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Abstract: The aim of this study was to generate and evaluate the efficiency of improved field
experiments while simultaneously accounting for spatial correlations and different levels of
genetic relatedness using a mixed models framework for orthogonal and non-orthogonal designs.
Optimality criteria and a search algorithm were implemented to generate randomized complete
block (RCB), incomplete block (IB), augmented block (AB) and unequally replicated (UR) designs.
Several conditions were evaluated including size of the experiment, levels of heritability,
and optimality criteria. For RCB designs with half-sib or full-sib families, the optimization procedure
yielded important improvements under the presence of mild to strong spatial correlation levels and
relatively low heritability values. Also, for these designs, improvements in terms of overall design
efficiency (ODE%) reached values of up to 8.7%, but these gains varied depending on the evaluated
conditions. In general, for all evaluated designs, higher ODE% values were achieved from genetically
unrelated individuals compared to experiments with half-sib and full-sib families. As expected,
accuracy of prediction of genetic values improved as levels of heritability and spatial correlations
increased. This study has demonstrated that important improvements in design efficiency and
prediction accuracies can be achieved by optimizing how the levels of a treatment are assigned to the
experimental units.

Keywords: A-optimality; D-optimality; autoregressive variance structure; additive values; heritability

1. Introduction

Designing an experiment is an essential stage in any research settings. Important planning
decisions are taken in order to choose the most appropriate layout out of an array of design alternatives.
Generating experimental designs relies on three basic principles: randomization, replication and
blocking [1,2]. Replication enables estimation of experimental error variance and, adequate number
of replicates provides with precise inferences. Randomization ensures that all experimental units are
equally likely to receive any treatment, thus it minimizes systematic errors or bias induced by the
experimenter. Finally, blocking controls for different sources of natural variation among experimental
units, and when applied appropriately, controls for field variations and helps to reduce background
noise. The generation of an optimal or near-optimal experimental design requires making best use of
available information and resources with a goal of estimating statistical parameters of interest with the
best accuracy and precision possible.
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Plant breeders often conduct and analyze large field trials with the aim of selecting the best
genotypes for future breeding [3,4], which is done by testing a large number of treatments (i.e.,
genotypes) in single or multiple locations. The basis for analysis of breeding trials relies on
considering the genetic relationships between the genotypes. Often varied levels of relatedness,
such as parent-offspring, half-sibs (where genotypes share a single parent) and full-sibs (where they
share both parents) exist. Some of the common field experimental designs used in breeding include
randomized complete block (RCB), incomplete block (IB) and row-column (RC) designs. RCB designs
are, at present, the most common experimental layout used, due to its simplicity in terms of design and
analysis. However, IB and RC designs are more adequate, particularly for large number of genotypes,
as they control better for environmental spatial heterogeneity [5]. Nevertheless, these experimental
layouts have restrictions and are often more complex to analyze [2].

Experimental treatments may not necessarily occur always with equal replications and, in addition,
may not be equally represented in each block, as some treatments are available in larger quantities
than others [6]. Thus, scarce treatments will be missing in some blocks while others will be represented
in all blocks with one or more replications per block, resulting in uneqaully replicated (UR) designs.
This occurs, often by chance but sometimes by choice, due to differential availability of seeds or plants,
rates in fecundity, greenhouse survival, loss of experimental units, etc.

Several UR designs have been proposed [7–11]. An extreme case of these is the augmented block
(AB) designs that are used mostly in early stages of breeding programs for evaluation of a large number
of test treatments that are replicated only once, planted with control treatments that are replicated
several times [7–11]. Another case, is the partially replicated (p-rep) designs where a portion (p %)
of the test treatments are replicated at least twice, while the remaining treatments are replicated only
once [10]. All analyses of UR designs use the replicated treatments to estimate background variability
and make spatial adjustments for field heterogeneity, thus often requiring fitting an spatial model.

Field experiments are often characterized by varied levels of environmental heterogeneity.
The standard traditional designs and their analyses often assume that residuals are uncorrelated.
However, when experimental units are located in close proximities, and thus sharing microsite
variability, their responses are likely to be more similar than those farther apart [12,13] inducing
spatial correlation. This requires the implementation of spatial analysis by specifying and fitting an
appropriate error correlation structure. Several error structures are available [14], a popular choice for
breeding trials is the 2-dimensional separable autoregressive of first order [4,5,10,13,15].

Another type of dependency between experimental units, that is critical for breeding programs,
is the genetic relationships that arises due to relatives sharing some common alleles. This correlation is
specified by defining a matrix of correlations between genotypes to be incorporated into the statistical
model. Genetic relationships can be calculated using genetic theory [16] based on pedigree information,
or molecular data such as SNPs [17] to form what is known as the numerator relationship matrix [18].

Linear mixed models (LMM) allow for the incorporation of both spatial and genetic correlation
structures, yielding to a more efficient use of the available information. LMM provide with estimates
of variance components, which are used to calculate heritability, and to estimate best linear unbiased
predictions of genetic effects (e.g., breeding values), which are used later to select outstanding
genotypes. Hence, improvements in the design or analysis of breeding trials will translate into greater
genetic gains as the best individuals are identified easier. For example, some studies, using spatial
mixed models, have reported a positive impact on selection decisions and increased accuracy of genetic
value predictions [19].

The generation of improved experimental layouts may require optimization routines, a process
that often is computationally intensive. Several computer procedures [4,10,15] and software (such as
CycDesigN, John and Williams [20]) have been developed for the generation of experimental
designs. However, most of these methods use approximations of optimality criteria [10,15], or they
only incorporate spatial correlations [20] or genetic correlations [21] into the optimization routine.
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In addition, none of the available routines to generate complex designs are flexible enough to
incorporate both spatial and genetic correlations.

1.1. Optimality Criteria

Statistically, a design is considered to be optimal if it maximizes the amount of information
extracted from a fixed number of experimental units. Here, an optimal criterion is required in
the process of generating an optimal or near optimal experimental design, the choice of which
to use depends on the objective of the experiment [22]. Most of these optimize a function of the
variance-covariance matrix of treatment effects. The information matrix is used because standard
errors of the mean (SEM) are calculated using the variance of treatment effects while standard error of
differences (SED) are obtained from functions of variances and covariances. Information based A- and
D-optimality criteria are perhaps the most frequently used [10,15,22–26].

A-optimality was first introduced by Chernoff [27] using the Fisher’s information
variance-covariance matrix obtained under the framework of a fixed effects model. The objective
function for A-optimality is:

Aopt = argmin{trace[M(Ω)]} (1)

where M(Ω) is the inverse of an information matrix (or variance-covariance matrix) of the treatment
effects of a design Ω calculated from a given statistical model. More details are presented in Section 2.

A-optimality criterion seeks to minimize the sum of the diagonal elements (i.e., trace) of
the variance-covariance matrix of treatment effects. For a treatment factor that is assumed fixed,
minimizing the trace implies minimizing the average variance of the best linear unbiased estimators
(BLUE) of treatment effects. For random treatment factor, this implies minimizing the average variance
of the best linear unbiased predictors (BLUP) of treatment effects. A-optimality criterion is not scale
invariant on the response variable; however, this does not affect blocked designs since treatments are
on the same scale [22].

