

Technical Note **The Prognostic Breeding Application JMP Add-In Program**

Vasilia A. Fasoula ^{1,*}, Kevin C. Thompson ² and Andy Mauromoustakos ²

- ¹ Institute of Plant Breeding, Genetics & Genomics and Dept. of Crop and Soil Sciences, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
- ² Agricultural Statistics Laboratory, University of Arkansas, Fayetteville, AR 72701, USA; kthompsn@uark.edu (K.C.T.); amauro@uark.edu (A.M.)
- * Correspondence: vfasoula@uga.edu; Tel.: +1-917-684-9906

Received: 4 December 2018; Accepted: 7 January 2019; Published: 9 January 2019

Abstract: Prognostic breeding is a crop improvement methodology that utilizes prognostic equations to enable concurrent selection for plant yield potential and stability of performance. There is a necessity for plant breeders to accurately phenotype plants in the field and select effectively for high and stable crop yield in the absence of the confounding effects of competition. Prognostic breeding accomplishes this goal by evaluating plants for (i) plant yield potential and (ii) plant stability, in the same generation. The plant yield index, stability index and the plant prognostic equation are the main criteria used for the selection of the best plants and the best entries grown in honeycomb designs. The construction of honeycomb designs and analysis of experimental data in prognostic breeding necessitate the development of a computer program to ensure accurate measurement of the prognostic equations. The objective of this paper is to introduce the Prognostic Breeding Application JMP Add-In, a program for constructing honeycomb designs and analyzing data for the efficient selection of superior plants and lines. The program displays powerful controls, allowing the user to create maps of any honeycomb design and visualize the selected plants in the field. Multi-year soybean data are used to demonstrate key features and graphic views of the most important steps.

Keywords: crop improvement; genetic gain; plant yield index; stability index; crop yield potential; honeycomb selection designs; selection efficiency; prognostic equations; moving replicates; moving grids

1. Introduction

To meet the challenges of genetic improvement, new efficiencies in breeding should be introduced to accelerate the progress through selection and maximize the annual genetic gain [1]. Prognostic breeding is a crop improvement methodology that utilizes the honeycomb selection designs and the prognostic equations to enable concurrent selection for plant yield potential and stability of performance [2]. The unit of evaluation and selection in prognostic breeding is the single plant grown in the absence of interplant competition for reasons that have been discussed expensively by Fasoula and Fasoula [3–5]. The range of phenotypic expression is maximized because plants express their full genetic potential for tillering capacity and robust root systems [3–7]. Additional details on the principles of this methodology are discussed in the following review papers [2–5,8,9].

There is a necessity for plant breeders to accurately phenotype plants in the field and select effectively for both plant yield potential and stability of performance. Prognostic breeding accomplishes this goal by evaluating plants for the two components of the crop yield potential: (1) plant yield potential (using the plant yield index) and (2) plant stability (using the stability index), measured in

the same generation [2]. Accurate measurement of the above parameters is accomplished by using the unique features of honeycomb designs [8].

Honeycomb selection designs are advanced experimental designs that possess some innovative properties. They utilize moving circular replicates/rings to ensure increased local control and moving triangular grids to ensure effective sampling for soil heterogeneity [8]. In any honeycomb design, each plant is located in the center of a moving replicate/ring. This permits effective reduction of the masking effects of soil heterogeneity by using the plant yield index (PI). The designs allocate plants of each entry in a moving triangular grid spreading across the whole field, sampling effectively for soil heterogeneity. Formation of moving grids allows proficient measurement of stability of performance by using the stability index (SI). The product of PI and SI gives the plant prognostic equation (PPE) which measures the crop yield potential of each plant and is used for the selection of superior plants [2,10,11].

The prognostic breeding methodology speeds up the early stages of plant selection, reduces the time-frame required to release cultivars, and accelerates the genetic improvement of crops [2]. It utilizes high selection pressures in order to increase selection efficiency and maximize the annual genetic gain. When this methodology was applied in maize (*Zea Mays* L.) for 5 cycles, it produced an average annual genetic gain that ranged from 23% to 36%, providing evidence that selection efficiency can be significantly maximized and progress through selection can be accelerated [12].

The objective of this work is to introduce a JMP Add-In program as a useful tool for the construction of the different honeycomb designs and the analysis of data in order to select effectively the best entries and the best plants per entry. This software represents a powerful upgrade from the previous version developed by Mauromoustakos et al. [13]. The software is exemplified by using multi-year soybean data to demonstrate the construction of unreplicated and replicated designs along with graphic views of the most important steps.

The Prognostic Breeding Application is a JMP Add-In, a program for constructing honeycomb designs and analyzing data for the efficient selection of superior plants and lines. It was presented at JMP Discovery Summit Europe 2018 in Frankfurt by Mauromoustakos et al. [14].

The JMP Add-in program is available at the JMP Discovery Summit website https: //community.jmp.com/t5/Discovery-Summit-Europe-2018/Honeycomb-Designs-Add-Innew-version/ta-p/52961 or from the authors. The JMP Add-in program is also available as Supplementary File in Agronomy MDPI, Program File S1: Prognostic Breeding Application Ver 6-2018-08-17.JMPAddIn.

2. Materials and Methods

2.1. Honeycomb Designs and Prognostic Equations Used to Select for High and Stable Crop Yield Potential

Honeycomb designs [8] are used in the prognostic breeding methodology of crop improvement [2]. They can be unreplicated or replicated and can accommodate a large number of plants in various crops, ranging from inbreeders to outbreeders to clonally propagated crops [2,4,8]. In unreplicated designs, each plant is its own entry.

Replicated designs include multiple plants for each entry. They are systematic designs possessing some innovative properties, the most important ones being: i) the formation of moving replicate/rings and ii) the formation of moving triangular grids [2,8]. Replicated designs use moving rings to minimize the masking effects of soil heterogeneity on single-plant yields and moving triangular grids to ensure effective sampling of field heterogeneity, essential for comprehensive selection of stability. Due to the formation of moving rings and moving grids, replicated designs are only available for a selected number of entries (Figure 1).

The possible number of entries (R) allowable in replicated honeycomb designs is given by the formula $R = X^2 + XY + Y^2$, where X and Y are integer numbers [2,8]. A partial list of replicated honeycomb designs, obtained when the X and Y take values from 0 to 9, is depicted in Figure 1. The numbers in the center of the squares are the allowable number, R, of entries. For example,

the Replicated-3 (X = 1, Y = 1) honeycomb design evaluates 3 entries, while the Replicated-109 (X = 5, Y = 7) honeycomb design evaluates 109 entries. The construction of any replicated honeycomb design requires identification of the starting number of each field row through a parameter K. The numbers in the corners of squares represent the K numbers, which are used for the identification of the starting numbers of each row [8].

For every honeycomb design, the starting numbers of each field row are unique and are specified by the parameter K. Honeycomb designs have two or four Ks (Figure 1), meaning that there simply are two or four ways to construct the same design. Different Ks produce different starting numbers of field rows and therefore, different arrangements of entries in the field. Details on the construction of the designs are discussed in Fasoulas and Fasoula [8].

Figure 1. A partial list of replicated honeycomb designs, obtained when the X and Y take values from 0 to 9. The bold numbers in the center of the squares are the allowable number R of entries. The numbers in the corners are the K parameters, used for the identification of the starting number of each row. The X, Y and K are internal parameters necessary for the construction of the designs [8]. Formation of moving replicates/rings and moving triangular grids applies to all the honeycomb designs.

