Breeding Maize for Tolerance to Acidic Soils: A Review
Abstract
:1. Introduction
2. Acid Soils
2.1. Distribution of Acidic Soils
2.2. Acidification of Soils
2.3. Toxification of Acid Soils
2.3.1. Aluminum Toxicity
2.3.2. Iron Toxicity
2.3.3. Manganese Toxicity
2.4. Management of Acidic Soils
3. Mechanisms of Tolerance to Low Soil pH
4. Breeding Maize for Tolerance to Low Soil pH
4.1. Conventional Breeding Methods
4.1.1. Heterosis, Heterotic Patterns, and Heterotic Groups for Maize Tolerance to Low Soil pH
4.1.2. Combining Abilities and Heritability of Maize Genotypes for Tolerance to Low Soil pH
4.1.3. Secondary Traits Associated with Tolerance to Acidic Soils
4.2. Application of Molecular Tools in Breeding for Maize Tolerance to Acidic Soils
5. Successes in Breeding for Low Soil pH-Tolerant Maize Genotypes
6. Adoption of Acid Soil-Tolerant Maize
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Al | aluminum |
Mn | manganese |
Fe | iron |
pH | potential of hydrogen |
QTL | quantitative trait locus |
P | phosphorus |
Ca | calcium |
Mg | magnesium |
Na | sodium |
Mo | molybdenum |
Zn | zinc |
B | boron |
DNA | deoxyribonucleic acid |
ha | hectare |
H+ | hydrogen cation |
Ca2+ | calcium cation |
Mg2+ | magnesium cation |
K+ | potassium cation |
Na+ | sodium cation |
(CO3)−2 | carbonate ion |
O2 | oxygen |
Si | silicon |
ppm | parts per million |
CO2 | carbon dioxide |
OA | organic anion |
OPVs | open pollinated cultivars |
SCA | specific combining ability |
GCA | general combining ability |
F1 | first generation progeny |
ALMT | aluminum-activated malate transporter |
MATE | multidrug and toxic compound extrusion |
F2 | second generation progeny |
CML | CIMMYT maize line |
CIMMYT | International Maize and Wheat Improvement Center |
NARS | National Agricultural Research Systems |
t/ha | tons per hectare |
ATP-SR-Y | acid tolerant population streak resistant yellow |
ZmMATE | zea multidrug and toxic compound extrusion |
HvMATE | Hordeum vulgare multidrug and toxic compound extrusion |
AltSB | aluminum tolerant in sorghum |
ALMT2 | aluminum-activated malate transporter 2 |
SAHH | S-adenosyl-L-homocysteinase |
ME | malic enzyme |
RNA | ribonucleic acid |
ALMT1 | aluminum-activated malate transporter 1. |
References
- Prasanna, B.M. Maize in the developing world: Trends, challenges, and opportunities. In Addressing Climate Change Effects and Meeting Maize Demand for Asia-B, Proceedings of the Extended Summary 11th Asia Maize Conference, Nanning China, 7–11 November 2011; CIMMYT: Texcoco, Mexico, 2011. [Google Scholar]
- Dewi-Hayati, P.K.; Sutoyo, A.; Syarif, A.; Prasetyo, T. Performance of maize single-cross hybrids evaluated on acidic soils. Int. J. Adv. Sci. Eng. Inf. Technol. 2014, 4, 30–33. [Google Scholar]
- Tandzi, N.L.; Ngonkeu, E.L.M.; Youmbi, E.; Nartey, E.; Yeboah, M.; Gracen, V.; Ngeve, J.; Mafouasson, H. Agronomic performance of maze hybrids under acid and control soil conditions. Int. J. Agron. Agric. Res. 2015, 6, 275–291. [Google Scholar]
- Wambeke, A.V. Formation, distribution and consequences of acid soils in agricultural development. In Plant Adaptation to Mineral Stress in Problem Soils; Wright, J.M., Ferrari, A.S., Eds.; Special Publication Cornell University Agricultural Experiment Station: Ithaca, NY, USA, 1976; 15p. [Google Scholar]
- Von Uexkull, H.R.; Mutert, E. Global extent, development and economic impact of acid soils. Plant Soil 1995, 171, 1–15. [Google Scholar] [CrossRef]
- Dalovic, I.G.; Jocković, Đ.S.; Dugalić, G.J.; Bekavac, G.F.; Purar, B.; Šeremešić, S.I.; Jocković, M.Đ. Soil acidity and mobile aluminum status in pseudogley soils in the čačak–kraljevo basin. J. Serb. Chem. Soc. 2012, 77, 833–843. [Google Scholar] [CrossRef]
- Gupta, N.; Gaurav, S.S.; Kumar, A. Molecular basis of aluminium toxicity in plants: A review. Am. J. Plant Sci. 2013, 4, 21–37. [Google Scholar] [CrossRef]
- Araus, L.J.; Serret, D.M.; Edmeades, O.G. Phenotyping maize for adaptation to drought. Front. Physiol. 2012, 3, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izhar, T.; Chakraborty, M. Combining ability and heterosis for grain yield and its components in maize inbreds over environments (Zea mays L.). Acad. J. 2013, 8, 3276–3280. [Google Scholar]
- Menkir, A.; Badu-Apraku, B.; The, C.; Adepou, A. Evaluation of heterotic patterns of IITA’s lowland white maize inbred lines. Maydica 2003, 48, 161–170. [Google Scholar]
- Welcker, C.; The, C.; Andreau, B.; De Leon, C.; Parentoni, S.N.; Bernal, J.; Felicite, J.; Zonkeng, C.; Salazar, F.; Narro, L.; Charcosset, A.; Horst, W.J. Heterosis and combining ability for maize adaptation to tropical acid soils: Implications for future breeding strategies. Crop Sci. 2005, 45, 2405–2413. [Google Scholar] [CrossRef]
- The, C.; Mafouasson, H.; Calba, H.; Mbouemboue, P.; Zonkeng, C.; Tagne, A.; Worst, J.H. Identification de groupes hétérotiques pour la tolérance du maïs (Zea mays L.) aux sols acides des tropiques. Cah. Agric. 2006, 15, 337–346. [Google Scholar]
- Badu-Apraku, B.; Oyekunle, M.; Akinwale, R.O.; Aderounmu, M. Combining ability and genetic diversity of extra-early white maize inbreds under stress and nonstress environments. Crop Sci. 2013, 53, 9–26. [Google Scholar] [CrossRef]
