Analysis of Farmers’ Stated Risk Using Lotteries and Their Perceptions of Climate Change in the Northwest of Mexico
Abstract
:1. Introduction and Objectives
2. Background
3. Theoretical Framework of the Stated Risk Analysis
- Risk attitude measuring instrument RAMI of Fausti and Gillespie, applied to cattle producers in the United States [40]. The instrument was made up of five questions, and the last three were defined according to the certainty equivalence framework associated with the expected utility model.
- Scale of the measurement of risk attitudes, based on three factors of Allub’s scale concerning the hypothesis that risk aversion and income diversification are the factors that influenced the farmers’ decisions in a case study in Argentina [41]. It considered that risk aversion is determined by three factors: The socio-economic status of the farmer, the degree of involvement or participation in the rural development program, and the farmer’s perception of the agro ecological conditions of the farm.
- Method of measuring the risk attitude with three components of Bard [16]. This scale was implemented on grain producers in the United States. The method consists of three components: The risk attitude scale, a self-assessment question and a model based on the expected utility.
- The Multiple Price List “Lotteries” (MPL), of Olbrich, Quaas, and Baumgärtner, based on the Theory of Expected Utility (EUT), was implemented to analyze the risk attitude of livestock producers in Namibia’s pastures using the MPL format [42], proposed by Binswanger [43] and studied by Holt and Laury [28].
4. Materials and Methods
4.1. Measuring Farmers’ Environmental Attitudes and Opinions
4.2. Measuring Farmers’ Perceptions of Climate Change
4.3. Measuring Farmers’ Risk Attitudes
4.3.1. Model Definition
4.3.2. Estimation of the Relative Risk Aversion Coefficient “r”
5. Results and Discussion
5.1. Results on the Level of Farmers’ Risk Attitudes
5.2. Risk Heterogeneity Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ministerio de Agricultura, Pesca y Alimentación–Ministerio para la Transición Ecológica. Qué es el Cambio Climático. 2018. Available online: http://www.mapama.gob.es/es/cambio-climatico/temas/cumbre-cambio-climaticocop21/el-cambio-climatico/ (accessed on 6 July 2018).
- Cárdenas, M.J. México Ante El Cambio Clomático: Evidencias, Impactos, Vulnearablidad y Adapatación; Greenpeace: Mexico City, Mexico, 2010; pp. 1–68. [Google Scholar]
- Rivera, I.; Di Paola, M. Cambio Climático: Impacto e Incidencias de las Políticas Públicas en el Sector Agropecuario. 2013. Available online: http://www.farn.org.ar/wp-content/uploads/2014/07/informe2013-1.268-291.pdf (accessed on 6 July 2018).
- Bonatti, M. Cambios Climáticos, Percepciones Humanas y Desarrollo Rural. Master’s Thesis, Universidad de Buenos Aires, Buenos Aires, Argentina, 2011. [Google Scholar]
- Makuvaro, V.; Walker, S.; Masere, T.P.; Dimes, J. Smallholder farmer perceived effects of climate change on agricultural productivity and adaptation strategies. J. Arid Environ. 2018, 152, 75–82. [Google Scholar] [CrossRef]
- Zhai, S.Y.; Song, G.X.; Qin, Y.C.; Ye, X.Y.; Leipnik, M. Climate change and Chinese farmers: Perceptions and determinants of adaptive strategies. J. Integr. Agric. 2018, 17, 949–963. [Google Scholar] [CrossRef]
- Infante, R.K.; Arce, I.A. Percepción local de los servicios ecológicos y de bienestar de la selva de la zona maya en Quintana Roo, México. Investig. Geogr. 2015, 86, 67–81. [Google Scholar] [CrossRef]
- Saqib, S.E.; Ahmad, M.M.; Panezai, S.; Rana, I.A. An empirical assessment of farmers’ risk attitudes in flood-prone areas of Pakistan. Int. J. Disaster Risk Reduct. 2016, 18, 107–114. [Google Scholar] [CrossRef]
- Whitmarsh, L.; Capstick, S. Perceptions of climate change. In Psychology and Climate Change; Clayton, S., Manning, C., Eds.; Academic Press: Cardiff, UK, 2016; pp. 13–33. [Google Scholar] [CrossRef]
- Green, S.; O’Donoghue, C. Assessing the Geographic Representativity of Farm Accountancy Data. Int. J. Geo-Inf. 2013, 2, 50–66. [Google Scholar] [CrossRef] [Green Version]
- Ayuntamiento de Vitoria Gasteiz. Agenda 21. 2018. Available online: http://app05.ottawa.ca/sirepub/cache/2/yfoiqw0dd2sygaf2fpln4mim/50206303282018080034948.PDF (accessed on 10 July 2018).
