exploration. Briefings Bioinforma. 2013, 14, 178–192. [Google Scholar] [CrossRef]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012, 1. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar]
- Carver, T.J.; Rutherford, K.M.; Berriman, M.; Rajandream, M.-A.; Barrell, B.G.; Parkhill, J. ACT: The Artemis Comparison Tool. Bioinformatics 2005, 21, 3422–3423. [Google Scholar] [CrossRef]
- Tarailo-Graovac, M.; Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 2009, 4. [Google Scholar] [CrossRef]
- RepeatMasker. Available online: http://www.repeatmasker.org (accessed on 20 December 2013).
- Hribová, E.; Neumann, P.; Matsumoto, T.; Roux, N.; Macas, J.; Dolezel, J. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol. 2010, 10, 204. [Google Scholar] [CrossRef]
- Institute of Experimental Botany. Available online: http://wwwueb.asuch.cas.cz/Olomouc1/banana-sequencing-data/BananaREP.tar.gz (accessed on 20 December 2013).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Harrison, J.; Moore, K.A.; Paszkiewicz, K.; Jones, T.; Grant, M.R.; Ambacheew, D.; Muzemil, S.; Studholme, D.J. A Draft Genome Sequence for Ensete ventricosum, the Drought-Tolerant “Tree Against Hunger”. Agronomy 2014, 4, 13-33. https://doi.org/10.3390/agronomy4010013
Harrison J, Moore KA, Paszkiewicz K, Jones T, Grant MR, Ambacheew D, Muzemil S, Studholme DJ. A Draft Genome Sequence for Ensete ventricosum, the Drought-Tolerant “Tree Against Hunger”. Agronomy. 2014; 4(1):13-33. https://doi.org/10.3390/agronomy4010013
Chicago/Turabian StyleHarrison, James, Karen A. Moore, Konrad Paszkiewicz, Thomas Jones, Murray R. Grant, Daniel Ambacheew, Sadik Muzemil, and David J. Studholme. 2014. "A Draft Genome Sequence for Ensete ventricosum, the Drought-Tolerant “Tree Against Hunger”" Agronomy 4, no. 1: 13-33. https://doi.org/10.3390/agronomy4010013
APA StyleHarrison, J., Moore, K. A., Paszkiewicz, K., Jones, T., Grant, M. R., Ambacheew, D., Muzemil, S., & Studholme, D. J. (2014). A Draft Genome Sequence for Ensete ventricosum, the Drought-Tolerant “Tree Against Hunger”. Agronomy, 4(1), 13-33. https://doi.org/10.3390/agronomy4010013