- Qurban, A.; Arfan, A.; Muhammad, A.; Sajed, A.; Nazar, H.K.; Sher, M.; Hafiz, G.A.; Idrees, A.N.; Tayyab, H. Line × tester analysis for morpho-physiological traits of Zea mays L. Seedlings. Int. J. Adv. Life Sci. 2014, 1, 242–253. [Google Scholar]
- Tandzi, N.L.; Gracen, V.; Ngonkeu, E.L.M.; Yeboah, M.; Nartey, E.; Mafouasson, A.H.; Woin, N. Analysis of combining ability and heterotic grouping of maize inbred lines under acid soil conditions, control soil and across environments. Int. J. Curr. Res. 2015, 7, 21553–21564. [Google Scholar]
- Gowda, R.K.; Kage, U.; Lohithaswa, H.C.; Shekara, B.G.; Shobha, D. Combining ability studies in maize (Zea mays L.). Mol. Plant Breed. 2013, 4, 116–127. [Google Scholar]
- Tang, G.-Q.; Li, X.-W. Optimal multiple trait selection for multiple linked quantitative trait loci. Acta Genet. Sin. 2006, 33, 220–229. [Google Scholar] [CrossRef]
- Tollenaar, M.; Lee, E.A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica 2006, 51, 390–408. [Google Scholar]
- Khan, A.A.; Mcneilly, T.; Azhar, F.M. Review: Stress tolerance in crop plants. Int. J. Agric. Boil. 2001, 3, 250–255. [Google Scholar] [CrossRef]
- Bindzi, T. Les sols rouges du Cameroun. In 8e Réunion du Sous-Comité Ouest et Centre Africain de Correlation des Sols Pour la Mise en Valeur des Terres; MINREST-FAO: Yaoundé, Cameroun, 1987. [Google Scholar]
- Nwaga, D.; The, C.; Ambassa-Kiki, R.; Ngonkeu, M.E.L.; Tchiegang-Megueni, C. Selection of arbuscular mycorrhizal fungi for inoculating maize and sorghum grown in oxisol/ultisol and vertisol in Cameroon. In Managing Nutrient Cycles to Sustain Soil Fertility in Sub-Saharan Africa; Bationo, A., Ed.; CIAT: London, UK, 2004; p. 608. [Google Scholar]
- Kisinyo, P.O.; Opala, P.A.; Gudu, S.O.; Othieno, C.O.; Okalebo, J.R.; Palapala, V.; Otinga, A.N. Recent advances towards understanding and managing Kenyan acid soils for improved crop production. Afr. J. Agric. Res. 2014, 9, 2397–2408. [Google Scholar] [CrossRef]
- Venter, A.; Herselman, J.E.; VanderMerwe, G.M.E.; Steyn, C.; Beukes, D.J. Developing soil acidity maps for South Africa. In Proceedings of the 5th International Symposium on Soil Plant Interactions at Low pH, Bergville, South Africa, 12–16 March 2001; p. 21. [Google Scholar]
- Roberts, V.G.; Smeda, Z. The distribution of soil fertility constraints in KwaZulu-Natal, South Africa. In Proceedings of the 5th International Symposium on Plant Soil Interactions at low pH, Bergville, South Africa, 12–16 March 2001; p. 12. [Google Scholar]
- Cohen, J.; Slessarev, E. Soil pHertility: The Current; University of California: Santa Barbara, CA, USA, 2016; Available online: http://www.news.ucsb.edu/2016/017434/soil-fertility (accessed on 10 May 2018).
- Fey, M.V. Acid soil degradation in South Africa: A threat to agricultural productivity. FSSA J. 2001, 37–41. [Google Scholar]
- Rowell, D.L. Soil acidity and alkalinity. In Russell’s Soil Conditions and Plant Growth, 11th ed.; Wild, A., Ed.; Longman Scientific and Technical: London, UK, 1988; pp. 844–898. [Google Scholar]
- Ulrich, B.; Mayer, R.; Khanna, P.K. Chemical changes due to acid precipitation in a loess-derived soil in central Europe. Soil Sci. 1980, 130, 193–199. [Google Scholar] [CrossRef]
- Hede, A.R.; Skovmand, B.; López-Cesati, J. Acid soils and aluminum toxicity. In Application of Physiology in Wheat Breeding Reynolds; Ortiz-Monasterio, M.P., Mcnab, J.I., Eds.; CIMMYT: Texcoco, Mexico, 2001; pp. 172–182. [Google Scholar]
- Foy, C.D.; Chaney, R.L.; White, M.C. The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol. 1978, 29, 511–566. [Google Scholar] [CrossRef]
- Bian, M.; Zhou, M.; Sun, D.; Li, C. Molecular approaches unravel the mechanism of acid soil tolerance in Plants. Crop J. 2013, 2013, 91–104. [Google Scholar] [CrossRef]
- Zeigler, R.S.; Pandey, S.; Miles, J.; Gourley, L.M.; Sarkarung, S. Advances in the selection and breeding of acid-tolerant plants: Rice, maize, sorghum and tropical forages. In Plant Soil Interactions at Low pH; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; pp. 391–406. [Google Scholar]
- Sanchez, P.A.; Shepherd, K.D.; Soule, M.J.; Place, F.M.; Buresh, R.J.; Izac, A.-M.N.; Mokwunye, A.U.; Kwesiga, F.; Nderitu, C.G.; Woomer, P.L. Soil fertility management in Africa: An investment in natural resource. In Replenishing Soil Fertility in Africa; Buresh, R.J., Sanchez, P.A., Calhoun, F., Eds.; SSSA Special Publication: Madison, WI, USA, 1997; Volume 51, pp. 1–46. [Google Scholar]
- Oburo, P.A. Effects of Soil Properties on Bioavailability of Aluminium and Phosphorus in Selected Kenyan and Brazilian Soils. Ph.D. Thesis, Perdue University, West Lafayette, IN, USA, 2008. [Google Scholar]
- Kisinyo, P.O.; Othieno, C.O.; Gudu, S.O.; Okalebo, J.R.; Opala, P.A.; Maghanga, J.K.; Ng’etich, W.K.; Agalo, J.J.; Opile, R.W.; Kisinyo, J.A.; et al. Phosphorus sorption and lime requirements of maize growing acids soil of Kenya. Sustain. Agric. Res. 2013, 2, 116–123. [Google Scholar] [CrossRef]
- Delhaize, E.; Ryan, P.R. Aluminum toxicity and tolerance in plants. Plant Physiol. 1995, 107, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Kochian, L.V.; Hoekenga, O.A.; Pineros, M.A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 2004, 55, 459–493. [Google Scholar] [PubMed]