D-optimality was first introduced by Wald [28] with other researchers doing extensive work [29–32].
A design is D-optimal if it minimizes the determinant of M(Ω), expressed as:

Dopt = argmin{|M(Ω)|} for |M(Ω)| 6= 0. (2)

Minimizing the determinant of an inverse of an information matrix is equivalent to minimizing
the generalized variance of the treatment effects [22]. Hence, this criterion chooses an optimal design
for which the volume of the multivariate joint confidence ellipsoid is minimized [23]. A desirable
property of this criterion is that it uses both the diagonal and off-diagonal values in the information
matrix, it is scale invariant on the response variable and often computationally efficient [22].

1.2. Study Objectives

Designing an experiment is an essential stage in any research settings, which determines the
precision of the final results of the study. Although, there is a need to address generation of optimal
experimental designs, focus has always been on the statistical analyses side with limited progress done
on developing algorithms to generate optimal or near-optimal designs.

The main objective of this study is to develop statistical routines and evaluate computational
and algorithmic procedures to generate optimal or near optimal field experimental designs. This is
done by using a linear mixed model framework that considers simultaneously genetic and spatial
dependencies between experimental units, as those found in typical plant breeding trials. A secondary
objective is to evaluate and assess prediction accuracies of genetic effects and the estimation of
heritabilities for improved and unimproved experimental designs. Statistical models were formulated
for RCB, IB, AB and UR designs to evaluate a proposed pairwise swap algorithm on the generation
of improved experimental designs for both A- and D-optimality criteria. These were evaluated
under field conditions with varying levels of heritability, genetic relatedness, and spatial correlations.
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Genetic relationships were incorporated with a numerator relationship matrix calculated from pedigree
information, and spatial correlations were modeled using a 2-dimensional separable autoregressive
first order variance structure (AR1).

2. Materials and Methods

2.1. Statistical Model for RCB Designs

For RCB designs, the LMM considered in this study assumes blocks as fixed effects and treatments
(genotypes) as random effects. The latter are assumed random as they are a sample from a much larger
population. This model is expressed as

y = Xβ + Zg + e (3)

where y is a vector of observations; β is a vector of fixed effects (blocks), g is a vector of genetic random
effects, and e is a vector of residual errors. Note here that the overall mean is abserved by the block
effects. X and Z are full column rank incidence matrices for the block and treatment effects, respectively.
The assumptions for the random effects are:[

g
e

]
∼ MVN

([
0
0

]
,

[
G 0
0 R

])
(4)

with V = var(y) = ZGZ
′
+ R, where G and R are variance-covariance matrices for the genetic

effects and residual errors, respectively. If treatment effects are assumed to be genetically unrelated
then G = σ2

gI, where σ2
g is the additive genetic variance and I is an identity matrix. For related

individuals, G = σ2
gA, where A corresponds to the additive genetic numerator relationship matrix

among individuals, derived from pedigree information [18]. If residual errors are assumed to be
independent and identically distributed (iid) then R = σ2

e I, where σ2
e is the residual variance. For the

case when residual errors are assumed to be correlated, a 2-dimensional separable autoregressive
of first order spatial error structure to model spatial variability along the rows and columns of the
experimental layouts was used [33]. Here, R = σ2

e Σx(ρx)⊗Σy(ρy) with Σx(ρx) and Σy(ρy) the matrices
with autocorrelation parameters ρx and ρy for rows and columns, respectively, and ⊗ is the Kronecker

product. These are formed with Var(eij) = σ2
e and Cov(eij, ei′ j′) = σ2

e ρ
|dx|
x ρ

|dy|
y , where |dx| = |xi − xi′ |

and |dy| = |yj− yj′ | are the row and column absolute distances, respectively. Note that this model does
not consider a nugget effect, but this can be easily incorporated. For the above model, narrow-sense
heritability, h2, is calculated as h2 = σ2

g /(σ2
g + σ2

e ). For simplicity, but without loss of generality, in later
simulations σ2

e = 1− σ2
g with h2 = σ2

g .
Variance components were estimated using Restricted Maximum Likelihood (REML) assuming

that both g and e have multivariate normal distributions [34]. Estimation of BLUE and BLUP are done
using mixed model equations [35] as:[

X
′
R̂−1X X

′
R̂−1Z

Z
′
R̂−1X Z

′
R̂−1Z + Ĝ−1

] [
β

g

]
=

[
X
′
R̂−1y

Z
′
R̂−1y

]
(5)

[
β̂

ĝ

]
=

[
X
′
R̂−1X X

′
R̂−1Z

Z
′
R̂−1X Z

′
R̂−1Z + Ĝ−1

]− [
X
′
R̂−1y

Z
′
R̂−1y

]
=

[
C11 C12

C21 C22

]− [
X
′
R̂−1y

Z
′
R̂−1y

]
(6)

=

[
C11 C12

C21 C22

] [
X
′
R̂−1y

Z
′
R̂−1y

]
=

[
(X
′
V̂−1X)−1X

′
V̂−1y

ĜZ
′
V−1(y− Xβ̂)

]
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The computation of the variance-covariance matrix of treatment effects, M(Ω), can be simplified
by the following expression from [24], which is later used to apply the A- and D-optimality criteria.

M(Ω) = C22 = Var(ĝ− g) = (Z
′
R̂−1Z + Ĝ−1 − Z

′
R̂−1X(X

′
R̂−1X)−1X

′
R̂−1Z)−1 (7)

= (Z
′
R̂−1Z + Ĝ−1 − Z

′
KxZ)−1

where Kx = R̂−1X(X
′
R̂−1X)−1X

′
R̂−1.

2.2. Statistical Model for Complex Designs

The complex field layouts considered in this study included IB, AB and UR designs, where both
blocks and treatments are considered random effects, and an overall mean was included as the only
fixed effect. This LMM is expressed as:

y = 1µ + Zbb + Zgg + e (8)

= 1µ +
[
Zb Zg

] [b
g

]
+ e

= 1µ + Zγ + e

where Z =
[
Zb Zg

]
, γ =

[
b
g

]
, and G =

[
Db 0
0 Gg

]
.

Here, y is a vector of phenotypic observations; µ is the overall mean; b is a vector of block
random effects, such that b ∼ MVN(0, Db); g is a vector of genetic random effects, such that
g ∼ MVN(0, Gg); and e is a vector of residual errors, such that e ∼ MVN(0, R). Also, 1 is a vector
ones. Zb and Zg are incidence matrices for block and treatment effects, respectively. Db, Gg and R are
variance-covariance matrices for blocks, treatments and residual errors, respectively. Block effects are
assumed iid, hence Db = σ2

b Ib, and genetic effects are assumed Gg = σ2
gIg or Gg = σ2

gA, for genetically
unrelated or related individuals, respectively. Similarly to the RCB model, the residuals errors have
R = σ2

e I or R = σ2
e Σx(ρx)⊗ Σy(ρy), for independent or spatially correlated assumptions, respectively.

All other variance components and matrices were defined previously.
Under the above model, the variance-covariance matrix of treatment effects, M(Ω), is obtained

by using Equation (7), and expanding Z and G based on Equation (8) to obtain:

M(Ω) =

{
[Zb Zg]

′
R̂−1

[Zb Zg] +

[
D̂−1

b 0

0 Ĝ−1
g

]
− [Zb Zg]

′
Kx[Zb Zg]

}−1

(9)

where Kx = R̂−11(1
′
R̂−11)−11

′
R̂−1. This matrix M(Ω) can be expressed as:

M(Ω) =

[
Σ̂b(Ω) Σ̂bg(Ω)′

Σ̂bg(Ω) Σ̂g(Ω)

]
(10)

where Σg(Ω) is the relevant portion that represents the variance-covariance matrix of treatment effects,
to be used to perform the A- and D-optimality criteria in later stages.