Figure 2 displays the arrangement of 21 entries of a Replicated-21 honeycomb design constructed using the parameters X = 1, Y = 4 and K = 4. The innovative features of the honeycomb designs, i.e., the formation of moving replicate/rings and moving triangular grids will be demonstrated by using as an example this design.

Figure 2. The Replicated-21 honeycomb design evaluates plants of 21 lines (entries). Each plant is placed in the center of a moving replicate/ring (green circles), allowing the use of the plant yield index (PI) for measuring plant yield devoid of the confounding effects of soil heterogeneity [2]. Plants of each line are placed in the corners of a moving triangular grid (shown here for line no. 9) which ensures effective sampling for soil heterogeneity and allows effective measurement of the stability index (SI).

Honeycomb designs ensure that every plant lies in the center of a complete moving replicate/ring. As Figure 2 shows, each plant is placed in the center of a moving replicate/ring, shown for two random plants of line no. 9 (green circles). Thus, each plant is always surrounded by plants that belong to the same lines. The plant yield index $PI = (x/\bar{x}_r)^2$ measures plant yield devoid of the confounding effects of soil heterogeneity, because *x* is the yield of each plant and \bar{x}_r is the mean yield of the surrounding plants within the specified moving ring [2,10,11].

In our example, the moving ring consists of 18 plants (green circles). It is important to note that the size of the moving ring can vary; the smallest ring size is 6 plants and the largest ring size can include more than 120 plants [4,8]. No matter the size of the moving ring, each plant is always surrounded by moving-ring plants that belong to the same lines (entries). The choice of the size of the moving ring depends on the genetic structure and size of the population being sampled and on the degree of soil homogeneity.

Formation of moving replicates/rings ensure that plants of each line are placed in the corners of a moving triangular grid (shown here for line no. 9) which ensures effective sampling of soil

heterogeneity and allows measurement of the stability index $SI = (\overline{x}_g/s)^2$ [2,10,11]. In the SI formula, \overline{x}_g and s denote the mean plant yield and standard deviation, respectively, of the line's plants laid out in a moving grid. The moving grids are formed for the plants of each line and for every honeycomb design.

The product of the PI and SI gives the Plant Prognostic Equation (PPE) which measures the crop yield potential of each plant and is used for the selection of best plants [2,10,11].

$$PPE = (x/\overline{x}_r)^2 \cdot (\overline{x}_g/s)^2$$

In addition to the PPE, the Line Prognostic Equation (LPE) can be used for the selection of the best lines [2,11].

$$LPE = \left(\overline{x}_g/\overline{x}_t\right)^2 \cdot \left(\overline{x}_g/s\right)^2$$

The LPE is the product of the Line yield index $LI = (\overline{x}_g/\overline{x}_t)^2$ and the stability index $SI = (\overline{x}_g/s)^2$, where \overline{x}_t is the mean plant yield of the whole trial.

The MeanPPE (average PPE value for the line) and LPE produce similar results since they both measure concurrently yield potential and stability of performance. The user can decide which one to use. The PI, SI, LI, LPE and PPE are unitless. Their use speeds up the early stages of plant selection and accelerates the annual genetic gain by effectively increasing selection pressure to only keep the very best plants [2,12].

Honeycomb designs can be laid out in any field orientation, square or rectangular; to accommodate the specific needs of different plant breeding programs. Missing plants present no problem because they affect neither the yield of nearby plants due to the use of ultra-wide spacings nor the efficiency of selection due to the use of numerous plants within the moving ring. The PI and PPE for plants on the border are calculated with incomplete moving rings.

2.2. JMP Add-In Specifications

The Prognostic Breeding Application is a JMP Add-In that contains two programs: Honeycomb Design Selection and Honeycomb Analysis [14]. This application suite was developed under JMP Version 13.2.1 for Windows and requires installation of the JMP software. It has been tested under Windows and MacOS of JMP.

The Honeycomb Design Selection program constructs a JMP table for a specific honeycomb design corresponding to a specified number of entries, field rows and plants per row as presented by Mauromoustakos et al. [14]. The user runs the Honeycomb Design Selection program by selecting it from the JMP Add-Ins menu. When the user starts the Honeycomb Design Selection program, the **Honeycomb design selection widow** is displayed (Figure 3). The user can click on the **Design** list-box to select a honeycomb design corresponding to the number of entries in the experiment. Many designs have alternate arrangements of the entries. These alternatives may be selected by the **Design K** list-box. The design parameters for the selected design are displayed.

The Honeycomb Design Selection program can be used to generate replicated honeycomb designs with frequently used number of entries, an UN (unreplicated) design and a UN-1 (unreplicated with 1 check) design as shown in Fasoulas and Fasoula [8]. The user can click on the **More designs** button to update the **Design** list box to display additional honeycomb designs for different numbers of entries. The user can enter the number of rows in the field and the number of plants in each row and the distance between plants. The **Create** button generates the specified design.

The Honeycomb Analysis program displays a graphic view of a honeycomb design stored in a JMP table as shown by Mauromoustakos et al. [14]. The user may optionally color and label the points in the graph. The program can calculate **Moving Ring averages** corresponding to various **Moving Ring sizes** and summary tables for replicated designs.

If the data file is a JMP table originally created by the JMP program, the Honeycomb Analysis program is embedded within the JMP table as a table property. After opening the JMP table, the user

can run the Honeycomb Analysis program by right-clicking on it in the table property area and selecting **RunScript.** Alternatively, the user can run the Honeycomb Analysis program by selecting it from the JMP Add-Ins menu.

The Honeycomb Analysis program requires that the X and Y axis columns correspond to the physical location of the plants within the field. The Honeycomb Analysis program displays a field map with the axes adjusted to emphasize the honeycomb pattern of the plants. The graph is a standard JMP Overlay Plot. The program displays powerful controls that allow the user to modify the graphs and visualize the data. The standard JMP controls are also available. The Honeycomb Analysis program makes extensive use of the Selection, Color and Label row states [14].

The **Color plants** control modifies the JMP table's row state to color the graph points by the selected columns. Coloring by a continuous column colors the points in shades of blue, corresponding to the value of the column. Coloring by a nominal or ordinal column selects a different color based upon level of the column.

The **Label plants** control sets the Label property for the selected columns. Hovering the mouse over a point in the graph displays the values of these columns for these points.

The **Select plants** control emphasizes a subset of plants. The user may also select plants from the JMP table, a data filter, or the graph.

The **Graph axes** control provides an easy method to display a subset of the graph. The user may also modify the axis settings by right-clicking on the axis.

The **Moving ring** control allows the user to create moving ring variables for a selected continuous column using a moving ring of the specified size. If an Entry column is included, additional moving ring variables suitable for replicated designs are calculated. The moving ring variables include the response, entry and ring size as a part of the variable name [14].

For replicated designs, the program displays summary tables which calculate the PI, SI, LI, and the prognostic equations PPE and LPE used for the efficient selection of the best lines and the best plants per line. The PI, SI, LI, LPE and PPE are unitless indices allowing valuable comparisons of trials across years and locations. Their use speeds up early generation selection and increases annual genetic gain by effectively using high selection pressures (1–2%) to only keep the very best plants [2,12].

Figure 3. Construction of the UN (unreplicated) honeycomb design with 30 rows and 14 plants per row.