- Kochian, L.V.; Pineros, M.A.; Liu, J.; Magalhaes, J.V. Plant adaptation to acid soils: The molecular basis for crop aluminium resistance. Annu. Rev. Plant Physiol. 2015, 66, 571–598. [Google Scholar] [CrossRef] [PubMed]
- Rao, I.M.; Miles, J.W.; Beede, S.E.; Horst, W.J. Root adaptations to soils with low fertility and aluminium toxicity. Ann. Bot. 2016, 118, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Barabasz, W.; Albińska, D.; Jaśkowska, M.; Lipiec, J. Ecotoxicology of Aluminium. Pol. J. Environ. Stud. 2002, 11, 199–203. [Google Scholar]
- Osaki, M.T.; Watanabe, T.; Tadano, T. Beneficial effect of aluminium on growth of plants adapted to low pH soils. Soil Sci. Plant Nutr. 1997, 43, 551–563. [Google Scholar] [CrossRef]
- Steiner, F.; Zoz, T.; Junior, A.S.P.; Castagnara, D.D.; Dranski, J.A.L. Effects of aluminium on plant growth and nutrient uptake in young physic nut plants. Semin. Ciênc. Agrar. 2012, 33, 1779–1788. [Google Scholar] [CrossRef]
- Silva, S. Aluminium toxicity targets in plants. J. Bot. 2012, 2012. [Google Scholar] [CrossRef]
- Parentoni, S.N.; Souza, J.R.; Alves, V.M.C.; Gama, E.E.G.; Coelho, A.M.; Oliveira, A.C.; Guimaraes, P.E.O.; Guimaraes, C.T.; Vasconcelos, M.J.V.; Pacheco, C.A.P.; et al. Inheritance and breeding strategies for phosphorus efficiency in tropical maize (Zea mays L.). Maydica 2010, 55, 1–15. [Google Scholar]
- Ouma, E.; Ligeyo, D.; Matonyei, T.; Were, B.; Agalo, J.; Emily, T.; Onkware, A.; Gudu, S.; Kisinnyo, P.; Okalebo, J.; et al. Development of maize single cross hybrids for tolerance to low phosphorus. Afr. J. Plant Sci. 2012, 6, 394–402. [Google Scholar]
- Becker, M.; Asch, F. Iron toxicity in rice-conditions and management concepts. Plant Nutr. Soil Sci. 2005, 168, 558–573. [Google Scholar] [CrossRef]
- Havlin, J.L.; Beaton, S.L.; Nelson and Nelson, W.L. Soil Fertility and Fertilizers: An Introduction to Nutrient Management; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Fageria, N.K.; Santos, A.B.; Barbosa-Filho, M.P.; Guimaraes, C.M. Iron toxicity in lowland rice. J. Plant Nutr. 2008, 31, 1676–1697. [Google Scholar] [CrossRef]
- Sikirou, M.; Saito, K.; Dramé, K.N.; Saidou, A.; Dieng, I.; Ahanchédé, A.; Venuprasad, R. Soil-based screening for iron toxicity tolerance in rice using pots. Plant Prod. Sci. 2016, 19, 489–496. [Google Scholar] [CrossRef]
- Ikehashi, H.; Ponnamperuma, F.N. Varietal tolerance of rice for adverse soils. In Soils and Rice; International Rice Research Institute IRRI: Los Banos, Philippines, 1978; pp. 801–825. [Google Scholar]
- Sahrawat, K.L. Iron toxicity in Wetland rice and role of other nutrients. J. Plant Nutr. 2004, 27, 1471–1504. [Google Scholar] [CrossRef]
- Saaltink, R.M.; Dekker, S.C.; Eppinga, M.B.; Griffioen, J.; Wassen, M.J. Plant-specific effects of iron-toxicity in wetlands. Plant Soil 2017, 416, 83–96. [Google Scholar] [CrossRef]
- Wheeler, B.D.; Al-Farraj, M.M.; Cook, R.E.D. Iron toxicity to plants in base-rich wetlands: Comparative effects on the distribution and growth of Epilobium hirsutum and Juncus subnodulosus Schrank. New Phytol. 1985, 100, 653–669. [Google Scholar] [CrossRef]
- Laan, P.; Smolders, A.; Blom, C.W.P.M. The relative importance of anaerobiosis and high iron levels in the flood tolerance of Rumex species. Plant Soil 1991, 136, 153–161. [Google Scholar] [CrossRef]
- Liu, J.; Magalhaes, J.V.; Shaff, J.; Kochian, L.V. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminium tolerance. Plant J. 2009, 57, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Ayeni, O.; Kambizi, L.; Fatoki, O.; Olatunji, O. Risk assessment of wetland under aluminium and iron toxicities: A review. Aquat. Ecosyst. Heath Manag. 2014, 17, 122–128. [Google Scholar] [CrossRef]
- Snowden, R.E.D.; Wheeler, B.D. Chemical changes in selected wetland plant species with increasing Fe supply, with specific reference to root precipitates and Fe tolerance. New Phytol. 1995, 131, 503–520. [Google Scholar] [CrossRef]
- Tripathi, R.D.; Tripathi, P.; Dwivedi, S.; Kumar, A.; Mishra, A.; Chauhan, P.S.; Norton, G.J.; Nautiyal, C.S. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 2014, 6, 1798–1800. [Google Scholar] [CrossRef] [PubMed]
- Schulte, E.E.; Kelling, K.A. Understanding Plant Nutrients/Soil and Applied Manganese; University of Wisconsin System Board of Regents and University of Wisconsin-Extension, Cooperative Extension: Madison, WI, USA, 1999; 4p. [Google Scholar]
- Foy, C.D. Plant adaptation to acid, aluminium-toxic soils. Commun. Soil Sci. Plant Anal. 1988, 19, 959–987. [Google Scholar] [CrossRef]
- Hong, E.; Ketterings, Q.; Mcbride, M. Manganese Agronomy Fact Sheet Series. In Field Crop Extension; College of Agriculture and Life Sciences: Ithaca, NY, USA, 2010; Volume 49. [Google Scholar]
- Snowball, K.; Robson, A.D. Nutrient Deficiencies and Toxicities in Wheat: A Guide for Field Identification; CIMMYT: Texcoco, Mexico, 1991; 82p. [Google Scholar]
- Doncheva, S.; Poschenriederb, C.; Stoyanovaa, Z.; Georgievaa, K.; Velichkovac, M.; Barcelób, J. Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environ. Exp. Bot. 2009, 65, 189–197. [Google Scholar] [CrossRef]