2.3. Pairwise Swap Algorithm

The procedure to improve an experimental design layout was based on a pairwise swap (exchange)
search algorithm. In brief, from an initial available layout, random pairs of treatments are swapped
and evaluated using either an A- or D-optimality criterion, if a better layout is found then this is kept
and a new swap is evaluated until a stopping criteria is reached.
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The steps for this swap procedure in more detail follows: (i) randomly generate m experimental
layouts Ωi, where i = 1, 2, 3, ..., m; (ii) for each layout, calculate M(Ωi) and obtain a criterion value τi
(that is, trace in case of A-optimality or determinant in case of D-optimality); (iii) select s experimental
layouts with the smallest τi values; (iv) for each layout randomly interchange a pair of treatments
within a block, between blocks and/or between a list of treatments to produce a new layout Ωj;
(v) recalculate the new criterion value τj; (vi) if τi > τj, then accept τj and use Ωj as the new layout,
otherwise reject Ωj; (vii) repeat steps (iv) to (vi) for a total of p iterations; (viii) select the best of the s
imporved layouts.

For the improvement of the RCB designs the pair of treatments to be selected for swapping are
selected from the same block in order to maintain the balanced nature of the experimental design.
In contrast, for IB designs, given that in an incomplete block not all treatments are represented,
then swapping pairs of treatments from within a block or between a block is allowed. In the case of
AB designs, control treatments are allowed to be swaped only with a block but test treatments have no
restrictions. Finally, general UR designs are generated from a list that identifies each treatment with its
replication. These designs have no restrictions on the swapping of treatments due to its unbalanced
nature. A complex case of UR can also be considered, where a list of treatments with constraints of
allowed replications (i.e., minimum and maximum) is provided. Here, first a treatment is selected to
determine if should be replaced by another random treatment according to its replication constraints,
then, a second treatment was selected and checked for constraitns, and then this pair was allowed to
swap freely.

2.4. Evaluation of the Swap Algorithm to Generate Designs

Performance evaluation of the above proposed swap algorithm was first conducted for RCB
designs with specific number of treatments and blocks (see below), and a combination of heritability
values (h2 = 0.1, 0.3, and 0.6), spatial correlation levels (ρ = ρx = ρy = 0, 0.1, 0.3, 0.6 and 0.9),
and genetic relationship structures (unrelated individuals, half-sib and full-sib families).

The scenarios Ω(30)
A and Ω(30)

D identify an RCB design with t = 30 genotypes generated using
A- and D-optimality criteria, respectively. In these scenarios, there are b = 6 blocks, rb = 5 rows per
block, cb = 6 columns per block. The independent (or unrelated) genetic structure considers the t
genotypes to be unrelated. For half-sib families, pedigree consisted of a structure based on five parents
with six offsprings each. Full-sib family pedigree consisted in a half-diallel with five parents for a
total of 10 families (or crosses) with three offsprings each. Similarly, Ω(196)

A scenario identifies an
RCB design with t = 196, b = 4, rb = 14 and cb = 14 generated based only on A-optimality criterion.
Here, pedigree for half-sib families consisted of 32 parents, with approximately six offsprings each.
For full-sib families pedigree consisted of a total of 30 parents in 68 families with approximately three
offsprings each. Parents were arranged in groups of five to form half-diallel with 10 crosses each.
Eight additional crosses between diallels were also included to connect diallels.

Each of the evaluated combinations of conditions was used to generate designs based on the
model presented in Section 2.1 that were replicated λ = 10 times. Each replicate had m = 100 initial
RCB designs iterated and the best design was selected (s = 1) which was then optimized for p = 5000
iterations to produce an improved experimental layout.

In a second stage, the complex experimental designs IB, AB and UR were evaluated. In contrast
with RCB designs, these designs consider both blocks and treatments as random effects in their design
and analysis (Equation (8)) The IB designs were generated with t = 30, b = 6 blocks (rb = 5 and cb = 4);
hence, each block had k = 20 experimental units, and each treatment was equally replicated r = 4 times.
For the AB designs, tt = 492 unreplicated test treatments and tc = 3 replicated control treatments that
were replicated rc = 12 times, arranged into b = 3 blocks (rb = 10 and cb = 20); hence, each block had
k = 200 experimental units where 164 belong to unreplicated test treatments. A complex UR design
was generated with t = 30 treatments arranged in b = 6 blocks (rb = 5 and cb = 6), where each block had
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k = 30 experimental units, but treatments were unequally replicated, where the number of replications
ranged between 4 and 8 based on a provided random list of treatment contraints.

As with the RCB design, evaluation of the swap algorithm for these complex designs was done
for varying levels of genetic and environmental conditions, considering a combination of heritability
values (h2 = 0.1, 0.3, and 0.6) and spatial correlation levels (ρ = ρx = ρy = 0, 0.3, 0.6 and 0.9).
The genetic relationship structures evaluated consisted of unrelated individuals, half-sib and full-sib
families. For the IB and UR designs, pedigree for half-sib and full-sib was identical to the one presented
earlier for the Ω(30) scenario. Also, in all designs, the variance of the blocks, σ2

b , was set to be 20% of the
total phenotypic variance. For the AB designs, pedigree for half-sib families from the unreplicated test
treatments comprised of 41 parents each with 12 offsprings; full-sib families consisted in a half-diallel
with 12 parents for a total of 35 families with approximately 14 offsprings each. In both cases, the control
treatments were genetically unrelated between them and to the test treatments.

Each of the evaluated combinations of conditions was used to generate designs based on the
model presented in Section 2.1 that were replicated λ = 10 times. Each replicate had m = 100 initial
random designs iterated and the best design was selected (s = 1), which was then optimized for
p = 5000 iterations to produce an improved experimental layout.

For all the designs considered, in order to evaluate the improved experimental layouts,
two measures of efficiency were defined. The initial design efficiency (IDE%) is the percent
improvement, in terms of Aopt or Dopt, of the best (i.e., minimum trace or determinant) design
without optimization (i.e., p = 0) from the m initial designs, in relation to the average value of these
designs. In contrast, the overall design efficiency (ODE%) is the percent improvement after p iterations
of the final selected design, in relation to the average value of the m initial designs.

All computations were implemented in R [36] using a high performance computer from the
University of Florida, and code is available from the authors upon request.