- Espada, R.L. Percepción de la Ciudadanía Viguesa Sobre el Cambio Climático; Vigo: Galicia, Spain, 2016; 209p. [Google Scholar]
- Kallas, Z.; Serra, T.; Gil, J. Farmers’ objectives as determinants of organic farming adoption: The case of Catalonian vineyard production. Agric. Econ. 2010, 41, 409–423. [Google Scholar] [CrossRef]
- Fahada, S.; Wanga, J.; Hua, G.; Wanga, H.; Yanga, X.; Ahmad, A.; Lan, N.; Bilald, A. Empirical analysis of factors influencing farmers crop insurance decisions in Pakistan: Evidence from Khyber Pakhtunkhwa province. Land Use Policy 2018, 75, 459–467. [Google Scholar] [CrossRef]
- Akhtar, S.; Gu-cheng, L.; Ullah, R.; Nazir, A.; Amjed, M.; Haseeb, M.; Iqbal, N.; Faisal, M. Factors influencing hybrid maize farmers’ risk attitudes and their perceptions. Integr. Agric. 2018, 17, 1454–1462. [Google Scholar] [CrossRef]
- Bard, S.; Barry, P. Developing a scale for assessing risk attitudes of agricultural decision makers. Int. Food Agribus. Manag. Rev. 2000, 3, 9–25. [Google Scholar] [CrossRef]
- Zamasiya, B.; Nyikahadzoi, K.; Billiard, M.B. Factors influencing smallholder farmers’ behavioural intention towards adaptation to climate change in transitional climatic zones: A case study of Hwedza District in Zimbabwe. Environ. Manag. 2017, 198, 233–239. [Google Scholar] [CrossRef]
- Instituto Municipal de Planeación de Ahome IMPLAN. Available online: http://www.implanahome.gob.mx/home.html (accessed on 6 July 2018).
- CONAGUA Comisión Nacional del Agua; Secretaría de Medio Ambiente y Recursos Naturales. Estadísticas Agrícolas de los Distritos de Riego Año Agrícola 2015–2016; Edición: Mexico City, Mexico, 2017. [Google Scholar]
- Romero, H.C.; Márquez, G.; Sánchez, R.; Fierros, E. Tendencias climáticas en el estado de Sinaloa. In Sinaloa Ante el Cambio Climático Global; Flores, M., Morán, E., Karam, C., Eds.; Universidad Autónoma de Sinaloa-INAPI: Culiacán, Mexico, 2014; pp. 77–106. [Google Scholar]
- Lara, P.E.; Valdez, V.J.; Medina, T.S.; Martinez, R.R. Situación de la agricultura de Mayos y Mestizos del norte del Sinaloa, Mexico. Agric. Soc. Desarro. 2017, 14, 577–597. [Google Scholar]
- Flores, L.; Arzola, J.; Ramírez, M.; Osorio, A. Global Climate Change Impacts in the Sinaloa State, Mexico. Cuad. Geogr. Rev. Colomb. Geogr. 2012, 21, 115–129. [Google Scholar] [CrossRef]
- López, A.; Hernández, D. Cambio climático y agricultura: Una revisión de la literatura con énfasis en América Latina. Trimest. Econ. 2016, 83, 459–496. [Google Scholar] [CrossRef]
- Google. (s.f.). Map of Sinaloa, Mexico in Google Maps. Available online: https://www.google.com.co/maps/@4.6315748,-74.0699088,11.79z?hl=en (accessed on 3 October 2018).