- Stoyanova, Z.; Poschenrieder, C.; Tzvetkova, N.; Doncheva, S. Characterization of the tolerance to excess manganese in four maize varieties. Soil Sci. Plant Nutr. 2010, 55, 747–753. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of Southeastern Coastal Plan soil. Soil Sci. 2009, 174, 105112. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag. 2010, 27, 110–115. [Google Scholar] [CrossRef]
- Goulding, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Kisinyo, P.O. Effect of lime and phosphorus fertilizer on soil chemistry and maize seedlings performance on Kenyan acid soils. Sky J. Agric. Res. 2016, 5, 097–104. [Google Scholar]
- Tandzi, N.L.; Ngonkeu, E.L.M.; Nartey, E.; Yeboah, M.; Ngeve, J.; Mafouasson, H.; Nso-Ngang, A.; Bassi, O.; Gracen, V. Farmers’ adoption of improved maize varieties in the humid forest area of Cameroon. Int. J. Sci. Eng. Appl. Sci. 2015, 1, 17–28. [Google Scholar]
- Toma, M.; Sumner, M.E.; Weeks, G.; Saigusa, M. Long-term effects of gypsum on crop yield and subsoil chemical properties. Soil Sci. Soc. Am. J. 1999, 39, 891–895. [Google Scholar] [CrossRef]
- Sierra, J.; Ozier-Lafontaine, H.; Dufour, L.; Meunier, A.; Bonhomme, R.; Welcker, C. Nutrient and assimilate partitioning in two tropical maize cultivars in relation to their tolerance to soil acidity. Field Crop. Res. 2006, 95, 234–249. [Google Scholar] [CrossRef]
- Mwangi, T.J.; Ngeny, J.M.; Wekesa, F.; Mulati, J. Acidic Soil Amendment for Maize Production in Uasin Gishu District, North Rift Kenya; Kenya Agricultural Research Institute, National Agricultural Research Centre: Kitale, Kenya, 2000. [Google Scholar]
- Van Averbeke, W.; Yoganathan, S. Using Kraal Manure as a Fertilizer; Department of Agriculture and the Agricultural and Rural Development Research Institute, Fort Hare: Alice, South Africa, 2003. [Google Scholar]
- Hoyt, P.B.; Turner, R.C. Effects of organic materials added to very acid soils on pH, aluminium, exchangeable NH4, and crop yield. Soil Sci. 1975, 119, 227–237. [Google Scholar] [CrossRef]
- Hue, N.V. Correcting soil acidity of a highly weathered Ultisol with chicken manure and sewage sludge. Commun. Soil Sci. Plant Anal. 1992, 23, 241–264. [Google Scholar] [CrossRef]
- Noble, AD.; Zenneck, I.; Randall, P.J. Leaf litter ash alkalinity and neutralisation of soil acidity. Plant Soil 1996, 179, 293–302. [Google Scholar] [CrossRef]
- Wong, M.T.F.; Nortcliff, S.; Swift, R.S. Method for determining the acid ameliorating capacity of plant residue compost, urban compost, farmyard manure and peat applied to tropical soils. Commun. Soil Sci. Plant Anal. 1998, 29, 2927–2937. [Google Scholar] [CrossRef]
- Horst, W.J.; Puschel, A.K.; Schmohl, N. Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity in maize. Plant Soil 1997, 192, 23–30. [Google Scholar] [CrossRef]
- Bojorquez-Quintal, E.; Escalante-Magana, C.; Eschevarria-Machado, L.; Martinez-Estévez, M. Aluminum, a friend or foe of higher plants in acid soils. Front. Plant Sci. 2017, 8, 1767. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Q.L.; Guo, Z.H.; Zhao, Z. Rhizosphere pH difference regulated by plasma membrane H + ATPase is related to differential Al-tolerance of two wheat cultivars. Plant Soil Environ. 2011, 57, 201–206. [Google Scholar] [CrossRef]
- Zheng, S.J.; Ma, J.F.; Matsumoto, H. High aluminium resistance in buckwheat-1, Al-induced specific secretion of oxalic acid from root tips. Plant Physiol. 1998, 117, 745–751. [Google Scholar] [CrossRef]
- Pellet, D.M.; Papemik, L.A.; Kochian, L.V. Multiple aluminium-resistance mechanisms in wheat (roles of root apical phosphate and malate exudation). Plant Physiol. 1995, 112, 591–597. [Google Scholar] [CrossRef]
- Huang, C.F.; Yamaji, N.; Mitani, N.; Yano, M.; Nagamura, Y.; Ma, J.F. A bacterial-type ABC transporter is involved in aluminium tolerance in rice. Plant Cell 2009, 21, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Levesque-Tremblay, G.; Pelloux, J.; Braybrook, S.A.; Müller, K. Tuning of pectin methyl esterification: Consequences for cell wall biomechanics and development. Plant 2015, 242, 791–811. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Yamaji, N.; Shen, R.F.; Ma, J.F. An Al-inducible expansion gene, Os EXPA 10 is involved in root elongation of rice. Plant J. 2016, 88, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, Y.; Horst, W.J.; Yang, Z.-B. Spatial-temporal analysis of polyethylene glycol-reduced aluminium accumulation and xyloglucan endotransglucosylase action in root tips of common bean (Phaseolus vulgaris). Ann. Bot. 2016, 118, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol. 2000, 41, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Tripathi, D.K.; Singh, S.; Sharma, S.; Dubey, N.K.; Chauhan, D.K.; Vaculίk, M. Toxicity of aluminium on various levels of plant cells and organism: A review. Environ. Exp. Bot. 2017, 137, 177–193. [Google Scholar] [CrossRef]