2.5. Data Simulation for RCB Designs

Simulations were implemented to evaluate the accuracy and precision of the estimation of
random genetic effects and estimate narrow-sense heritabilities from fitting a LMM for the RCB design.
A response variable was simulated following the model

yij = µ + gk(ij) + Es(ij) (11)

where yij represents the observation on the ith row and jth column, µ is an overall mean that was
arbitrarily fixed to 10 units, gk(ij) represents a k-th random genotype effect and Es is the structured
residual error. A subset of the experimental conditions for RCB designs described in Section 2.4
were considered here with spatial correlation levels of ρ = ρx = ρy = 0.3 and 0.6 and narrow-sense
heritabilities of 0.1, 0.3 and 0.6 with half-sib and full-sib families pedigree structures. Correlated
genetic and residual effects were obtained based on the Cholesky decomposition of multivariate
normal distributions with a zero expected value given by G = σ2

gA and R = σ2
e Σx(ρx) ⊗ Σy(ρy),

respectively. More details of the simulation process are described in [5].
Three scenarios were generated, with a small experiment Ω(30)

A and Ω(30)
D both with 6 blocks

exactly as described on Section 2.4. A large experiment Ω(196)
A was also generated as described in

Section 2.4, but with 16 blocks. A total of 12 conditions for each scenario were evaluated, each with
λ = 50 replicates, m = s = 1 and p = 5000 iterations.

Analysis of data for the Ω(30)
A and Ω(30)

D scenarios was done by fitting two linear mixed models.
Both of these models considered blocks as fixed effects, genotypes as random effects, but for the
first case (Model 1) residual errors were modeled assuming independence, whereas for the second
case (Model 2) residual errors were modeled by fitting an AR1⊗ AR1 spatial correlation structure.
For simplicity, under the Ω(196)

A scenario, only Model 2 was fitted. These analyses were performed for
the initial designs (p = 0), and final improved designs.
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Pearson’s product-moment correlation rg between predicted and true simulated breeding values
were computed, and estimation of heritabilities. The statistical package R [36] was used to simulate
these conditions and the software ASReml-R v. 3.0 [13] was used to fit all models and to estimate
heritabilities.

3. Results

3.1. Design Efficiencies for RCB

The evaluated conditions related to varying levels of heritability, genetic structure and spatial
correlations for the RCB designs are shown in Table 1 and Figure 1. The results presented here show
the percentage improvement in terms of reduction in average variance of the treatment effects when
A-optimality criterion is used and in terms of reduction in volume of the hypersphere when the
D-optimality criterion based on the IDE% and ODE% design efficiency measures.

As, expected, the average IDE% values for RCB designs were all smaller than their respective
ODE% values. This would confirm the fact that randomly generating hundreds of experimental
designs and simply choosing the best with respect to A- or D-optimality criteria results in designs
with lower efficiencies compared to optimized designs. After applying the optimization procedure to
improve the experimental layout, the average highest ODE% of 8.739 (S.E. = 0.065) from the optimal
designs under Ω(30)

A was obtained from the set of genetically unrelated individuals when h2 = 0.3 and
ρ = 0.6. The only exceptions are the conditions with ρ = 0 (i.e., no spatial correlation) that resulted
in consistently null improvements. Relatively lower gains were observed within half-sib and full-sib
families compared to structures with independent individuals. Specifically, the highest ODE% of
7.262 (0.031) among half-sib families occurred when h2 = 0.1 and ρ = 0.6 which was also the case
among full-sib families that recorded the highest ODE% of 5.004 (0.034) when h2 = 0.1 and ρ = 0.6.
Also experiments with either half-sib or full-sib families appear to achieve higher reduction of average
variance of treatment effects when the heritabilities are very low (i.e., h2 = 0.1). In addition, for any
given heritability level, often highest design improvement was achieved when the spatial correlation
level was 0.6.

The results from the larger experimental Ω(196)
A show that, on average, the overall highest ODE%

was obtained when the experiments consisted of genetically unrelated individuals with h2 = 0.1 and
ρ = 0.9 (ODE% = 5.664, S.E. = 0.032). Also, among the genetically unrelated individuals, when h2 = 0.3,
large improvements occurred when ρ = 0.9 yielding a ODE% of 4.559 (0.032). However, for h2 = 0.6,
large design improvements (ODE% = 3.213, S.E. = 0.036) occurred when ρ = 0.6. Considering the
half-sib families, overall highest reduction in average variance of treatment effects of 4.834 (0.055) was
observed when h2 = 0.1 and ρ = 0.9. Similarly, among the full-sib families, highest ODE% of 3.040
(0.033) was obtained when h2 = 0.1 and ρ = 0.9. These results indicate that an experiment with strong
spatial correlations and with very low heritabilities may have considerable design improvements over
experiments with high heritabilities and low spatial correlations.

The small experiments Ω(30)
D had the highest reduction in volume of the hypersphere

(ODE% = 6.910, S.E. = 0.039) obtained when h2 = 0.1 and ρ = 0.9 among the genetically unrelated
individuals. Similarly, the highest ODE% among half-sib family was 3.943 (0.024) obtained when
h2 = 0.1 and ρ = 0.9. Experiments with full-sib families recorded highest design efficiencies of 3.114
(0.023) when h2 = 0.3 and ρ = 0.6. In general, for the same conditions ODE% values from D-optimality
resulted in lower gains compared to A-optimality reflecting the nature of these optimization criteria.
However, a Pearson’s product-moment correlation of ∼ 0.98 between these criteria for Ω(30)

A and Ω(30)
D

was obtained.
The number of successful swaps from the p = 5000 iterations for each condition and scenario

were also monitored. The mean number of successful swaps for independent, half-sib and full-sib
families in the Ω(30)

A scenario across all conditions were: 139 (range 96–208), 150 (93–244) and

178 (97–283). respectively. The average successful swaps under Ω(30)
D scenario were 185 (144–234),
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190 (147–257) and 199 (131–260) for independent, half-sib and full-sib families, respectively. In contrast,
under Ω(196)

A the successful swaps for the same genetic structures were larger, with values of
894 (830–959), 950 (828–1144) and 1024 (844–1281), respectively. In general, it was noted that higher
number of successful swaps were obtained when the treatments had lower heritabilities and spatial
correlation values.

Table 1. Summary statistics for Initial Design Efficiency (IDE%) and Overall Design Efficiency (ODE%)
for randomized complete block (RCB) designs with 30 genotypes generated using A-optimality criterion

Ω(30)
A and D-optimality criterion Ω(30)

D and for 196 genotypes generated using A-optimality criterion

Ω(196)
A . All designs were evaluated with λ = 10 replicates per condition and iterated p = 5000 times

to improve the experimental layouts. ODE mean values that are starred (?) are the overall largest
improvements per combination of pedigree and heritability conditions.

Condition Design Ω
(30)
A Design Ω

(196)
A Design Ω

(30)
D

Pedigree h2 ρ IDE% S.E. ODE% S.E. IDE% S.E. ODE% S.E. IDE% S.E. ODE% S.E.