- Mejìa, J. Tolerancia y Aversión al Riesgo. 2015. Available online: https://www.21tradingcoach.com/es/formaci%C3%B3n-gratuita/an%C3%A1lisis-cuantitativo/128-tolerancia-y-aversi%C3%B3n-al-riesgo (accessed on 7 September 2018).
- Pindyck, R.; Rubinfeld, D. Microeconomía, 7th ed.; Prentice Hall: Madrid, Spain, 2009; Chapter 5; pp. 149–165. [Google Scholar]
- Andersen, S.; Harrison, G.; Lau, M.; Rutstrom, E. Eliciting Risk and Time Preferences. Econometrica 2008, 76, 583–618. [Google Scholar] [CrossRef]
- Holt, C.A.; Laury, S.K. Risk Aversion and Incentive Effects. Am. Econ. Rev. 2002, 92, 1644–1655. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, J.; Arora, P.; Podesta, G. Using Insights from Prospect Theory to Enhance Sustainable Decision Making by Agribusinesses in Argentina. Sustainability 2018, 10, 2693. [Google Scholar] [CrossRef]
- Tian, D.; Yang, B.; Chen, J.; Zhao, Y. A multi-experts and multi-criteria risk assessment model for safety risks in oil and gas industry integrating risk attitudes. Knowl.-Based Syst. 2018, 156, 62–73. [Google Scholar] [CrossRef]
- Aliaga, J.; Oropeza, A. Análisis experimental de la Curva de Laffer y la evasión fiscal en Bolivia. Rev. Latinoam. Desarro. Econ. 2015, 24, 134–141. [Google Scholar]
- Menkhoff, L.; Sakha, S. Estimating Risky Behavior with Multiple-Item Risk Measures: An Empirical Examination. DIW Discussion. 2016, p. 1608. Available online: https://www.econstor.eu/handle/10419/146901 (accessed on 22 August 2018).
- Hu, J.; Bansal, M.; Mehrotra, S. Robust decision making using a general utility set. Eur. J. Oper. Res. 2018, 269, 699–714. [Google Scholar] [CrossRef]
- Liontakis, A.; Tzouramani, I. Economic Sustainability of Organic Aloe Vera Farming in Greece under Risk and Uncertainty. Sustainability 2016, 8, 338. [Google Scholar] [CrossRef]
- Jin, X.; Hossan, S.; Asgari, H.; Shams, K. Incorporating attitudinal aspects in roadway pricing analysis. Transp. Policy 2018, 62, 38–47. [Google Scholar] [CrossRef]
- Avalos, E. Uncertainty: Lotteries and Risk; Munich Personal REPEC; Centro de Investigaciones Económicas: Lima, Peru, 2011. [Google Scholar]
- Capinski, M.J.; Kopp, E.; Ski, M.J.C. Portfolio Theory and Risk Management; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Bardhan, D.; Dabas, Y.P.S.; Tewari, S.K.; Kumar, A. An assessment of risk attitude of dairy farmers in Uttaranchal (India). In Proceedings of the International Association of Agricultural Economists Conference, Gold Coast, Australia, 12–18 August 2006; pp. 12–18. [Google Scholar]
- He, P. Self-assessed risk attitudes predict behavior under risk? Evidence from a field study in China. Econ. Lett. 2018, 172, 107–109. [Google Scholar] [CrossRef]
- Fausti, S. Factors Influencing Cash Marketing Decisions for Fed Cattle. Staff. Department of Economics, South Dakota State University, Brookings, 1998. paper No. 98–1. Available online: https://openprairie.sdstate.edu/cgi/viewcontent.cgi?article=1134&context=econ_staffpaper (accessed on 1 July 2018).