- Wagatsuma, T.; Khan, M.S.; Watanabe, T.; Maejima, E.; Sekimoto, H.; Yokota, T.; Nakano, T.; Toyomasu, T.; Tawaraya, K.; Uemura, H.; et al. Higher sterol content regulated by CYP51 with concomitant lower phospholipid contents in membranes is a common strategy for for aluminium tolerance in several plant species. J. Exp. Bot. 2015, 66, 907–918. [Google Scholar] [CrossRef] [PubMed]
- Horst, W.J.; Fesht-Christoffers, M.; Naumann, A.; Wissemeier, A.H.; Maier, P. Physiology of manganese toxicity and tolerance in (Vigna unguiculata L.) Walp. J. Plant Nutr. Soil Sci. 1999, 162, 263–274. [Google Scholar] [CrossRef]
- Graham, M.H.; Haynes, R.J.; Meyer, J.M. Changes in soil chemistry and aggregates stability induced by fertilizer application, burning and trash relation on a long-term sugarcane experiment in South Africa. Soil Sci. 2002, 53, 589–598. [Google Scholar] [CrossRef]
- Hacisalihoglu, G.; Kochian, L.V. How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol. 2003, 159, 341–350. [Google Scholar]
- Magnacava, R.; Gardner, C.O.; Clark, R.B. Evaluation of inbred maize lines for aluminium tolerance in nutrient solution. In Genetic Aspects of Plant Mineral Nutrition; Gabelman, H.W., Loughman, B.C., Eds.; Martinus Nijhoff/Dr Junk, W. Publishers: Hague, The Netherlands, 1986; pp. 89–199. [Google Scholar]
- Delhaize, E.; Craig, S.; Beaton, C.D.; Bennet, R.J.; Jagadish, V.C.; Randall, P.J. Aluminium tolerance in wheat (Triticum aestivum L.): Uptake and distribution of aluminium in root apices. Plant Physiol. 1993, 103, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Gudu, S.; Maina, S.M.; Onkware, A.O.; Ombakho, G.; Ligeyo, D.O. Screening of Kenyan maize germplasm for tolerance to low pH and aluminium for use in acid soils of Kenya. In Proceedings of the Seventh Eastern and Southern Africa Regional Maize conference, Nairobi, Kenya, 11–15 February 2002. [Google Scholar]
- Ouma, E.; Ligeyo, D.; Matonyei, T.; Agalo, J.; Were, B.; Too, E.; Onkware, A.; Gudu, S.; Kisinyo, P.; Nyangweso, P. Enhancing maize grain yield in acid soils of Western Kenya using aluminium tolerant germplasm. J. Agric. Sci. Technol. 2013, 3, 33–46. [Google Scholar]
- Cancado, G.M.A.; Loguercio, L.L.; Martins, P.R.; Parentoni, S.N.; Paiva, E.; Borem, A.; Lopes, M.A. Haematoxylin staining as a phenotypic index for aluminium tolerance selection in tropical maize (Zea mays L.). Theor. Appl. Genet. 1999, 99, 747–754. [Google Scholar]
- Giaveno, C.D.; Filho, J.B.D.M. Field comparison between selection method at the maize seedling stage in relation to aluminium tolerance. Sci. Agric. 2002, 59, 397–401. [Google Scholar] [CrossRef]
- Pandey, S.; Ceballos, H.; Magnavaca, R.; Bahia Filho, A.F.C.; Duque-Vargas, J.; Vinasco, L.E. Genetics of tolerance to soil acidity in tropical maize. Crop Sci. 1994, 34, 1511–1514. [Google Scholar] [CrossRef]
- Salazar, F.S.; Pandey, S.; Narro, L.; Perez, J.C.; Ceballos, H.; Parentoni, S.N.; Bahia Filho, A.F.C. Diallel analysis of acid-soil tolerant and intolerant tropical maize populations. Crop Sci. 1997, 37, 1457–1462. [Google Scholar] [CrossRef]
- Welcker, C. Fitting Maize into Cropping Systems on Acid Soils of the Tropics; Final Progress Report 01/10/1996-30/09/2000; INRA Guadeloupe: Paris, France, 2000; pp. 89–108. [Google Scholar]
- Sharma, T.; Dreyer, I.; Kochian, L.; Pineros, M.A. The ALTM family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front. Plant Sci. 2016, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kwena, O.P. Recurrent Selection for Gray Leaf Spot (GLS) and Phaeosphaeria Leaf Spot (PLS) Resistance in Four Maize Populations and Heterotic Classification of Maize Germplasm from Western Kenya. Ph.D. Thesis, University of University of Nairobi, Nairobi, Kenya, 2008; 160p. [Google Scholar]
- Ceballos, H.; Pandey, S.; Narro, L.; Perez-Velazquez, J.C. Additive, dominant, and epistatic effects for maize grain yield in acid and non-acid soils. Theor. Appl. Genet. 1998, 96, 662–668. [Google Scholar] [CrossRef]
- Parentoni, S.N.; Magalhães, J.V.; Pacheco, C.A.P.; Santos, M.X.; Abadie, T.; Gama, E.E.G.; Guimarães, E.O.; Meirelles, W.F.; Lopes, M.A.; Vasconcelos, M.J.V.; et al. Heterotic groups based on yield-specific combining ability data and phylogenetic relationship determined by RAPD markers for 28 tropical maize open pollinated varieties. Euphytica 2001, 121, 197–208. [Google Scholar] [CrossRef]
- Ifie, B.E. Genetic Analysis of Striga Resistance and Low Soil Nitrogen Tolerance in Early Maturing Maize (Zea mays L.) Inbred Lines. Ph.D. Thesis, University of Ghana, Accra, Ghana, 2013; 191p. [Google Scholar]
- Rajendran, A.; Muthiah, A.; Joel, J.; Shanmugasundaram, P.; Raju, D. Heterotic grouping and patterning of quality protein maize inbreds based on genetic and molecular marker studies. Turk. J. Biol. 2014, 38, 10–20. [Google Scholar] [CrossRef]
- Sprague, G.F.; Tatum, L.A. General versus specific combining ability in single crosses. J. Am. Soc. Agron. 1942, 34, 923. [Google Scholar] [CrossRef]
- Parentoni, S.N.; Souza, J.R.; Alves, V.M.C.; Gama, E.E.G.; Coelho, A.M.; Oliveira, A.C.; Guimaraes, P.E.O.; Guimaraes, C.T.; Vasconcelos, M.J.V.; Magalhães, J.V.; et al. Breeding maize for Al tolerance, P use efficiency and acid soil adaptation for the cerrado areas of Brazil: EMBRAPA’s experience. In Proceedings of the 3rd International Symposium on Phosphorus Dynamics in the Soil-Plant Continuum, Uberlândia, Brazil, 14–19 May 2006; pp. 129–131. [Google Scholar]