Indep

0.1

0.1 0.120 0.002 0.305 0.002 0.004 0.001 0.017 0.000 0.046 0.001 0.124 0.001
0.3 0.490 0.015 2.159 0.020 0.017 0.002 0.203 0.005 0.171 0.006 0.845 0.007
0.6 1.636 0.087 7.975 0.075 0.102 0.010 1.602 0.019 0.417 0.013 2.627 0.022
0.9 1.566 0.078 6.948 0.062 0.382 0.062 5.664 ? 0.032 1.695 0.092 6.910 ? 0.039

0.3

0.1 0.211 0.005 0.481 0.003 0.008 0.001 0.042 0.001 0.093 0.003 0.236 0.002
0.3 0.792 0.038 3.038 0.016 0.046 0.008 0.507 0.007 0.320 0.007 1.418 0.012
0.6 2.043 0.084 8.739 ? 0.065 0.140 0.016 2.767 0.031 0.541 0.019 3.272 0.017
0.9 0.638 0.026 2.670 0.018 0.270 0.035 4.559 0.032 0.586 0.022 2.672 0.026

0.6

0.1 0.227 0.006 0.483 0.005 0.013 0.002 0.063 0.003 0.098 0.001 0.249 0.002
0.3 0.795 0.036 2.978 0.029 0.072 0.008 0.683 0.009 0.322 0.014 1.434 0.011
0.6 1.435 0.051 6.025 0.071 0.253 0.027 3.213 0.036 0.524 0.021 3.041 0.024
0.9 0.203 0.009 0.864 0.008 0.170 0.026 2.515 0.014 0.206 0.009 0.868 0.008

Half-sib

0.1

0.1 0.243 0.011 0.908 0.003 0.024 0.003 0.174 0.003 0.051 0.002 0.202 0.002
0.3 0.689 0.016 3.310 0.027 0.036 0.006 0.805 0.006 0.166 0.006 0.969 0.007
0.6 1.335 0.037 7.262 ? 0.031 0.148 0.026 2.015 0.014 0.433 0.024 2.601 0.021
0.9 0.928 0.040 3.848 0.040 0.341 0.035 4.834 ? 0.055 0.934 0.024 3.943 ? 0.024

0.3

0.1 0.218 0.006 0.686 0.003 0.016 0.002 0.144 0.002 0.092 0.003 0.283 0.001
0.3 0.643 0.021 2.898 0.028 0.051 0.007 0.704 0.007 0.283 0.007 1.430 0.010
0.6 1.427 0.056 6.409 0.048 0.138 0.016 2.646 0.041 0.549 0.019 3.277 0.016
0.9 0.304 0.021 1.287 0.010 0.158 0.029 3.161 0.029 0.319 0.015 1.307 0.012

0.6

0.1 0.168 0.005 0.416 0.004 0.010 0.001 0.094 0.002 0.101 0.003 0.265 0.003
0.3 0.555 0.025 2.054 0.010 0.064 0.006 0.714 0.010 0.331 0.014 1.446 0.010
0.6 0.841 0.050 3.530 0.031 0.159 0.013 2.846 0.033 0.573 0.018 3.081 0.017
0.9 0.100 0.005 0.403 0.004 0.096 0.011 1.405 0.012 0.092 0.005 0.390 0.003

Full-sib

0.1

0.1 0.262 0.017 1.955 0.015 0.039 0.005 0.623 0.007 0.056 0.002 0.358 0.003
0.3 0.675 0.019 4.485 0.039 0.115 0.018 1.944 0.015 0.190 0.011 1.173 0.007
0.6 1.064 0.047 5.004 ? 0.034 0.116 0.018 2.829 0.032 0.362 0.010 2.419 0.016
0.9 0.345 0.011 1.566 0.014 0.204 0.031 3.040 ? 0.033 0.371 0.013 1.529 0.010

0.3

0.1 0.166 0.007 0.899 0.004 0.023 0.003 0.467 0.003 0.091 0.004 0.398 0.001
0.3 0.457 0.019 2.153 0.023 0.087 0.012 1.259 0.007 0.257 0.010 1.458 0.013
0.6 0.671 0.031 3.128 0.031 0.126 0.014 2.245 0.010 0.540 0.026 3.114 ? 0.023
0.9 0.108 0.005 0.465 0.005 0.103 0.013 1.483 0.012 0.113 0.005 0.458 0.005

0.6

0.1 0.087 0.003 0.271 0.002 0.014 0.002 0.204 0.001 0.094 0.002 0.284 0.004
0.3 0.256 0.006 1.016 0.011 0.057 0.010 0.698 0.005 0.307 0.012 1.418 0.010
0.6 0.346 0.017 1.421 0.013 0.145 0.023 1.896 0.014 0.553 0.026 3.029 0.018
0.9 0.034 0.002 0.138 0.001 0.036 0.005 0.512 0.004 0.032 0.002 0.138 0.002
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Figure 1. Initial Design Efficiency (IDE) and Overall Design Efficiency (ODE) for RCB designs with

30 genotypes generated using A-optimality criterion Ω(30)
A and D-optimality criterion Ω(30)

D and for

196 genotypes generated using A-optimality criterion Ω(196)
A . All designs were evaluated with λ = 10

replicates per condition and iterated p = 5000 times to improve experimental layouts.

3.2. Design Efficiencies for IB, AB and UR

A summary of average ODE% for IB, AB and UR designs from each of the evaluated experimental
conditions are given in Table 2 and Figure 2. IB designs achieved a highest average ODE% of 10.250
(S.E. = 0.274) when h2 = 0.1 and ρ = 0.9. For designs with h2 of 0.3 and 0.6, mean highest reduction
in average variance of treatment effects, with ODE% of 8.543 (0.139) and 6.854 (0.122), respectively,
were obtained at ρ = 0.6. For a given spatial correlation level, individual ODE% among full-sib families
decrease with increasing heritability as shown in Figure 2 with average highest ODE% obtained when
the spatial correlation was 0.6 (Table 2). Among half-sib families, a highest ODE% of 6.824 (0.163)
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was obtained when h2 = 0.1 at ρ = 0.6. For heritabilities of 0.3 and 0.6, mean highest ODE% of 6.413
(0.180) and 4.337 (0.087) were obtained when ρ = 0.6, respectively. Improvements for IB designs with
full-sib families were ODE% of 5.082 (0.089), 3.511 (0.098) and 1.833 (0.047) for h2 = 0.1, 0.3 and 0.6,
respectively, all of them obtained when ρ = 0.6.

Table 2. Summary of average ODE% and their standard errors (S.E) for incomplete block (IB),
unequally replicated (UR) and augmented block (AB) designs with varying genetic relatedness, spatial
correlations (ρ) and narrow-sense heritability (h2) based on m = 100 initial designs, λ = 10 replicates
per condition and p = 5000 iterations.

Condition Indep Half-Sib Full-Sib

h2 ρ ODE% S.E. ODE% S.E. ODE% S.E.

IB designs

0.1

0.0 0.317 0.009 0.468 0.011 0.421 0.012
0.3 1.870 0.052 2.657 0.060 3.481 0.106
0.6 6.663 0.193 6.824 0.163 5.082 0.089
0.9 10.250 0.274 5.919 0.138 2.641 0.053

0.3

0.0 0.711 0.038 0.733 0.032 0.476 0.014
0.3 2.902 0.050 2.950 0.063 2.220 0.041
0.6 8.543 0.139 6.413 0.180 3.511 0.098
0.9 4.672 0.090 2.313 0.038 0.858 0.016

0.6

0.0 0.872 0.039 0.709 0.017 0.371 0.020
0.3 3.332 0.105 2.470 0.084 1.243 0.026
0.6 6.854 0.122 4.337 0.087 1.833 0.047
0.9 1.604 0.036 0.743 0.010 0.257 0.005

AB designs

0.1

0.0 0.639 0.000 0.820 0.000 1.589 0.020
0.3 0.733 0.001 1.235 0.009 3.274 0.049
0.6 0.922 0.006 1.765 0.018 3.752 0.093
0.9 1.090 0.028 1.477 0.037 2.002 0.061

0.3

0.0 1.070 0.000 0.922 0.000 1.740 0.101
0.3 1.074 0.002 1.095 0.009 2.546 0.088
0.6 1.025 0.005 1.433 0.015 2.939 0.092
0.9 1.275 0.062 1.446 0.034 1.474 0.056