- Allub, L. Aversión al riesgo y adopción de innovaciones tecnológicas en pequeños productores rurales de zonas áridas: Un enfoque causal. Estudios Sociológicos 2001, 19, 467–493. Available online: http://www.jstor.org.ezproxy.unal.edu.co/stable/40420990 (accessed on 18 July 2018).
- Olbrich, R.; Quaas, M.; Baumgärtner, S. Risk preferences under multiple risk conditions—Survey evidence from semi-arid rangelands I. Introduction. In Proceedings of the 8th International Conference of the European Society for Ecological Economics, Transformation, Innovation and Adaptation for Sustainability, Ljubljana, Slovenia, 29 June–2 July 2009; pp. 1–15. [Google Scholar]
- Binswanger, H. Attitudes towards Risk: Experimental Measurement in Rural India. Am. J. Agric. Econ. 1980, 62, 395–407. [Google Scholar] [CrossRef]
- Brick, K.; Visser, M.; Burns, J. Risk Aversion: Experimental Evidence from South African Fishing Communities. Am. J. Agric. Econ. 2012, 94, 133–152. [Google Scholar] [CrossRef]
- Rojas, R. Guía para Realizar Investigaciones Sociales, 40th ed.; Plaza y Valdez S.A.: Mexico City, Mexico, 2005; p. 237. [Google Scholar]
- Gomera, A.; Villamandos, F.; Vaquero, M. Construction of indicators of environmental beliefs from the NEP scale. Acción. Psicol. 2013, 10, 149–160. [Google Scholar] [CrossRef]
- Moyano, E.; Cornejo, F.A.; Gallardo, I. Creencias y Conductas Ambientales, Liberalismo Económico y Felicidad. Acta Colomb. Psicol. 2015, 14, 69–77. Available online: https://editorial.ucatolica.edu.co/ojsucatolica/revistas_ucatolica/index.php/acta-colombiana-psicologia/article/view/346 (accessed on 3 September 2018).
- Harpe, S.E. How to analyze Likert and other rating scale data. Sciencedirect 2015, 7, 836–850. [Google Scholar] [CrossRef]
- Vozmediano, S.L.; Guillén, C. Escala Nuevo Paradigma Ecológico: Propiedades psicométricas con una muestra española obtenida a través de Internet. Medio Ambient. Comport. Hum. 2005, 6, 37–49. [Google Scholar]
- Ghaffar, A. Climate change and associated spatial heterogeneity of Pakistan: Empirical evidence using multidisciplinary approach. Sci. Total Environ. 2018, 634, 95–108. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Gori, A.; Brito, B.; Ruiz, J. Climate Change and Agriculture: Do Environmental Preservation and Ecosystem Services Matter? Ecol. Econ. 2018, 152, 27–39. [Google Scholar] [CrossRef]
- Greenpeace. La Agricultura Mexicana y el Cambio; Greenpeace: Mexico City, Mexico, 2010; Volume 1, pp. 4–11. [Google Scholar]
- Morales-Casco, L.A.; Zúniga-González, C. A Impactos del cambio climático en la agricultura y seguridad alimentaria. Rev. Iberoam. Bioecon. Cambio Clim. 2016, 2, 269. [Google Scholar] [CrossRef]
- Fadhelab, S.; Rico, M.A.; Hana, D. Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate. J. Hydrol. 2018, 560, 546–559. [Google Scholar] [CrossRef]
- Araus, J.; Slafer, G.; Royo, C.; Serret, M. Breeding for yield potential and stress adaptation in cereals. Crit. Rev. Plant Sci. 2008, 27, 377–412. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Cambio Climático. Bases Físicas. 2013. Available online: https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_SummaryVolume_FINAL_SPANISH.pdf (accessed on 21 September 2018).