- Chen, J.; Xu, L.; Cai, Y.; Xu, J. Plant growth habit, root architecture traits and tolerance to low soil phosphorus in an Andean bean population. Euphytica 2009, 165, 257–258. [Google Scholar]
- Borrero, J.C.; Pandey, S.; Ceballos, H.; Magnacava, R.; Bahia, A.F.C. Genetic variances for tolerance to soil acidity in tropical maize population. Maydica 1995, 40, 283–288. [Google Scholar]
- Magnavaca, R.; Gardner, C.O.; Clark, R.B. Comparisons of maize populations for aluminium tolerance in nutrient solution. In Genetic Aspects of Plant Mineral Nutrition; Gabelman, H.W., Loughman, B.C., Eds.; Martinus Nijjhoff: Dordrecht, The Netherlands, 1987. [Google Scholar]
- Lima, M.; Furlani, P.R.; Miranda Filho, J.B. Divergent selection for aluminium tolerance in a maize (Zea mays L.) population. Maydica 1992, 37, 123–132. [Google Scholar]
- Duque-Vargas, J.; Pandey, S.; Granados, G.; Ceballos, H.; Knapp, E. Inheritance of tolerance to soil acidity in tropical maize. Crop Sci. 1994, 34, 50–54. [Google Scholar] [CrossRef]
- The, C.; Tandzi, N.L.; Zonkeng, C.; Ngonkeu, E.L.M.; Meka, S.; Leon, C.; Horst, W.J. Contribution of introduced inbred lines to maize varietal improvement for acid soil tolerance. In Demand-Driven Technologies for Sustainable Maize Production in West and Central Africa; Badu-Apraku, B., Fakorede, M.A.B., Lum, A.F., Menkir, A., Ouedraogo, M., Eds.; International Institute of Tropical Agriculture (IITA): Cotonou, Bénin, 2007; pp. 53–63. [Google Scholar]
- Tekeu, H.; Ngonkeu, E.L.M.; Tandzi, L.N.; Djocgoue, P.F.; Bell, J.M.; Mafouasson, H.A.; Boyomo, O.; Petmi, C.L.; Fokom, R. Evaluation of maize (Zea mays L.) accessions using line x tester analysis for aluminum and manganese tolerance. Int. J. Biol. Chem. Sci. 2015, 9, 2161–2173. [Google Scholar] [CrossRef]
- Petmi, C.L.; Ngonkeu, E.L.M.; Tandzi, N.L.; Ambang, Z.; Boyomo, O.; Bell, J.M.; Tekeu, H.; Mafouasson, H.; Malaa, D.; Noé, W. Screening of maize (Zea mays L.) genotypes for adaptation on contrasted acid soils in the humid forest zone of Cameroon. J. Exp. Agric. Int. 2016, 14, 1–15. [Google Scholar] [CrossRef]
- Rafique, M.; Hussain, A.; Mahmood, T.; Alvi, A.W.; Alvi, B. Heritability and interrelationships among grain yield and yield components in maize (Zea mays L.). Int. J. Agric. Biol. 2004, 6, 1113–1114. [Google Scholar]
- Rafiq, C.M.; Rafique, M.; Hussain, A.; Altaf, M. Studies on heritability, correlation and path analysis in maize (Zea mays L.). Agric. Res. 2010, 48, 35–38. [Google Scholar]
- Bello, O.B.; Ige, S.A.; Azeez, M.A.; Afolabi, M.S.; Abdulmaliq, S.Y.; Mahamood, J. Heritability and genetic advance for grain yield and its component characters in maize (Zea mays L.). Int. J. Plant Res. 2012, 2, 138145. [Google Scholar]
- Khan, M.H.; Ahmad, M.; Hussain, M.; Mahmood-ul-Hassan Ali, Q. Heritability and trait association studies in maize F1 hybrids. Int. J. Biosci. 2018, 12, 18–26. [Google Scholar]
- Baligar, V.C.; Pitta, G.V.E.; Schaffert, R.E.; Bahia Filho, A.F.D.C.; Clark, R.B. Soil acidity effects on nutrient use efficiency in exotic maize genotypes. Plant Soil 1997, 192, 9–13. [Google Scholar] [CrossRef]
- Echarte, L.; Nagore, L.; Di Matteo, J.; Di, J.; Robles, M.; Cambareri, M.; Maggiora, A.D. Grain Yield Determination and Resource Use Efficiency in Maize Hybrids Released in Different Decades: Chapter 2; IITECH/Agricultural Chemistry: London, UK, 2013; pp. 1–36. [Google Scholar]
- Duvick, D.N. What is yield? In Developing Drought and Low N-Tolerant Maize; Edmeades, G.O., Banziger, B., Mickelson, H.R., Pena-Valdivia, C.B., Eds.; CIMMYT: El Batan, Mexico, 1997; pp. 332–335. [Google Scholar]
- Nguyen, H.T.; Blum, A. Physiology and Biotechnology Integration for Plant Breeding; Marcel Dekker Inc.: New York, NY, USA, 2004; 648p. [Google Scholar]
- Xu, Y.; Crouch, J.H. Genomics of tropical maize, a staple food and feed across the world. In Genomics of Tropical Crop Plants; Moore, P.H., Ming, R., Eds.; Springer: New York, NY, USA, 2008; pp. 333–370. [Google Scholar]
- Masojć, P. The application of molecular markers in the process of selection. Cell. Mol. Biol. Lett. 2002, 7, 499–509. [Google Scholar] [PubMed]
- Sasaki, T.; Yamamoto, Y.; Ezaki, B.; Katsuhara, M.; Ahn, S.; Ryan, P.R.; Delhaize, E.; Matsumoto, H. A wheat gene encoding an aluminium-activated malate transporter. Plant J. 2004, 37, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, J.V.; Liu, J.; Guimaraes, C.T.; Lana, U.G.; Alves, V.M. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat. Genet. 2007, 39, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Maron, L.G.; Pineros, M.A.; Guimaraes, C.T.; Magalhaes, J.V.; Pleiman, J.K.; Mao, C.; Shaff, J.; Belicuas, S.N.J.; Kochian, L.V. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTL in maize. Plant J. 2010, 61, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Maron, L.G.; Guimaraes, C.T.; Krist, M.; Albert, P.S.; Birchler, J.A.; Bradburry, P.J.; Buckler, E.S.; Coluccio, A.E.; Danilova, T.; Kudrna, D.; et al. Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc. Natl. Acad. Sci. USA 2013, 110, 5241–5246. [Google Scholar] [CrossRef] [PubMed]