0.6

0.0 1.113 0.000 0.506 0.002 1.333 0.090
0.3 1.086 0.002 0.646 0.006 1.718 0.101
0.6 1.092 0.006 1.191 0.018 2.387 0.083
0.9 1.881 0.120 2.002 0.111 1.106 0.039

UR designs

0.1

0.0 0.889 0.025 0.787 0.028 0.584 0.010
0.3 2.968 0.057 3.533 0.087 3.846 0.056
0.6 9.283 0.184 7.650 0.085 4.914 0.075
0.9 7.362 0.152 3.985 0.053 1.569 0.028

0.3

0.0 1.918 0.039 1.488 0.037 0.777 0.028
0.3 4.566 0.092 3.870 0.056 2.438 0.056
0.6 9.348 0.190 6.607 0.085 3.246 0.063
0.9 2.747 0.043 1.290 0.014 0.472 0.006

0.6

0.0 2.131 0.042 1.474 0.030 0.699 0.016
0.3 4.562 0.115 2.920 0.070 1.367 0.038
0.6 6.207 0.110 3.417 0.070 1.389 0.022
0.9 0.879 0.017 0.390 0.007 0.138 0.001
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Figure 2. Individual ODE% for incomplete block (IB), augmented block (AB) and unequally
replicated (UR) designs. Effective ODE% for IB was obtained after an initial design was subjected to
random swapping of genotypes, first across blocks, then either within or across blocks. In contrast,
effective ODE% for UR design was obtained after an initial design was subjected to first, random
replacement of genotypes using a list of constraints and second, swapping of genotypes within blocks.

Results from the AB designs achieved the highest reduction of average variance of treatment
effects among full-sib families when h2 = 0.1 and ρ = 0.6, yielding an ODE% of 3.752 (0.093).
Among the full-sib families, designs with heritabilities of 0.3 and 0.6 obtained their highest ODE% of
2.939 (0.092) and 2.387 (0.083) at spatial correlations of 0.6. As with the IB designs, the ODE% increased
with increasing spatial correlation from ρ = 0.0 to 0.6, and then decreased at a spatial correlation
of 0.9 (see Table 2). For generated AB designs with genetically unrelated individuals, a trend was
observed of highest design improvements achieved when ρ = 0.9 at any levels of heritabilities with the
highest value ODE% of 1.881 (0.120) obtained when h2 = 0.6 and ρ = 0.9. Similarly, an ODE% of 2.002
(0.111) was the highest improvement achieved among half-sib families when h2 = 0.6 and ρ = 0.9.
Figure 2 shows individual ODE% values with a tendency to increase with larger heritability and spatial
correlation among genetically unrelated individuals, and it decreased with increasing heritability
among half-sib and full-sib families, except when h2 = 0.6 and ρ = 0.9 among half-sib families.

Unequally replicated designs yielded, a highest average improvement level of 9.348 (0.190)
achieved when h2 = 0.3 and ρ = 0.6 observed among genetically unrelated individuals. At h2 = 0.1,
the highest average design improvement of 9.283 (0.184) was observed at a spatial correlation of
0.6. In addition, when h2 = 0.6, the highest average ODE% of 6.207 (0.110) was obtained at ρ = 0.6
among the genetically unrelated individuals. For a given heritability, among all genetic structures,
ODE% increase with increasing spatial correlations up to ρ = 0.6 and then dropped as spatial
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correlation increases to 0.9. In general, for a specified heritability and spatial correlation level,
ODE% values appear to decrease as genetic relationships increases (see Table 2). Also, for any
given heritability, lower ODE% values were observed when spatial correlations were null (ρ = 0.0)
and in some conditions, when ρ = 0.9 with h2 = 0.6.

3.3. Analysis of Simulated Data for RCB Designs

A summary of the results obtained from the analysis of simulated data are presented in
Tables 3 and 4 based on initial (i.e., un-improved) and final (i.e., improved) designs. These contain
prediction accuracies for the estimation of genetic effects and heritabilities by fitting a LMM for the
RCB design with and without a 2-dimensional separable spatial correlation structure denoted by
Model 2 and 1, respectively.

Considering results from the improved designs and for Ω(30)
A scenario under Model 2

(Equation (3)), prediction accuracies of genetic effects among half-sib and full-sib families were
found to be very high with rg = 0.984 and 0.981, respectively, obtained when h2 = ρ = 0.6. Similarly,

Ω(30)
D scenario under Model 2 resulted in strong prediction accuracies of genetic effects among half-sib

and full-sib families with rg = 0.983 and 0.982, respectively, also obtained when h2 = ρ = 0.6. In all
cases, Pearson’s correlation coefficients from the no-spatial model (Model 1) were lower than those
from Model 2 but still very strong. For instance, prediction accuracies for Ω(30)

A based on Models 1 and
2 among half-sib families were rg = 0.943 and rg = 0.984, respectively, obtained when ρ = h2 = 0.6.
As expected, the lowest predictive ability under each scenario was found when layouts had the lowest
spatial and heritability values.

Results from Ω(196)
A scenario (Table 4) had much stronger predictive ability of rg = 0.990 for

both half-sib and full-sib families when h2 = ρ = 0.6. The lowest prediction accuracy occurred
when h2 = 0.1 and ρ = 0.3 resulting in rg values of 0.860 and 0.837 for half-sib and full-sib families,

respectively. As expected, for the three scenarios (Ω(30)
A , Ω(196)

A and Ω(30)
D ), for a given level of spatial

correlation, rg increased with increasing h2 and similarly, for a given h2 value rg increased with ρ.
Precision of the estimated heritabilities, measured using coefficient of variation (C.V. %), was

found to be largest for smallest h2 values, decreasing with increasing h2 in both half-sib and full-sib
families. In addition, C.V. % of heritability decreased considerably with increasing ρ values. Conditions
with smaller heritability values were relatively more variable, presenting higher C.V. % than for those
with larger heritability. For a given heritability value, prediction accuracies increased with increase in
spatial correlations only for the spatial correlation model (i.e., Model 2). The C.V. % of heritability for
Ω(196)

A were notably smaller than for Ω(30)
A and Ω(30)

D scenarios, a result likely due to the larger number
of experimental units used.

Kernel densities of estimated heritabilities for Model 2 based on Ω(196)
A scenario are shown

in Figure 3 for selected conditions. Here, comparisons of estimated heritabilities between the
initial and improved designs for full-sib and half-sib families are presented, which clearly indicates
that final designs provide greater precisions (i.e., narrower distributions) than initial designs in
estimating heritabilities.
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Table 3. Summary statistics presented with Pearson’s correlation coefficient (rg) and estimated

heritabilities (ĥ2) together with their coefficient of variation (C.V. %) for Ω(30)
A and Ω(30)

D scenarios.
Each condition had λ = 50 replicates each iterated p = 5000 times. In Model 1, residuals were assumed
to be uncorrelated and in Model 2, an AR1⊗ AR1 spatial correlation structure was fitted.