2.3. Data Material Used for the Case Study

Field studies in soybean (*Glycine max* L.) grown across years on agricultural land in the USA are used to illustrate the Prognostic Breeding Application for the construction and analysis of honeycomb designs and for the selection of best plants and lines. Over time, the performance of crop cultivars can deteriorate requiring the development of newer lines [2–4]. Elite gene pools have inherent mechanisms to provide a continuing source of new genetic variation [15]. Molecular data provide evidence that the genome is plastic, dynamic and constantly changing [16–19], and long-term selection experiments suggest that selection gain can be continual [20,21].

A multi-year program was implemented in order to develop improved lines of the soybean cultivar "Haskell" [2]. In the first cycle, plants from "Haskell" foundation seed were grown in an Unreplicated honeycomb design. Twenty best plants from this cycle were selected based on the Plant Index (PI) for Yield and formed the 20 candidate lines of the next cycle. In the second cycle, multiple plants from these 20 lines, plus foundation seed as the check line, were grown in a Replicated-21 honeycomb design. Based on the highest Plant Prognostic Equation (PPE) values, the best candidate lines and the best plants within these lines were selected for investigation in additional cycles.

3. Results and Discussion: Demonstrating the New JMP Add-In Program

Data from a multi-year experiment in soybean will be used to illustrate the use of the JMP Add-In program for the selection of superior plants and lines in soybean. This data is included in the JMP Add-In.

3.1. Cycle 1: Unreplicated Honeycomb Design—Construction, Data Analysis and Selection of Best Plants

Seeds were obtained from the Foundation seed source of the soybean cultivar "Haskell". Seeds were planted in an Unreplicated honeycomb design that evaluated 420 plants in 30 rows and 14 plants per row, using a plant spacing of 0.9 m. After emergence, hill plots were thinned to contain a single plant. Plants were harvested when they reached maturity [2].

To construct the aforementioned unreplicated honeycomb design, the user can employ the following steps. From the JMP Add-Ins menu, select the **Prognostic Breeding Application** and go to the **Honeycomb Design Selection** item. In the **Honeycomb Design Selection** window, select the **UN** design from the Design drop-down box. The Field size control allows the user to specify the number of rows and plants per row in the field. Enter 14 in the Plants across box, 30 in the Rows down box and 0.9 in the Plant spacing box as shown in Figure 3.

Press the **Create** button when finished. This will create a JMP data table for the unreplicated honeycomb design with 30 rows and 14 plants per row. The XPosition and YPosition columns denote the placement of each plant in the field (Figure 4).

Record the traits of interest in the JMP data table. In this experiment we recorded seed yield (i.e., the seed yield of each plant). Columns may be renamed (i.e., **Observation** to **YLD**, **Entry** to **PlantID**) and additional columns may be created as desired. The data values in the Entry column may be modified but the columns Row, Plant, XPosition, YPosition should not be modified.

For the analysis, run the Honeycomb Analysis table script embedded within the JMP table. The program generates the graphic view of the design and Plot Controls that allow the user to visualize data points, analyze the data, and select plants as shown in Figure 5.

You can assign the column YLD to the Color role to color the graph according to the value of the yield to get an idea of the highest-yielding plants in this field. You can label plants by PlantID and YLD columns. In this case, hovering the mouse over a point in the graph displays the values of PlantID and YLD for these points, as shown for the last plant of row 2 in the honeycomb graph (Figure 5). Missing plants are displayed as white circles. Assign the column YLD to the **Moving Ring Response**

role. Select the Moving Ring size. In this example, we selected a moving ring of 18 plants (MR = 18) (Figure 5). Press the **Create MR variables** button.

🛄 UN Honeycomb Design - JMP	Pro							X
■ UN Honeycomb Design Honeycomb Version 6		Observation	Entry	Row	Plant	XPosition	YPosition	
Honeycomb Design UN	1		1	1	1	0.9	0.779	
Honeycomb K #Entries 0 Honeycomb K Parameter 0	2	•	2	1	2	1.8	0.779	[
Honeycomb M #Groups .	3	•	3	1	3	2.7	0.779	
Honeycomb X Parameter	4	•	4	1	4	3.6	0.779	
Honeycomb V Parameter	5	•	5	1	5	4.5	0.779	
Honeycomb Analysis	6	•	6	1	6	5.4	0.779	
	7	•	7	1	7	6.3	0.779	
Columns (6/0)	8	•	8	1	8	7.2	0.779	
Observation	9	•	9	1	9	8.1	0.779	
Lentry *	10	•	10	1	10	9	0.779	
Row X	11	•	11	1	11	9.9	0.779	
XPosition 🖶 🛣	12	•	12	1	12	10.8	0.779	
✓ YPosition ⊕ ★	13	•	13	1	13	11.7	0.779	
	14	•	14	1	14	12.6	0.779	
Rows	15	•	15	2	1	1.35	1.559	
All rows 420	16	•	16	2	2	2.25	1.559	
Selected 0	17	•	17	2	3	3.15	1.559	
Hidden 0	18	•	18	2	4	4.05	1.559	
Labelled 0	**	4	**		-	1.05	4 550	

Figure 4. JMP data table generated according to the specified Unreplicated honeycomb design. Entry, Row, Plant, XPosition and YPosition columns are displayed.

Figure 5. Graphic view of the unreplicated honeycomb design stored in the JMP table. The graph shows the layout of the plants according to the honeycomb design, while the intensity of the blue provides a quick visual of the lowest and highest-yielding plants.

The necessary moving ring variables are added to the JMP table, so that the breeder can carry out the selection of plants. In the unreplicated honeycomb designs, selection of the best plants is performed based on the PI(YLD) column. The $PI(YLD) = (x/\bar{x}_r)^2$ compares and adjusts the yield of each plant to the mean plant yield of its 18 surrounding moving-ring plants. We decided to select the best 20 plants.

To select the best 20 plants, assign the Rank PI column to the **Select Plants** role and adjust the selection limits to 1 and 20. Since one of the selected plants is on the border, you can decide to keep the border plant which has been evaluated with a smaller moving ring size, or you can increase the selection limit until 20 non-border plants are selected. We decided to drop the border plant, thus we assigned the selection limits to 1 and 21 in order to select 20 non-border plants (Figure 6). From the JMP menu, select **Tables** and go to **Subset** to create a JMP table of the selected plants.

Figure 6. Graphic view of the best 21 plants in the unreplicated honeycomb design, selected based on high plant yield index PI(YLD).

This creates a subset of the JMP table that contains only the 21 selected plants as shown in Figure 7. You can sort the subset JMP table by Rank PI(YLD). Delete the border plant (Plant = 1, Row = 27) from the subset. Save this JMP table for future reference. As the data show, when a moving ring of 18 plants was used (MR = 18), the best 20 plants had a PI(YLD) > 1.77, while the two highest-ranking plants had a PI(YLD) value of 2.91 and 2.83, respectively.