- Quiroga, A. Impactos del Cambio Climático en la Incidencia de Plagas y Enfermedades de los Cultivos. 2013. Available online: https://www.croplifela.org/es/actualidad/articulos/197-impactos-del-cambio-climatico-en-la-incidencia-de-plagas-y-enfermedades-de-los-cultivos (accessed on 12 September 2017).
- Vásquez, L. Cambio Climático, Incidencia de Plagas y Prácticas Agroecológicas Resilientes; Instituto Nacional de Ciencias Agrícolas (INCA): La Habana, Cuba, 2011; 242p. [Google Scholar]
- Galindo, L.M. La Economía del Cambio Climático en Mexico. Semarnat 2013, 53, 1689–1699. [Google Scholar] [CrossRef]
- Drichoutis, A.; Lusk, J. What Can Multiple Price Lists Really Tell Us about Risk Preferences? Munich Personal RePEc Archive. MPRA Paper 2012. Available online: http://www2.aueb.gr/conferences/Crete2013/papers/Drichoutis.pdf (accessed on 10 August 2018).
- March, C.; Ziegelmeyer, A.; Greiner, B.; Cyranek, R. Monetary Incentives in Large-Scale Experiments: A Case Study of Risk Aversion; Technische Munchen University: Munich, Germany, 2014. [Google Scholar]
- Scrogin, D. Risk preferences over simple and compound public lotteries. Econ. Lett. 2018, 170, 85–87. [Google Scholar] [CrossRef]
- Trujillo, J.C.; Escobar, J.L.; Iglesias, W.J. Medición de las actitudes hacia el riesgo en los pequeños productores de piña de Santander, Colombia. Cuad. Desarro. Rural 2012, 9, 239–255. [Google Scholar]
- Galarza, F. Choices under Risk in Rural Peru; University of Wisconsin: Madison, WI, USA, 2009. [Google Scholar]
- Doss, C.; Meinzen-Dick, R.; Quisumbing, A.; Theis, S. Women in agriculture: Four myths. Glob. Food Secur. 2018, 16, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.; Carr, E.R. The influence of gendered roles and responsibilities on the adoption of technologies that mitigate drought risk: The case of drought-tolerant maize seed in eastern Uganda. Glob.Environ. Chang. 2015, 35, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Takeshima, H.; Yamauchi, F. Risks and farmers’ investment in productive assets in Nigeria. Agric. Econ. 2012, 43, 143–153. [Google Scholar] [CrossRef]
- De Pinto, A.; Robertson, R.D.; Darko, O.B. Adoption of climate change mitigation practices by risk-averse farmers in the Ashanti Region, Ghana. Ecol. Econ. 2013, 86, 47–54. [Google Scholar] [CrossRef]
- Dörschner, T.; Musshoff, O. Cost-oriented evaluation of ecosystem services under consideration of income risks and risk attitudes of farmers. Environ. Manag. 2013, 127, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Pomareda, C. Políticas Públicas para la Adaptación a la Variabilidad del Clima y al Cambio Climático. In Políticas y Sistemas de Incentivos para el Fomento y Adopción de Buenas Prácticas Agrícolas Como una Medida de Adaptación al Cambio Climático en América Centra; Sepúlveda-L., L.C., Ibrahim, M., Eds.; Centro Agronómico Tropical de Investigación y Enseñanza (CATIE): Turrialba, Costa Rica, 2009. [Google Scholar]
- Brown, P.; Daigneault, A.; Tjernström, E.; Zou, W. Natural disasters, social protection, and risk perceptions. World Dev. 2018, 104, 310–325. [Google Scholar] [CrossRef] [PubMed]
- Reyna, C.; Bressán, E.; Mola, D.; Belaus, A.; Ortiz, M. Validating the structure of the New Ecological Paradigm scale among Argentine citizens trough different approaches. Pensam. Psicol. 2018, 16, 107–118. [Google Scholar] [CrossRef]
Variables | Percentage (%) | ||
---|---|---|---|
Gender | |||
Male | 88.92% | ||
Female | 11.08% | ||
Age | |||
Under 40 years | 19.46% | ||
From 41 to 60 years old | 52.16% | ||