- Froese, P.S.; Carter, A.H. Single nucleotide polymorphisms in the wheat genome associated with tolerance of acidic soils and aluminium toxicity. Crop Sci. 2016, 56, 16621677. [Google Scholar] [CrossRef]
- Furukawa, J.; Yamaji, N.; Wang, H.; Mitani, N.; Murata, Y.; Sato, K.; Katsuhara, M.; Takeda, K.; Ma, J.F. An aluminium-activated citrate transporter in barley. Plant Cell Physiol. 2007, 48, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Oliveira, A.; Martins-Lopes, P.; Tolrà, R.; Poschenrieder, C.; Tarquis, M.; Guedes-Pinto, H.; Benito, C. Molecular characterization of the citrate transporter gene TaMATE1 and expression analysis of upstream genes involved in organic acid transport under Al stress in bread wheat (Tritucum aestivum). Physiol. Plant. 2014, 152, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Yokosho, K.; Yamaji, N.; Ma, J.F. An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J. 2011, 68, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Yang, J.L.; Zhou, Y.; Pineros, M.A.; Kochian, L.V.; Li, G.X.; Zheng, S.J. A de novo synthesis citrate transporter, Vigna umbellate multidrug and toxic compound extrusion, implicated in Al activated citrate efflux in rice bean (Vigna umbellata) root apex. Plant Cell Environ. 2011, 34, 2138–2148. [Google Scholar] [CrossRef] [PubMed]
- Grisel, N.; Zoller, S.; Künzli-Gontarczyk, M.; Lampart, T.; Münsterkötter, M.; Brunner, I.; Bovet, L.; Métraux, J.-P.; Sperisen, C. Transcriptome responses to aluminium stress in roots of aspen (Populus tremula). BMC Plant Biol. 2010, 10, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Li, Y.; Wang, W.; Gai, J.; Li, Y. Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminium toxicity in soybean. BMC Genom. 2016, 17, 223. [Google Scholar]
- Bian, M.; Jin, X.; Broughton, S.; Zhang, X.-Q.; Zhou, G.; Zhou, M.; Zhang, G.; Li, C. A new allele of acid soil tolerance gene from a malting barley variety. BMC Genet. 2015, 16, 92. [Google Scholar] [CrossRef] [PubMed]
- Mattiello, L.; Rodrigues da Silva, F.; Menossi, M. Linking microarray data to QTLs highlights new genes related to Al tolerance in maize. Plant Sci. 2012, 191, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Schulz, T.; Stoye, J.; Doerr, D. Graph teams: A method for discovering spatial gene clusters in Hi-C sequencing data. BMC Genom. 2018, 19, 60–95. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, P.F.; Badu-Apraku, B.; Gracen, V.E.; Danquah, E.Y.; Garcia-Oliveira, A.L.; Asante, M.D.; Afriyie-Debrah, C.; Gedil, M. Identification of Quantitative Trait Loci for grain yield and other traits in tropical maize under high and low soil-nitrogen environments. Crop Sci. 2018, 58, 321–331. [Google Scholar] [CrossRef]
- Shi, S.; Azam, F.I.; Li, H.; Li, B.; Jing, R. Mapping QTL for stay green and agronomic traits in wheat under diverse water regimes. Euphytica 2017, 213–246. [Google Scholar] [CrossRef]
- Delhaize, E.; Ryan, P.R.; Hebb, D.M.; Yamamoto, Y.; Sasaki, T.; Matsumoto, H. Engineering high-level aluminium tolerance in barley with the ALMT1 gene. Proc. Natl. Acad. Sci. USA 2004, 101, 15249–15254. [Google Scholar] [CrossRef] [PubMed]
- Krill, A.M.; Kirst, M.; Kochian, L.V.; Buckler, E.S.; Hoekenga, O.A. Association and linkage analysis of aluminium tolerance genes in maize. PLoS ONE 2010, 5, 111. [Google Scholar] [CrossRef] [PubMed]
- Hoekenga, O.A.; Maron, L.G.; Pineros, M.A.; Cançado, G.M.A.; Shaff, J.; Kobayashi, Y.; Ryan, P.R.; Dong, B.; Delhaize, E.; Sasaki, T. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminium tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103, 9738–9743. [Google Scholar] [CrossRef] [PubMed]
- Ligaba, A.; Katsuhara, M.; Ryan, P.R.; Shibasaka, M.; Matsumoto, H. The BnALMT1 and BnALMT2 genes from rape encode aluminium-activated malate transporters that enhance the aluminium resistance of plant cells. Plant Physiol. 2006, 142, 1294–1303. [Google Scholar] [CrossRef] [PubMed]
- Ligaba, A.; Katsuhara, M.; Sakamoto, W.; Matsumoto, H. The BnALMT1 protein that is an aluminium-activated malate transporter is localized in the plasma membrane. Plant Signal. Behav. 2007, 2, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wu, K.-H.; Wang, P.; Yi, J.; Li, K.-Z.; Yu, Y.-X.; Chen, L.M. Over expression of MsALMT1, from the aluminium-sensitive Medicago sativa enhances malate exudation and aluminium resistance in tobacco. Plant Mol. Biol. Rep. 2013, 31, 769–774. [Google Scholar] [CrossRef]
- Chen, Z.C.; Yokosho, K.; Kashino, M.; Zhao, F.-J.; Yamaji, N.; Ma, J.F. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus. Plant J. 2013, 76, 10–23. [Google Scholar] [PubMed]
- Narro, L.; Pandey, S.; De León, C.; Salazar, F.; Arias, M.P. Implications of soil-acidity tolerant maize cultivars to increase production in developing countries. In Plant Nutrient Acquisition; Ae, N., Arihara, J., Okada, K., Srinivasan, A., Eds.; Springer: Tokyo, Japan, 2001; pp. 447–463. [Google Scholar]
- Nkonya, E.; Xavery, P.; Akonaay, H.; Mwangi, W.; Anandajayasekeram, P.; Verkuijl, H.; Martella, D.; Moshi, A. Adoption of Maize Production Technologies in Northern Tanzania; The United Republic of Tanzania, and the Southern African Centre for Cooperation in Agricultural Research (SACCAR): Gaborone, Botswana; CIMMYT: Texcoco, Mexico, 1998; ISBN 970-648-003-X 53. [Google Scholar]