Subset of Soybean Trial - 1st Cycle - UN	1 - JM	P Pro	,												
Subset of Soybean Trial - 1st Cycle - UN Honeycomb Version 6		√	11/1	YLD	Plant ID	Row	Plant	XPosition	YPosition	Rank(YLD)	MRPlants(YLD) @ MR=18	MRMean(YLD) @ MR=18	PI(YLD) @ MR=18	Rank PI(MR=	YLD) @ 18
Honeycomb Design	UN	•	1	302.9	28.12	28	12	11.25	21.82	1	16	177.65	2.9072		1
Honeycomb K #Entries		•	2	265.2	24.02	24	2	2.25	18.71	5	16	157.64	2.8303		2
Honeycomb M #Groups	, i	•	3	282.5	27.07	27	7	6.3	21.04	2	17	170.92	2.7319		3
Honeycomb X Parameter		•	4	267.8	10.04	10	4	4.05	7,794	3	15	173.47	2,3832		4
Honeycomb Y Parameter		•	5	255.2	7.08	7	8	7.2	5.456	7	17	166.58	2 3469		5
Honeycomb D Plant spacing	0.9		6	241.9	4.07	4	7	6.75	2 119	12	17	157.07	2,2400		6
Source			7	241.0	4.07	11	12	11.7	0 574	15	17	175.07	2.3423		7
Honeycomb Analysis		-	,	200.0	17.11	17	15	11.7	12.25	4	17	1/ 3.9/	2.2907		,
			0	240.0	17.11	17	11	9.9	15.23	11	1/	104.50	2.2300		0
 Columns (13/1) 		•	9	249.9	27.01	27	1	0.9	21.04	8	9	108.94	2.1880		9
🔺 YLD 🕔		•	10	260.2	20.12	20	12	11.25	15.59	6	1/	1/8.91	2.1151		10
📙 Plant ID 🔍 🕂 🛠		•	11	220.7	14.08	14	8	7.65	10.91	30	17	153.55	2.0660		11
al Row *		•	12	233.9	8.02	8	2	2.25	6.235	17	17	163.34	2.0507		12
A VD-sitis dia M		•	13	228.8	3.03	BH	Sort - J	MP Pro	1.00			10.00		×	13
VDesition ····································		•	14	219.5	13.08										14
A Rank(VI D) + *		•	15	239.1	7.11		EIB S	ort rows by :	specified co	lumns.					15
⊿ (YLD) @ MR=18 (6/1)		•	16	223.7	27.06		578								16
MRPlants(YLD) @ MR=18*		•	17	243.3	15.02		Select C	olumon -					Action		17
🚄 MRRadius(YLD) @ MR=18 📾 🗚		•	18	249	18.12		- Select C				I	_	Accon		18
🔺 MRPressure(YLD) @ MR=18 📾 🕂 🛠		•	19	216.5	27.03		-13 Cd	olumns	0000	10	By	A Rank PI(@ I	MR=18 OK	Ξ	19
MRMean(YLD) @ MR=18*		•	20	213.6	17.08			MRPressure MRMoop(VI	(YLU) @ MF D) @ MP_1	(=18 0	Remo	optional	Cance		20
✓ PI(YLD) @ MR=18(→ *		•	21	2287	10 10			PI(YI D) @ N	/R=18		Kento				21
ank PI(YLD) @ MR=18 🖓 🕆 🛪		-	1	2200	10.10			Rank PI(YLD) @ MR=18		*	▲ ▼	Real		21
			_	۰									Kecal		F
	-				_	- [📝 Repla	e table			Save Def:	ault Options	Help		
						4								•	

Figure 7. JMP table showing the best 20 plants selected (one border plant was dropped) for the next cycle based on PI(YLD).

The PI(YLD), and therefore the best plants, depends upon the moving ring size selected. The breeder may calculate the PI(YLD) for different moving ring sizes (i.e., MR = 18 plants and MR = 30 plants) by changing the moving ring size and pressing the **Create MR variables** button. The size of the moving ring depends on the genetic structure and size of the population being sampled and on the degree of soil homogeneity [4,8]. Heterogeneous fields require smaller moving ring sizes than homogeneous fields. After comparing the PI(YLD) for different moving ring sizes, the breeder may decide to modify his/her choice of which plants are "best."

3.2. Cycle 2: Replicated Honeycomb Design—Construction, Data Analysis and Selection of Best Lines and Best Plants

Seeds from the 20 best plants (from cycle 1) plus the check were planted in a Replicated-21 honeycomb design (Figure 2). Each of these selected plants forms a candidate line. Foundation seed from "Haskell" was assigned to the 21st line (representing the check). The seeds were planted in a R-21 honeycomb design of 672 plants in 14 rows, 48 plants per row, using a plant spacing of 0.9 m [2]. There were 32 plants for each line. After emergence, hill plots were thinned to contain a single plant. Plants were harvested when they reached maturity. A partial view of the soybean experiment is depicted in Figure 8. While a square arrangement of plants produces field rows and alleys in two directions, a triangular arrangement of plants produces field rows and alleys in three directions (Figure 8).

Figure 8. Soybean plants grown in the R-21 honeycomb design with a plant spacing of 0.9 m.

To construct the aforementioned replicated honeycomb design the user can employ the following steps. From the JMP Add-Ins menu, select the **Prognostic Breeding Application** and go to **Honeycomb Design Selection** item. Select R-21 in the Design box and 4 in the Design K box. If you select 16 in the Design K box, the R-21 will be constructed with an alternative arrangement of entries. Enter 48 in the Plants across box, 14 in the Rows down box and 0.9 in the Plant spacing box as shown in Figure 9.

Honeycomb desi	gn selection - JMP Pro	
Select Design Design R-21 Design K	Field size Plants across 48 Rows down 14 Plant spacing 0.9	Action Create Close
Design parameters Design Type Parameters Plants in 1 set Rows in 1 set Powr in 1 set	R-21 Ungrouped X=4 Y=1 K=4 21 1	More designs Save designs Help

Figure 9. Construction of the R-21 honeycomb design with 14 rows and 48 plants per row.

Press the **Create** button to create the JMP table (Figure 10). Record the traits of interest in the JMP data table. In this experiment we recorded Seed yield (YLDG), Height (HT), Seed size (SDS), Seed protein (PROT) and Seed oil (OIL) as shown in Figure 10. The Entry column was renamed and

JMP values labels were used to identify the check. The columns Row, Plant, XPosition, YPosition should not be modified.

🕎 Soybean Trial - 2nd Cycle - R	21 - JMP	Pro										x
■ Soybean Trial - 2nd Cycl Honeycomb Version 6		Line	Row	Plant	XPosition	YPosition	YLDG	нт	SDS	PROT	OIL	
Honeycomb Design R-21	1	CK	1	1	0.9	0.7794228	187	24	20.7	41.8	22	
Honeycomb K #Entries 21 Honeycomb K Parameter 4	2	1	1	2	1.8	0.7794228	210.3	26	17.9	40.7	22.4	
Honeycomb M #Groups 1	3	2	1	3	2.7	0.7794228	128	25	16.9	40.1	22.9	
Honeycomb X Parameter 4	4	3	1	4	3.6	0.7794228	192.9	27	19	40.5	21.8	
Honeycomb Y Parameter 1	5	4	1	5	4.5	0.7794228	•	•	•	•	•	
Honeycomb D Plant spacing U.	6	5	1	6	5.4	0.7794228	197.5	27	20.3	42	21.7	
P Honeycomb Analysis	7	6	1	7	6.3	0.7794228	•	•	•	•	•	
	8	7	1	8	7.2	0.7794228	134.1	26	14.7	40.5	21.2	
Columns (10/0)	9	8	1	9	8.1	0.7794228	149.9	25	19.9	42.9	22	
A Row *	10	9	1	10	9	0.7794228	196	22	19.3	43	21.4	
A Plant \star	11	10	1	11	9.9	0.7794228	140.5	26	18.1	43	22.3	
🔺 XPosition 🖶 🛠	12	11	1	12	10.8	0.7794228	234.8	23	20.5	41.3	21.4	
YPosition - *	13	12	1	13	11.7	0.7794228	•		•	•	•	
/ YLDG	14	13	1	14	12.6	0.7794228			•	•	•	
	15	14	1	15	13.5	0.7794228	185.8	22	21.8	40.7	21.1	
PROT	16	15	1	16	14.4	0.7794228	153.7	25	21.5	42.2	21	
oil	17	16	1	17	15.3	0.7794228	183.8	27	20.6	40.4	22.2	
	18	17	1	18	16.2	0.7794228	239.6	28	18.2	39.3	20.8	
All rows 672	19	18	1	19	17.1	0.7794228	176.6	28	18.5	41	21.5	
Selected 0 v		٠	-									+

Figure 10. JMP Table generated according to the specified R-21 honeycomb design with data collected for seed yield, height, seed size, seed protein and seed oil.