Above 60 years | 28.38% | ||
Percentage of income from agriculture (%) | 76.00% | ||
Mean | SD | Units | |
Number of members of the family | 3.79 | 1.74 | members |
Generations of the family dedicated to agriculture | 2.28 | 0.83 | members |
Farmers’ understanding about aspects related to global warming (%) | |||
Melting of the poles | 18.38% | ||
Rising temperature and warming of the earth | 52.97% | ||
Pollution | 13.92% | ||
Emission of gases into the atmosphere | 14.73% | ||
Farmers’ opinions on the level of improvement required in his activity on a scale from0 (not required at all) to 10 (absolutely required): | |||
Commercialization of crops | 8.28 | 2.69 | |
Fight against diseases or pests | 7.25 | 3.14 | |
Choice of crops | 6.24 | 3.45 | |
Quality of the soil | 6.84 | 3.39 | |
Type of tillage | 7.32 | 3.07 | |
Use of efficient irrigation techniques | 7.06 | 3.48 | |
Farmers’ perceptions on climate change on a scale from 0 (not observed at all) to 10 (highly observed): | |||
The temperature has increased | 7.46 | 2.32 | |
The level of precipitation has changed | 6.72 | 2.87 | |
The rain periods have changed their temporality | 6.86 | 2.79 | |
The soil has less fertility | 6.24 | 2.96 | |
The periods of drought have increased | 6.56 | 2.79 | |
The harvest has decreased | 6.72 | 2.82 | |
There have been more episodes of droughts | 6.61 | 2.92 | |
There have been more episodes of frost | 5.98 | 3.20 | |
There have been more episodes of floods | 6.85 | 2.68 | |
There have been more episodes of hail | 6.08 | 3.12 | |
There have been more diseases and pests | 8.23 | 1.31 | |
Weeds have increased | 7.92 | 1.88 | |
Farmers’ level of willingness to perform the following actions on a scale from 0 (not willing) to 10 (completely willing): | |||
Perform only nightly irrigation | 5.53 | 3.80 | |
Use low-polluting machinery | 8.02 | 2.62 | |
Carry out agro ecological production | 7.89 | 2.50 | |
Use renewable energy sources | 7.91 | 2.52 | |
Do not burn biomass (stubble) | 8.01 | 3.26 | |
Use non-nitrogenous fertilizers | 7.99 | 2.53 | |
Use the zero tillage method | 6.60 | 3.58 |
Variable | Mean | SD | Units | ||
---|---|---|---|---|---|
Utilized agricultural area | 10.66 | 9.28 | ha | ||
Number of irrigations by crop season | 7.56 | 4.61 | frequency | ||
Volume of water used in irrigation | 15.46 | 10.97 | m3/ha | ||
Permanent employees | 1.52 | 1.73 | persons | ||
Temporary employees | 3.79 | 9.39 | persons | ||
Variable | Percentage | Variable | Percentage | ||
Type of crop harvest | Have credit for farming activity a | ||||
Manual | 17.03% | No | 54.05% | ||
Mechanic | 82.97% | Yes | 45.95% | ||
Land tenure regime | Receive some subsidy for agriculture | ||||
Private property | 32.97% | No | 31.62% | ||
Ejidal * | 67.03% | Yes | 68.38% | ||
Property management regime | Purpose of the subsidies received | ||||
Owner | 79.19% | Covering operating expenses | 60.50% | ||
Owner’s family without salary | 5.95% | For investment in equipment | 12.30% | ||
Salaried family | 0.27% | For agricultural improvement of land | 12.60% | ||
Tenant or associate | 14.59% | Other agricultural expenses | 14.60% | ||
Water availability problems c | Agricultural insurance d | ||||
No | 84.05% | No | 63.24% | ||
Yes | 15.95% | Yes | 36.76% | ||
Experience in water collection b | Origin of their agricultural training | ||||
No | 83.78% | Agrarian Experience | 88.92% | ||
Yes | 16.22% | Agricultural professional-university training | 6.76% | ||
Type of irrigation | Courses, conferences, workshops, etc. | 2.43% | |||