Estimates under Ω
(30)
A Estimates under Ω

(30)
D

Conditions Half-Sib Family Full-Sib Family Half-Sib Family Full-Sib Family

ρ h2 Design ĥ2 C.V. % rg ĥ2 C.V. % rg ĥ2 C.V. % rg ĥ2 C.V. % rg

Model 1

0.3

0.1 Initial 0.091 56.932 0.626 0.105 57.551 0.647 0.107 59.429 0.638 0.122 56.807 0.675
Improved 0.107 57.958 0.625 0.107 67.372 0.660 0.130 49.984 0.666 0.129 61.648 0.682

0.3 Initial 0.303 25.573 0.845 0.288 29.828 0.830 0.309 31.097 0.851 0.307 31.874 0.833
Improved 0.302 30.783 0.854 0.311 29.985 0.827 0.315 26.223 0.85 0.301 32.012 0.839

0.6 Initial 0.609 10.661 0.946 0.592 14.29 0.939 0.581 13.029 0.942 0.578 14.226 0.932
Improved 0.594 11.505 0.943 0.574 14.425 0.932 0.582 15.934 0.941 0.574 18.943 0.923

0.6

0.1 Initial 0.119 48.321 0.644 0.117 61.060 0.618 0.126 46.390 0.659 0.114 61.020 0.682
Improved 0.157 49.696 0.643 0.142 49.682 0.648 0.126 54.187 0.604 0.142 52.276 0.615

0.3 Initial 0.291 30.602 0.852 0.317 26.024 0.844 0.315 26.474 0.859 0.308 32.348 0.832
Improved 0.341 25.837 0.844 0.317 30.52 0.809 0.361 25.528 0.847 0.326 28.804 0.826

0.6 Initial 0.602 12.046 0.950 0.613 11.383 0.940 0.601 13.728 0.945 0.608 15.518 0.939
Improved 0.614 12.716 0.943 0.615 13.101 0.935 0.618 10.361 0.940 0.632 12.177 0.937

Model 2

0.3

0.1 Initial 0.088 55.335 0.685 0.100 58.724 0.665 0.088 61.306 0.686 0.106 56.899 0.694
Improved 0.092 60.271 0.670 0.094 61.836 0.694 0.111 49.259 0.716 0.099 56.763 0.707

0.3 Initial 0.284 25.788 0.874 0.282 29.295 0.857 0.307 27.117 0.876 0.302 29.865 0.857
Improved 0.293 32.026 0.886 0.295 27.45 0.859 0.299 23.427 0.883 0.296 29.435 0.873

0.6 Initial 0.594 12.037 0.954 0.582 14.984 0.949 0.577 11.451 0.955 0.560 14.180 0.944
Improved 0.585 11.628 0.957 0.562 14.391 0.949 0.569 15.535 0.957 0.557 19.756 0.943

0.6

0.1 Initial 0.091 38.893 0.830 0.087 51.023 0.797 0.095 35.528 0.824 0.088 45.976 0.802
Improved 0.099 35.675 0.858 0.088 37.522 0.828 0.090 36.586 0.844 0.084 36.736 0.832

0.3 Initial 0.268 22.697 0.943 0.284 23.124 0.938 0.278 22.175 0.944 0.267 25.216 0.933
Improved 0.292 21.367 0.951 0.275 20.051 0.937 0.295 20.827 0.953 0.282 23.933 0.940

0.6 Initial 0.565 13.205 0.982 0.571 10.841 0.979 0.565 13.732 0.981 0.569 15.987 0.977
Improved 0.571 13.579 0.984 0.571 12.637 0.981 0.560 17.916 0.983 0.576 13.523 0.982

Table 4. Summary statistics based on Model 2 with Pearson’s correlation coefficient (rg) and estimated

heritabilties (ĥ2) together with their coefficient of variation (C.V. %) for Ω(196)
A scenario. Each condition

had λ = 50 replicates each iterated p = 5000 times. Residuals errors were modeled using AR1⊗ AR1
spatial structure.

Conditions Half-Sib Family Full-Sib Family

ρ h2 Design ĥ2 C.V. % rg ĥ2 C.V. % rg

0.3

0.1 Initial 0.100 14.279 0.855 0.102 15.152 0.839
Improved 0.102 14.390 0.860 0.101 13.428 0.837

0.3 Initial 0.301 8.125 0.948 0.295 9.237 0.946
Improved 0.303 8.011 0.950 0.306 7.070 0.949

0.6 Initial 0.593 4.172 0.983 0.601 4.727 0.984
Improved 0.595 4.851 0.983 0.593 3.956 0.983

0.6

0.1 Initial 0.109 14.169 0.900 0.107 11.142 0.893
Improved 0.108 11.813 0.902 0.106 13.072 0.895

0.3 Initial 0.321 6.999 0.967 0.319 7.669 0.969
Improved 0.314 7.649 0.969 0.311 7.458 0.969

0.6 Initial 0.616 4.784 0.990 0.614 3.416 0.990
Improved 0.613 3.746 0.990 0.609 4.206 0.990
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Figure 3. Kernel densities for estimated heritabilities. The vertical line represents the true heritability.
Both initial and improved designs for different heritabilities and spatial correlations are presented

based on Ω(196)
A . Each condition had λ = 50 replicates each iterated p = 5000 times.

4. Discussion

The primary aim for this study was to focus on algorithms and statistical procedures that can
be useful on the generation of optimal field designs with correlated observations and to assess their
efficiency considering a wide spectrum of typical field conditions. Although we demonstrate how to
simulate data from a RCB design in Section 2.5, this was only secondary to the generation of optimal
designs and was necessary to show how we simulated the data for analysis and evaluate the accuracy
and precision of genetic effects and heritabilties that were analyzed using ASReml-R v. 3.0 [13].
Further details on simulating data for other complex designs have been discussed by other studies [5].

Different experimental designs, and varying environmental and genetic conditions have a strong
influence on the efficiency of field experiments. In this study, it was shown that, by the use of
a linear mixed model framework to account for genetic relatedness and spatial correlation, it is
possible to achieve important efficiency gains for the generation of experimental designs. Unlike other
studies that have discussed optimality procedures by fitting mainly fixed effects models (e.g., [20,23]),
the implemented procedure reported here provides with results that are practical for an array of field
trial scenarios commonly used in plant studies.

For RCB designs, under the absence of spatial correlations (i.e., ρ = 0.0), regardless of the level of
heritability and genetic structures, there are no gains in optimizing designs using the implemented
swap algorithm. In contrast, for IB, UR and AB designs, there were some moderate gains achieved
for the evaluated conditions. This is expected due to the balanced and orthogonal nature of the
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RCB designs, whereas for the other designs rearrangement of the experimental units (for example,
between different incomplete blocks), yields to better treatment pairwise comparisons. However, zero
spatial correlation might not be a reasonable assumption, as in practice for any field trial there is always
some level of spatial correlations. Nevertheless, under non-zero spatial correlations, all scenarios
showed considerable improvements, particularly for the independent genetic structure. However,
the positive effect of strong spatial correlations tends to diminish as the level of genetic relatedness
between the treatments increases.