To analyze the data, run the **Honeycomb Analysis** table script embedded within the JMP table (upper left side). The program generates the graphic view of the design with Plot Controls (Figure 11) that allow the user to visualize data points, analyze the data, and select plants. The user can assign the Line and the trait of interest (YLDG) columns to the **Label** role. The values of these columns are displayed in a pop-up window when the mouse hovers over the point in the graph.

Figure 11. Graphic view of the R-21 honeycomb design stored in the JMP table. The graph shows the layout of the plants according to the specified design (14 rows and 48 plants/row). The 21 lines have been labeled by different colors and shaded by the intensity of YLDG (using the Color and Intensity button). White circles represent missing plants.

Agronomy 2019, 9, 25

The user can also visualize the R-21 design by labeling plants by Line and displaying labels in the graph (Figure 12).

0.779 • 821 #1 #2 #3 #4 #5 #6 #7 #5 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #1 #2 #3 #4 #5 017 018 019 020 021 01 02 03 04 05 06 07 08 09 010 011 012 013 014 015 016 017 018 019 020 021 01 02 03 04 05 06 07 08 09 010 011 012 013 014 015 016 017 018 019 020 021 01 2337- 012 013 014 015 016 017 018 019 020 021 01 02 03 04 05 06 07 08 09 010 011 012 013 014 015 016 017 018 019 020 021 01 02 03 04 05 06 07 08 09 010 011 012 013 014 015 016 017 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e 3895- 43 44 55 66 67 48 49 410 411 412 413 414 415 416 417 418 419 420 421 41 42 43 44 45 45 46 47 48 49 410 411 412 413 414 415 416 417 418 419 420 421 41 42 43 44 45 46 47 48 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e 4.674 -535-535-615 e15 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 6232-e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e14 e15 e16 e17 e18 e19 e20 e21 e1 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e10 e10 e11 e12 e13 e14 e15 e16 e17 e18 e1 7.011- 66 67 68 69 610 611 612 613 614 615 616 617 618 619 620 621 61 62 63 64 65 66 67 68 69 610 611 612 613 614 615 616 617 618 619 620 621 61 62 63 64 65 66 7 68 69 610 611 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 8.559- 018 019 020 021 01 02 03 04 05 06 07 08 09 010 011 012 013 014 015 016 017 018 019 020 021 01 02 03 04 05 06 07 08 09 010 011 012 013 014 015 016 017 018 019 020 021 01 02 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e 9.348-10.127 - 99 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 10306 •5 •6 •7 •8 •9 •10 •11 •12 •13 •14 •15 •16 •17 •18 •19 •20 •21 •1 •2 •3 •4 •5 •6 •7 •8 •9 •10 •11 •12 •13 •14 •15 •16 •17 •18 •19 •20 •21 •1 •2 •3 •4 •5 •6 •7 •8 •9

Figure 12. Graphic display of the R-21 honeycomb design, showing the layout of the 21 lines in 14 rows and 48 plants per row.

Assign the trait of interest (YLDG) to the **Moving Ring Response** role. Verify that the Line column is assigned to the **Moving Ring Entry** role (Figure 11). Select the Moving Ring size. In this case, we chose a ring size of 18 plants. Then press the **Create MR variables** button. Various moving ring variables are added to the JMP table. For replicated designs, the JMP program generates a summary table that includes the Line Prognostic Equation (LPE) and the line average of the Plant Prognostic Equation (MeanPPE) used for selection of the best lines.

Summary Table calculates N (no. plants/line), Mean and Std Deviation of the trait, SI, LI, LPE, MeanPI, MeanPPE. To more easily compare lines and get the resolution range, selected variables are rescaled with respect to their maximum value (Mean%, SI%, LI%, LPE%, Mean%PI, Mean%PPE) (Figure 13).

oybean T	rial - 2nd	Cycle - R	21 - Honey	comb Analy	sis - JMP F	ro								
oybean	Trial -	2nd Cyc	le - R21	- Honeyc	omb An	alysis								
Plot co	ntrols]												
		1												
culated N	/IR variab	les (YLDG)	BY (Line)	@ MR=18.										
💌 R-21	l honey	comb d	lesign - L	ine										
Progno	ostic Eq	uations	Summai	у										
(YLDG	6) BY (Line	e) @ MR=:	18 ×											
Line	N	Mean	Mean%	StdDev	SI	SI%	Ц	Ц%	LPE	LPE%	Mean PI	Mean% PI	Mean PPE	Mean% F
12	26	168.3	79.49	20.04	70.49	100.00	0.891	63.19	62.80	100.00	0.904	60.48	63.75	100
9	28	211.7	100.00	36.43	33.76	47.90	1.410	100.00	47.60	75.80	1.495	100.00	50.49	79
10	29	185.0	87.40	28.45	42.30	60.01	1.077	76.39	45.56	72.55	1.105	73.91	46.75	73
18	28	188.7	89.16	29.85	39.99	56.73	1.121	79.50	44.82	71.38	1.168	78.09	46.70	73
6	28	181.6	85.78	30.55	35.32	50.10	1.037	73.58	36.64	58.34	1.044	69.83	36.88	57
7	26	179.1	84.62	31.37	32.59	46.24	1.010	71.60	32.91	52.40	1.067	71.34	34.77	54
14	30	189.2	89.40	34.90	29.39	41.70	1.127	79.92	33.12	52.75	1.182	79.06	34.75	54
19	25	203.5	96.11	39.58	26.42	37.49	1.302	92.38	34.42	54.81	1.314	87.84	34.71	54
16	24	192.9	91.13	36.63	27.74	39.36	1.171	83.06	32.49	51.74	1.250	83.62	34.69	54
8	26	172.7	81.60	30.23	32.65	46.32	0.939	66.58	30.65	48.81	0.971	64.92	31.70	49
13	27	167.0	78.88	29.98	31.02	44.00	0.877	62.23	27.21	43.34	0.925	61.87	28.70	45
3	27	168.2	79.46	29.91	31.63	44.88	0.890	63.14	28.16	44.84	0.906	60.56	28.65	44
20	27	170.6	80.60	33.29	26.27	37.27	0.916	64.97	24.07	38.32	0.931	62.27	24.46	38
1	29	169.6	80.13	33.16	26.16	37.12	0.905	64.21	23.69	37.72	0.933	62.40	24.41	38
4	25	177.2	83.73	36.79	23.21	32.92	0.989	70.11	22.94	36.53	1.047	70.01	24.30	38
2	24	168.9	79.77	34.17	24.43	34.65	0.897	63.63	21.92	34.90	0.950	63.53	23.21	36
15	29	178.1	84.16	37.86	22.14	31.41	0.999	70.83	22.11	35.21	1.046	69.94	23.16	36
11	22	168.2	79.46	34.52	23.73	33.67	0.890	63.13	21.13	33.64	0.920	61.53	21.84	34
17	28	171.9	81.19	36.38	22.32	31.66	0.929	65.92	20.74	33.03	0.947	63.33	21.13	33
CK	28	173.4	81.91	39.80	18.98	26.93	0.946	67.10	17.96	28.60	0.978	65.39	18.56	29
5	22	150.2	70.94	32.55	21.28	30.19	0.709	50.32	15.10	24.04	0.727	48.62	15.47	24

Figure 13. Summary table of the R-21 honeycomb design that computes the indices and the prognostic equations used for the selection of best lines.