- Kudi, T.M.; Bolaji, M.; Akinola, M.O.; Nasa’i, D.H. Analysis of adoption of improved maize varieties among farmers in Kwara state, Nigeria. Int. J. Peace Dev. Stud. 2011, 1, 8–12. [Google Scholar]
- Nyangweso, P.M.; Amusala, G.; Gudu, S.; Onkware, A.; Ochuodho, J.; Ouma, E.; Kisinyo, P.; Mugavalai, V.; Okalebo, J.R.; Othieno, C.O.; et al. Drivers of awareness and adoption of maize and sorghum technologies in Western Kenya. In Proceedings of the 19th International Farm Management Congress, Warsaw, Poland, 21–26 July 2013. [Google Scholar]
- Mwabu, G.; Mwangi, W.; Nyangito, H. Does adoption of improved maize varieties reduce poverty? Evidence from Kenya. In Proceedings of the International Association of Agricultural Economists Conference, Gold Coast, Australia, 12–18 August 2006. [Google Scholar]
Type of Maize Genotype | Combining Abilities in Low Soil pH | References |
---|---|---|
Hybrids | Importance of both additive and non-additive gene effects for yield and yield components in acid soil environments. | [100,101,103,111] |
F1 progenies | Both additive and non-additive gene actions with the predominance of non-additive effects were observed under acid soils. | [11,12,15,99] |
Maize populations | Epistasis accounts for the higher proportion of the total variability of the total sum of squares in acid soil locations. | [104] |
Maize hybrids (single and top cross) | Tolerance to Al toxicity in soil acidity was controlled by additive as well as non-additive gene effects, with the preponderance of additive effects. | [111,112,113,114,115,116,117] |
Single cross hybrids | In acid soil with manganese toxicity, the contribution of non-additive gene effects was greater than the additive effects of genes. | [116,117] |
Testcross hybrids | At Nkolbisson in Cameroon, where the soil acidity contains Mn toxicity, the effect of additive genes was higher than the effect of non-additive genes. | [14] |
Secondary Traits * | References |
---|---|
Anthesis silking interval (−0.65 in 1999 and −0.66 in 2000), plant height (+0.65 in 1999, +0.71 in 2000), and ears per plant (+0.50 in 1998, +0.74 in 1999 and +0.74 in 2000) were strongly related to yield. | [101] |
Leaf area (+0.75) and photosynthetic rate (+0.78) were highly and positively correlated with grain yield. | [101] |
Seminal root length measured at leaf stage 4 appeared to be the most sensitive trait for tolerance to low pH under laboratory conditions. | [12,101] |
Relative Net Root Growth (RNRG) was found to predict field performance under Al toxic soils by between 24% and 35%. | [96] |
Plant height (0.36), ear height (0.28), and stress tolerance index (0.94) were highly and positively correlated with yield. Anthesis-silking interval (−0.13), plant aspect (−0.4), ear aspect (−0.47), and stress susceptibility index (−0.90) were negatively correlated with yield. | [3] |
Gene | Crop | Reference |
---|---|---|
MATE (multidrug and toxic compound extrusion) | Maize | [129,130,131] |
Arabidopsis | [55] | |
Sorghum | [129] | |
Rice | [135] | |
Bean | [136] | |
Poplar | [137] | |
Soybean | [138] | |
Zea mays AltSB like (ZmASL), Zea mays aluminum-activated malate transporter2 (ALMT2), S-adenosyl-L-homocysteinase (SAHH), Malic enzyme (ME) | Maize | [139] |
HvMATE | Barley | [135,139] |
ALMT(Al-activated Malate Transporter) | Wheat, rice, tobacco, barley | [128,132,134,144,145] |
BnALMT1 and BnALMT2 GmALMT1 ScALMT1 | Rape Soybean Rye | [146,147,148] |
MsALMT1 HlALMT1 | Medicago sativa Holcus lanatus | [149,150] |
Genotype | Latin America and Asia (1997–2000) | Cameroon (1996–2014) | ||||
---|---|---|---|---|---|---|
Mean | ||||||
Yield (t/ha) | % Yield Reduction | % Yield Increase | Yield (t/ha) | % of Yield Reduction | % Yield Increase | |
General | 2.62 | 44.6 | 19.5 | 3.15 | 37.3 | 5.7 |
Hybrids | 2.64 | 44.9 | 20.1 | 3.0 | 39.5 | 1 |
Single cross | 2.56 | 46.7 | 17.6 | 3.38 | 39.5 | 12.1 |
Best single cross | 2.86 | 50.8 | 26.2 | 6.5 | 39 | 51.2 |
Three-way cross | 2.70 | 41.6 | 21.8 | - | - | - |
Best three-way cross | 3.10 | 41.3 | 31.9 | - | - | - |
OPV | 2.11 | 35.9 | - | 2.97 | 36.9 | - |
Best commercial check | - | - | 3.17 | 40 | 6.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngoune Tandzi, L.; Mutengwa, C.S.; Ngonkeu, E.L.M.; Gracen, V. Breeding Maize for Tolerance to Acidic Soils: A Review. Agronomy 2018, 8, 84. https://doi.org/10.3390/agronomy8060084
Ngoune Tandzi L, Mutengwa CS, Ngonkeu ELM, Gracen V. Breeding Maize for Tolerance to Acidic Soils: A Review. Agronomy. 2018; 8(6):84. https://doi.org/10.3390/agronomy8060084
Chicago/Turabian StyleNgoune Tandzi, Liliane, Charles Shelton Mutengwa, Eddy Léonard Mangaptche Ngonkeu, and Vernon Gracen. 2018. "Breeding Maize for Tolerance to Acidic Soils: A Review" Agronomy 8, no. 6: 84. https://doi.org/10.3390/agronomy8060084
APA StyleNgoune Tandzi, L., Mutengwa, C. S., Ngonkeu, E. L. M., & Gracen, V. (2018). Breeding Maize for Tolerance to Acidic Soils: A Review. Agronomy, 8(6), 84. https://doi.org/10.3390/agronomy8060084