The input required for the generation of an improved experimental design under the proposed
pairwise swap algorithm, includes a choice of number of iterations and optimality criterion.
Figure 4 presents an illustration for a RCB design based on h2 = 0.3 and ρ = 0.6 for genetically
unrelated individuals, half-sib and full-sib families for Ω(30)

A , Ω(30)
D and Ω(196)

A scenarios based on

p = 50,000 iterations. For small RCB designs (Ω(30)
A and Ω(30)

D ), the rate of improvement was high until

5000 to 10,000 iterations and flattens out thereafter. The large RCB design (Ω(196)
A ) showed that there

was room for improvement even after 50,000 iterations, a result that is expected from experiments
with large number of treatments [20]. Interestingly, there was a small number of successful swaps.
For example, with Ω(30)

A scenario, for independent, half-sib and full-sib families, these reached only 178,

172 and 198 cases, with ODE% of 9.67, 7.00, and 3.52, respectively. In contrast for Ω(196)
A , the successful

swaps were 2589, 2685 and 2616, for the same genetic structures. Nevertheless, using 5000 iterations
provides with a useful stopping criteria that limits the time required to run the optimizing procedure.

The decision between A- and D-optimality criteria depends on the aim, where the A-optimality
criterion minimizes the average treatment effect variance and D-optimality criterion minimizes the
generalized variance of the treatment effects, hence it considers covariances between pairs of treatment
effects. Nevertheless, in this study, a strong Pearson’s product-moment correlation of ≈ 0.98 between
A- and D-optimality criteria was detected. This is not completely unexpected as both criteria are a
convex function of the eigenvalues of the information matrix [22,23].

Several measures of design efficiency can be evaluated. In this study, overall design efficiency
(ODE%) was used. Other measures have been proposed, such as the average efficiency factor (a.e.f.) [20]
that compares the average pairwise variance of a given design layout against an RCB design with
the same number of treatments and replicates. Nevertheless, a.e.f is only defined for designs where
treatment is considered a fixed effect.

For all conditions evaluated the current study has shown that, for RCB designs based on
A-optimality criterion, gains of up to 8.7% can be achieved. Both small and large experiments
with half-sib and full-sib families can achieve greater improvements under low heritability levels and
moderate spatial correlation. Filho and Gilmour [21] also reported larger improvements on those
layouts with genetically unrelated individuals against those that accounted for genetic relatedness;
however, their residuals were assumed independent.

For the data simulated for an RCB design, high prediction accuracies (≥0.90) of genetic additive
effects were obtained from both initial and improved experimental layouts from models with and
without spatial correlations. As expected, better prediction accuracies were found for the model
that incorporated spatial correlations, particularly for the improved designs. This result is similar to
the findings reported by [5]. The current study has found that estimation of heritabilities was more
accurate under improved designs for both models. Also, as expected, genotype effects estimated
under layouts with small heritability values will exhibit larger C.V. % compared to layouts with large
heritability values, and when the spatial correlations are low, the C.V. % for estimated heritability is
larger, and vice-versa. The prediction accuracies of genetic values from larger experiments is higher
compared to that from small experiments, but similar trends are observed as the accuracy increases
with increasing levels of heritabilities.
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Figure 4. Design improvement trends for scenarios (a) Ω(30)
A , (b) Ω(30)

D , and (c) Ω(196)
A based on h2 = 0.3

and ρ = 0.6 for genetically unrelated individuals, half-sib and full-sib families, displaying successful
traces and determinants during the optimization process based on p = 50, 000 iterations. Scenarios

Ω(30)
A and Ω(30)

D were generated with 6 blocks of dimensions 5 rows by 6 columns whereas Ω(196)
A had

16 blocks of dimensions 14 rows by 14 columns.

In the case of more complex designs, such as IB, AB and UR, the highest average variance
reduction of treatment effects of about 8.54%, 1.03% and 9.35%, respectively, were achieved when
conducted with genetically unrelated individuals with heritabilities of 0.1 and spatial correlations
of 0.6. As indicated earlier, unlike RCB designs, it is still possible for these designs to improve their
efficiencies even when spatial correlation is zero. It is expected that the improvement of the generation
of these designs will require large number of iterations as a results of their unbalanced nature.

The proposed swap algorithm and procedures used here can be extended to include other
experimental designs, genetic structures, and spatial variance-covariance structures (such as the ones
described by [12–14,37,38]). In addition, instead of using pedigree information to calculate a numerator
relationship matrix, molecular markers can be used to calculate a genomic relationship matrix [17].
The use of the relationship matrix within the mixed model framework is limited to only describing the
additive genetic effects. However, the linear models can be extended with other matrices to consider
all genetic effects, such as dominance and epistatis.
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A similar algorithm to the one proposed here for the generation of experiments was developed
by [4], which also deals with correlated effects and residuals using a different optimization approach.
However, it is expected that these two algorithms may result in nearly identical optimal solutions,
given the similarity of these methods. Nevertheless, in the present study, findings about generation of
experiments under an array of varying conditions apply to any algorithm that generates an optimal
design, and this should assist on the use of these tools.

In order to generate field experiments, there is a need for known values of the different variance
components (e.g., spatial correlation). This could be a limitation of the proposed algorithm; however,
for most mature breeding programs there is always some level of information about what to expect on
a field experiments. For example, some fields are dominated by patches (i.e., high spatial correlations)
others are dominated by gradient. In addition, usually the same farms are used repeatedly to establish
breeding trials, and pedigree information often is available to be used to calculate relationship matrices
that can be incorporated in a design to be generated. The present study has evaluated an array of
varying typical field conditions that can be used; hence, it is possible to asses and select the most
appropriate condition to generate a desired design. Finally, even if a generated design is not fully
optimum for its field conditions, it is likely to be always better than a design that ignores any type
of spatial and/or genetic correlations. More complex designs than RCB might be required when
conducting experiments with large number of treatment levels as is common on breeding experiments.
Thus, it is advisable in these cases to use more complex layouts such as IB designs.

This study has demonstrated how to generate experiments with random initial arrangements
and optimize them considering both spatial and/or genetic relatedness. When designing complex
field experiments, it is important to start with an optimal design. Generating an optimal experiment
assuming all parameters are fixed with no sort of correlations has been implemented by many other
studies such as CycDesigN [20]. A two step approach can be used where after the initial design
is generated assuming no spatial or genetic correlations, then the second stage superimposes these
realistic conditions. The strength of our method is that our algorithm can take any design and optimize
it. The R-codes developed allow the user to input any initial design, or generate the design within
our software. If the initial design is generated within this software, our current approach starts with a
random design and models these correlations simultaneously in one step. The two-step approach was
not implemented and can be viewed as a limitation of the study, but can be implemented in the future.
For large experiments, long computation time were required to generate improved designs using a
desktop computer. For example, the time taken for Ω(30)

A scenario for 5000 iterations, was ∼2 min

and for Ω(196)
A scenario it took ∼30 min. Improved computation can be implemented with faster code

and software to enable evaluation of experiments with large numbers of treatments. Additionally,
other stochastic search algorithms, including simulated annealing, could yield potentially faster
optimizations when compared to the pairwise swap algorithm proposed here.

5. Conclusions

This study has demonstrated that simultaneous considerations for genetic structure and spatial
correlations can be incorporated to generate better experimental designs with important improvements
in relative design efficiency and prediction accuracies of random treatment effects. Also, for RCB,
IB, AB and UR designs higher relative design efficiencies are achievable from genetically unrelated
individuals compared to experiments with half-sib and full-sib families. For RCB designs with
half-sib or full-sib families, the optimization procedure may yield to important improvements
under the presence of mild to strong spatial correlation levels and relatively low heritability values.
As expected, accuracy of prediction of genetic values improves as levels of heritability and spatial
correlations increases.
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