Selection of the best lines for YLDG is performed by ranking the lines by their LPE or MeanPPE [2]. The two prognostic equations are similar since they both measure concurrently plant yield potential and stability of performance. Based on MeanPPE, the 4 best lines for YLDG are lines 12, 9, 10 and 18 with MeanPPE values of 63.75, 50.49, 46.75, and 46.70, respectively. Compared to lines 12, 10 and 18, line 9 has the highest plant yield index (MeanPI = 1.49) but it has low Stability Index (SI = 33.76). Since stability is the most important component for Crop Yield, line 9 is dropped from further consideration.

Line 12 has the highest MeanPPE = 63.75 and the best SI = 70.5, meaning that line 12 has high stability of performance. An important point to make is that line 12 has a relatively low yield potential (MeanPI = 0.9) and it would not have been selected if it did not have a very high SI, demonstrating the significance of selecting concurrently for yield potential and stability by using the PPE. The check line (Haskell) is on the bottom of the table with low MeanPPE = 18.56 and a low SI (Figure 13).

Selection based on PPE or LPE magnifies the differences among lines [2]. The resolving power of the MeanPPE, expressed by the resolution range of the Mean%PPE(YLDG) (25–100%), is much larger than the resolving power of Mean%(YLDG) (71–100%) (Figure 13). This suggests that PPE has a better predictive and resolving power, thus selection is much more efficient when using the PPE. The user can visualize these differences by creating a chart using standard JMP tools (Figure 14).

In conclusion, the best 3 lines selected for high crop yield potential (based on PPE) are lines 12, 10 and 18, with line 12 being the most important one. The superiority of line 12 was confirmed when grown in Randomized Complete Block (RCB) trials across 4 years and 17 different environments at commercial plant densities. Across all environments, line 12 exhibited a 5% statistically significant seed yield superiority compared to the check cultivar (CK), demonstrating the importance of selecting concurrently for plant yield and stability [2].

Selection of the best plants within the selected lines is performed by ranking the plants within the selected lines by PPE. You can use a data filter to select lines 12, 10 and 18. Create a subset JMP table of these lines. By sorting the subset table by RankByEntryPPE, you can select the best 6 plants from each

of these lines. These 18 plants, along with foundation seed as a check, can be promoted to the next cycle using a Replicated-19 honeycomb design.

Selection of the best lines for multiple traits, (i.e., YLDG, PROT, SDS) can be performed by creating moving ring variables and summary tables for each of the traits. The user assigns each of the additional traits, **PROT** and **SDS**, to the **Moving Ring Response** role and presses the **Create MR variables** button for each trait (Figure 15). Summary tables for each trait are generated.

Figure 15. Plot controls, graphic view of the R-21 honeycomb design, and Prognostic Equations summary table generated by the JMP program for the selection of best lines for YLDG, PROT, SDS.

One important thing to note is that line 9 has consistently low Stability Index (low SI) across all different traits, YLDG, PROT and SDS, thus, it is excluded from further consideration. SI is a powerful parameter for selecting lines that have good trait stability and low SI values denote unstable lines.

There are different ways to select for multiple traits and every breeder may have different priorities. One way is to rank the lines based upon the prognostic equation (LPE or MeanPPE) for YLDG. Eliminate any lines with a low SI. Further reduce the number of lines in consideration to select only the best ones based upon the values of prognostic equations (LPE or MeanPPE) for the remaining traits: PROT and SDS.

It may be easier to select for multiple traits using a combined summary table. Press the **Export Summary Table (wide format)** button (shown in Figure 15) to create a combined summary data table (Figure 16). Use standard JMP tools to subset and sort this table to aid in the selection. Since yield is the most important trait, sort the table by LPE%(YLDG) or Mean%PPE(YLDG), descending. The best lines should lie towards the top of the table. To check for stability, reorder the columns, placing the SI% columns at the front of the table. Line 9, although it has the second highest LPE%(YLDG), has a low SI among YLDG, PROT and SDS, thus it is removed from further consideration.

To select the best lines, reorder the columns, placing the LPE% columns for the desired traits at the front of the table. Line 12 appears to be the best line for the trait YLDG. The breeder can use standard JMP tools to calculate a weighted average of the LPE% with weights 3,1,1 for YLDG, PROT, SDS, respectively. This lists the best 5 lines as 12, 10, 14, 18, 19. A weighted average of the LPE% with weights 3,2,1 for YLDG, PROT, SDS, respectively, lists the best 5 lines as 12, 8, 10, 19, 18. It seems

reasonable that the best 4 lines for YLDG, PROT, SDS are lines 12, 10, 18, 19. The breeder can then select the best plants within these lines based upon the highest PPE of the most important trait.

Image (Hervor) Image (Hervor) 3 See (Ba) 2.9 3 7.9 Y (Ling) (Ba) 3.1 3 7.0 Y (Ling) (Ba) 3.1 3 7.0 Y (Ling) (Ba) 3.1 3 7.0 Y (Ling) (Ba) 5.6 3 9.0 Y (Ling) (Ba) 6.1 3 9.0 Y (Ling) (Ba) 9.1 1 Y (Ling) (Ba) 9.1 1.1 Y(YLOB) 9.0 Y (Ling) (Ba) 1.1 1.1	12 9 10 18 6 5 7 7 14 19 9 16 9 8	50.638 21.921 71.180 58.055 64.839 43.537 49.791 62.158 83.515	311343 1420.18 449153 3468.39 3892.70 2653.00 3040.99 3697.35	48.084 21.933 69.367 53.566 60.119 40.973 46.965	311882 1421.70 4495.57 3474.72 3882.74 2640.68	48.156 21.952 69.413 53.651 59.951 40.773	69.253 23.677 44.585 45.910 61.555	303.589 104.057 141.970 153.736 208.613	71.064 24.358 33.232 35.987 48.832	310.369 105.975 139.936 153.773	70.807 24.177 31.925 35.082	100.000 47.898 60.008 56.730	62.7955 47.6021 45.5577 44.8205	100.000 75.805 72.549	63.7489 50.4892 46.7528	100.00 79.20 73.33
29 29 29 29 20 20 20	2 9 3 10 18 5 7 7 14 3 19 9 16 0 8	21.921 71.180 58.055 64.839 43.537 49.791 62.158 83.515	1420.18 4491.53 3468.39 3892.70 2653.00 3040.99 3697.35	21.933 69.367 53.566 60.119 40.973 46.965	1421.70 4495.57 3474.72 3882.74 2640.68	21.952 69.413 53.651 59.951 40.773	23.677 44.585 45.910 61.555	104.057 141.970 153.736 208.613	24.358 33.232 35.987 48.832	105.975 139.936 153.773	24.177 31.925 35.082	47.898 60.008 56.730	47.6021 45.5577 44.8205	75.805	50.4892 46.7528	79.20
378 Y Line (400) 31 38 Y Line (400) 31 39 Y Line (400, 488, 516 (47) 56 39 Y Line (400, 488, 516 (47) 57 39 Y Line (400, 488, 516 (47) 57 39 Y Line (400, 488, 516 (47) 57 39 Y Line (400, 486, 50) 71 17 (100) B Y Line (46) 71 17 (100) B Y Line (46) 71 17 (100) B Y Line (46) 10 17 (100) B Y Line (46) 111 17 (100) B Y Line (46) 111 17 (100) B Y Line (46) 111 18 (100, 100) Y Line (46) 112 17 (100) B Y Line (46) 112 18 (100, 100) Y Line (46) 112 19 (100) B Y Line (46) 112 10 (100) B Y Line (46) 112 11 (100) B Y Line (46) 112 11 (100) B Y Line (46) 112 11 (100)	10 18 6 7 14 19 16 0 8	71.180 58.055 64.839 43.537 49.791 62.158 83.515	4491.53 3468.39 3892.70 2653.00 3040.99 3697.35	69.367 53.566 60.119 40.973 46.965	4495.57 3474.72 3882.74 2640.68	69.413 53.651 59.951 40.773	44.585 45.910 61.555	141.970 153.736 208.613	33.232 35.987 48.832	139.936 153.773	31.925 35.082	60.008 56.730	45.5577 44.8205	72.549	46.7528	73.33
99 (Line) (0.00 56 99 (Line) (0.00 56 99 (Line) (0.00 56 99 (Line) (0.00 71 99 (Line) (0.00 71 100 (Line) (0.00 71	18 6 7 7 14 19 9 16 0 8	58.055 64.839 43.537 49.791 62.158 83.515	3468.39 3892.70 2653.00 3040.99 3697.35	53.566 60.119 40.973 46.965	3474.72 3882.74 2640.68	53.651 59.951 40.773	45.910 61.555	153.736 208.613	35.987	153.773	35.082	56.730	44.8205	71.076		
BY (Line) (Mass) Single (Line) Sing	6 57 14 19 16 8	64.839 43.537 49.791 62.158 83.515	3892.70 2653.00 3040.99 3697.35	60.119 40.973 46.965	3882.74 2640.68	59.951	61.555	208.613	48 832	204 010				/1.5/5	46.6997	73.25
191 (Line) @ MACL3 (4/1 6 7 (VLO) 87 (Line) @ 1 1	5 7 7 14 8 19 9 16 0 8	43.537 49.791 62.158 83.515	2653.00 3040.99 3697.35	40.973 46.965	2640.68	40.773			40.002	204.010	46.727	50.103	36.6365	58.343	36.8773	57.84
91003 97 (Line) 71 91003 97 (Line) 6 1 sent/KUD03 14 (Line) 91 1 126/1103 14 (Line) 10 8 12013 14 (Line) 10 8 14014 10 8 11 1 14105 14 (Line) 12 3 2 15105 14 (Line) 13 2 14 1 15410 16 (Line) 14 1 1 14 1 15 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 17	7 14 19 16 8	49.791 62.158 83.515	3040.99 3697.35	46.965			49.728	177.414	41.529	179.390	40.926	46.242	32.9065	52.403	34.7736	54.5
an(YLD0) BY (Line) G 61 an(YLD0) BY (Line) G 91 UBoy(YLD0) BY (Line) G 111 UD0) BY (Line) G 111 UD0) BY (Line) G 112 S(YLD0) BY (Line) G 112 S(YLD0) BY (Line) G 113 S(YLD0) BY (Line) G 113 S(YLD0) BY (Line) G 141 S(YLD0) BY (Line) G 154 SP(YLD0) BY (Line) G 154 SP (Line) G 154 SP (Line) G	19 16 8	62.158 83.515	3697.35		3043.04	46.985	79.966	427.206	100.000	438.329	100.000	41.702	33.1227	52.747	34.7525	54.5
anht/(UDB) BY (Line) ((1)) (UDG) BY (Line) ((1))) 16) 8	83.515		57.102	3694.31	57.041	100.000	350.414	82.025	352.046	80.316	37.488	34.4169	54.808	34.7119	54.4
Dev(/LDG) BY (Line) ♣ 10 8 (VLDG) BY (Line) ♣ 11 1 (VLDG) BY (Line) ♣ 12 3 (VLDG) BY (Line) ♣ 13 2 (VLDG) BY (Line) ♣ 13 2 (VLDG) BY (Line) ♣ 14 1 (VLDG) BY (Line) ♣ 15 4 an P[(VLDG) BY (Line) ♣ 15 4 an P[(VLDG) BY (Line) ♣ 17 1 (VLDG) BY (Line) ♣ 17 1	8		4961.31	76.623	4977.36	76.852	58.186	204.307	47.824	205.464	46.874	39.359	32.4884	51.737	34.6924	54.4
VLDG BY (Line) ♣ 11 11 1 VLDG BY (Line) ♣ 12 S(VLDG) BY (Line) ♣ 13 S(VLDG) BY (Line) ♣ 14 SK(VLDG) BY (Line) ♣ 14 SK(VLDG) BY (Line) ♣ 15 JBY (Line) BK-18.4 15 JBY (Line) BY (Line) ♣ 17		100.000	6474.99	100.000	6476.55	100.000	47.471	186.879	43.744	188.013	42.893	46.320	30.6515	48.812	31.6990	49.7
(YLDG) BY (Line) ▲ 12 3 (YLDG) BY (Line) ▲ 13 2 (YLDG) BY (Line) ▲ 14 1 S%(YLDG) BY (Line) ▲ 14 1 S%(YLDG) BY (Line) ▲ 15 4 BY (Line) Φ MR-18 (4, 16 2 an P[(YLDG) BY (Line) Φ 17 1	13	57.361	3454.56	53.352	3453.85	53.329	60.107	206.119	48.248	205.888	46.971	44.004	27.2134	43.337	28.6990	45.0
(VLDG) BY (Line) 13 2 (VLDG) BY (Line) 14 1 (SVLDG) BY (Line) 15 4 (VLDG) BY (Line) 15 4 (PVLDG) BY (Line) 15 4 (Interview) MR=18 (4, 16 2 (Interview) 16 16 (Interview) 17 17	2 3	46.874	2824.65	43.624	2827.57	43.659	54.528	192.532	45.068	191.714	43.737	44.877	28.1601	44.844	28.6499	44.9
(VLDG) BY (Line) 14 1 % (VLDG) BY (Line) 15 4 % (VLDG) BY (Line) 15 4) BY (Line) 16 16 an PI(YLDG) BY (Line) 17 1	3 20	44.962	2694.76	41.618	2695.62	41.621	37.789	127.988	29.959	127.353	29.054	37.273	24.0659	38.324	24.4639	38.3
(YLDG) BY (Line) 15 4 i) BY (Line) MR=18 (4. 16 2 an PI(YLDG) BY (Line) 17 1	1	78.815	4740.08	73.206	4761.44	73.518	37.679	128.063	29.977	129.981	29.654	37.116	23.6854	37.718	24.4142	38.2
6) BY (Line) @ MR=18 (4. an PI(YLDG) BY (Line) @ 17 1	5 4	67.583	4088.97	63.150	4093.19	63.200	52.940	188.985	44.237	189.853	43.313	32.923	22.9416	36.534	24.2971	38.1
17 1	5 2	46.323	2756.96	42.578	2760.48	42.623	80.255	279.009	65.310	280.879	64.080	34.654	21.9159	34.900	23.2068	36.4
	15	44.595	2705.10	41.778	2716.77	41.948	35.549	130.230	30.484	130.578	29.790	31.411	22.1106	35.211	23.1561	36.3
an PPE(YLDG) BY (Line) 18 1	3 11	44.059	2663.04	41.128	2662.36	41.108	36.707	130.942	30.651	130.851	29.852	33.673	21.1271	33.644	21.8410	34.2
an% PPE(YLDG) BY (Lir 19 1	9 17	44.819	2663.18	41.130	2671.28	41.245	84.798	294.442	68.923	294.909	67.280	31.659	20.7400	33.028	21.1343	33.1
20 C	CK	62.343	3742.84	57.805	3755.06	57.979	30.449	103.030	24.117	106.781	24.361	26.927	17.9570	28.596	18.5604	29.1
21 5	1 5	45.426	2754.42	42.539	2751.04	42.477	58.671	245.327	57.426	251.891	57.466	30.191	15.0977	24.043	15.4729	24.2

Figure 16. Combined summary JMP table for YLDG, PROT and SDS generated by using the Export Summary Table (wide format) option in the JMP program.

4. Conclusions

This technical note presents the development of a powerful JMP Add-In program as a useful tool for the construction of different honeycomb designs and the analysis of data in prognostic breeding methodology for efficient selection of the best entries and the best plants per entry based on the indices and the prognostic equations. Use of the prognostic equations speeds up the early stages of plant selection and accelerates the annual genetic gain. By rapidly computing the selection criteria for plant yield and stability, the program increases efficiency and provides the foundation for potential mechanization.

The Prognostic Breeding Application JMP Add-In program displays powerful controls allowing the user to create maps of any honeycomb design and visualize the selected plants in the field. Standard JMP tools can be employed to subset and sort tables to aid in the selection process across traits, years and locations.

The JMP Add-in program is available from the authors and at the JMP Discovery website https://community.jmp.com/t5/Discovery-Summit-Europe-2018/Honeycomb-Designs-Add-In-new-version/ta-p/52961. The JMP Add-in program is also available as Supplementary File in Agronomy MDPI, Program File S1: Prognostic Breeding Application Ver 6-2018-08-17.JMPAddIn.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/1/25/s1, Program File S1: Prognostic Breeding Application Ver 6-2018-08-17.JMPAddIn.

Author Contributions: All the authors contributed to the work in the paper. V.A.F. performed the field experiments, computed data, and wrote the manuscript. K.C.T. wrote the JMP Add-In program, computed data, and provided suggestions. A.M. computed data and provided suggestions and project supervision. All authors reviewed the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Duvick, D.N.; Smith, J.S.C.; Cooper, M. Long-term selection in a commercial hybrid maize breeding program. In *Plant Breeding Reviews*; Janick, J., Ed.; John Wiley & Sons: New York, NY, USA, 2004; Volume 24, pp. 109–151.
- 2. Fasoula, V.A. Prognostic Breeding: A new paradigm for crop improvement. In *Plant Breeding Reviews;* Janick, J., Ed.; John Wiley & Sons: New York, NY, USA, 2013; Volume 37, pp. 297–347.
- 3. Fasoula, D.A.; Fasoula, V.A. Competitive ability and plant breeding. In *Plant Breeding Reviews*; Janick, J., Ed.; John Wiley & Sons: New York, NY, USA, 1997; Volume 14, pp. 89–138.

- 4. Fasoula, V.A.; Fasoula, D.A. Honeycomb breeding: Principles and applications. In *Plant Breeding Reviews*; Janick, J., Ed.; John Wiley & Sons: New York, NY, USA, 2000; Volume 18, pp. 177–250.
- 5. Fasoula, V.A.; Fasoula, D.A. Principles underlying genetic improvement for high and stable crop yield potential. *Field Crops Res.* **2002**, *75*, 191–209. [CrossRef]
- 6. Fasoula, V.A.; Tollenaar, M. The impact of plant population density on crop yield and response to selection in maize. *Maydica* **2005**, *50*, 39–48.
- Uphoff, N.; Fasoula, V.A.; Iswandi, A.; Kassam, A.; Thakur, A.K. Improving the phenotypic expression of rice genotypes: Rethinking "intensification" for production systems and selection practices for rice breeding. *Crop J.* 2015, *3*, 174–189. [CrossRef]
- 8. Fasoulas, A.C.; Fasoula, V.A. Honeycomb selection designs. In *Plant Breeding Reviews*; Janick, J., Ed.; John Wiley & Sons: New York, NY, USA, 1995; Volume 13, pp. 87–139.
- 9. Fasoula, D.A.; Fasoula, V.A. Gene action and plant breeding. In *Plant Breeding Reviews*; Janick, J., Ed.; John Wiley & Sons: New York, NY, USA, 1997; Volume 15, pp. 315–374.
- 10. Fasoula, V.A. A novel equation paves the way for an everlasting revolution with cultivars characterized by high and stable crop yield and quality. In Proceedings of the 11th National Hellenic Conference in Genetics and Plant Breeding, Orestiada, Greece, 31 October–2 November 2006; pp. 7–14.
- Fasoula, V.A. Two novel whole-plant field phenotyping equations maximize selection efficiency. In Modern Variety Breeding for Present and Future Needs, Proceedings of the 18th Eucarpia General Congress, Valencia, Spain, 9–12 September 2008; Prohens, J., Badenes, M.L., Eds.; Editorial Universidad Politecnica de Valencia Publisher: Valencia, Spain, 2008; pp. 361–365.
- 12. Greveniotis, V.; Fasoula, V.A. Application of prognostic breeding in maize. *Crop and Pasture Sci.* **2016**, *67*, 605–620. [CrossRef]
- Mauromoustakos, A.; Fasoula, V.A.; Thompson, K.C. Honeycomb designs computing and analysis. In Proceedings of the International Biometric Society, Eastern North American Region, Tampa, FL, USA, 26–29 March 2006.
- Mauromoustakos, A.; Thompson, K.C.; Fasoula, V.A. *Honeycomb Designs Addin*; JMP Discovery Summit: Frankfurt, Germany, 2018. Available online: https://community.jmp.com/t5/Discovery-Summit-Europe-2018/Honeycomb-Designs-Add-In-new-version/ta-p/52961 (accessed on 9 March 2018).
- 15. Rasmusson, D.C.; Phillips, R.L. Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. *Crop Sci.* **1997**, *37*, 303–310. [CrossRef]
- 16. Peterson, P.A. The plant genetics discovery of the century: Transposable elements in maize. Early beginning to 1990. *Maydica* **2005**, *50*, 321–338.
- 17. Haun, W.J.; Hyten, D.L.; Xu, W.W.; Gerhardt, D.J.; Albert, T.J.; Richmond, T.; Jeddeloh, J.A.; Jia, G.; Springer, N.M.; Vance, C.P.; et al. The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82. *Plant Physiol.* **2011**, *155*, 645–655. [CrossRef] [PubMed]
- 18. Cullis, C.A. DNA rearrangements in response to environmental stress. Adv. Genet. 1990, 28, 73–97.
- Brunner, S.; Tingley, S.; Rafalski, A.; Fengler, K.; Morgante, M. Evolution of DNA sequence nonhomologies among maize inbreds. *Plant Cell* 2005, 17, 343–360. [CrossRef] [PubMed]
- 20. Dudley, J.W.; Lambert, R.J. 100 generations of selection for oil and protein in corn. In *Plant Breeding Reviews*; Janick, J., Ed.; John Wiley & Sons: New York, NY, USA, 2004; Volume 24, pp. 79–110.
- 21. Moose, S.P.; Dudley, J.W.; Rocheford, T.R. Maize selection passes the century mark: A unique resource for 21st century genomics. *Trends Plant Sci.* **2004**, *9*, 358–364. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).