Irrigation by gravity | 95.68% | Other education sources | 1.89% | ||
Sprinkler irrigation | 1.62% | Main product grown | |||
Mechanized Irrigation by gravity | 0.81% | Wheat | 28.92% | ||
Drip irrigation/localized | 1.89% | Alfalfa | 24.59% | ||
Soy | 9.73% | ||||
Peanut | 7.03% | ||||
Corn | 5.41% | ||||
Chilli | 4.32% | ||||
Others (Onion, Sweet potato, Watermelon, Bean, Sorghum and Triticale) | 20.00% |
Absolutely Disagree | Strongly Disagree | Moderately Disagree | Slightly Disagree | Neutral | Slightly Agree | Moderately Agree | Strongly Agree | Absolutely Agree |
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1. A global ecological crisis is exaggerated. | ||||||||
2. The balance of nature supports the impact of industrialized countries. | ||||||||
3. Humans may be able to control nature. | ||||||||
4. Human ingenuity ensures that the earth is not uninhabitable. | ||||||||
5. Humans were created to dominate the rest of nature. | ||||||||
6. Humans have the right to modify the environment to adapt it to their needs. | ||||||||
7. The interference of the human being in nature has disastrous consequences. | ||||||||
8. Plants and animals have the same right to exist as human beings. | ||||||||
9. The human being seriously abuses the environment. | ||||||||
10. The balance of nature is delicate and easily alterable. | ||||||||
11. If things continue as they have been, we will soon experience a great ecological catastrophe. | ||||||||
12. We are approaching the limit number of people that the earth can hold. | ||||||||
13. The earth has limited resources. | ||||||||
14. Despite our special abilities, human beings are still subject to the laws of nature. | ||||||||
15. The land has abundant resources, we just have to learn how to exploit them. | ||||||||
16. Sustainable development needs a balanced situation that controls industrial growth. |
Absolutely Disagree | Strongly Disagree | Moderately Disagree | Slightly Disagree | Neutral | Slightly Agree | Moderately Agree | Strongly Agree | Absolutely Agree |
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
In the last 10 years you have noticed that the temperature has increased: [50,51] | _____ | |||||||
In the last 10 years you have noticed that the level of precipitation has changed: [50,52] | _____ | |||||||
In the last 10 years you have noticed that rain periods have changed their temporality: [53,54,55] | _____ | |||||||
In the last 10 years you have noticed that the soil has lost fertility: [3,54] | _____ | |||||||
In the last 10 years you have noticed that the periods of drought have increased: [50,52] | _____ | |||||||
In the last 10 years you have noticed that the harvest has decreased: [56] | _____ | |||||||
In the last 10 years you have noticed that there have been more episodes of droughts: [3,50] | _____ | |||||||
In the last 10 years you have noticed that there have been more episodes of frost: [50,53] | _____ | |||||||
In the last 10 years you have noticed that there have been more episodes of floods: [52] | _____ | |||||||
In the last 10 years you have noticed that there have been more episodes of Hail: [57] | _____ | |||||||
In the last 10 years you have noticed that there have been more diseases and pests: [58,59] | _____ | |||||||
In the last 10 years you have noticed vegetation changes: [60] | _____ |
Number of Safe Choices “A” | Range of CRRA for U(X) = X (1 − r)/(1 − r) | Classification of Risk Preference | ||
---|---|---|---|---|
0–1 | −1.71 | r < | −0.95 | highly risk-tolerant |
2 | −0.95 | > r < | −0.49 | very risk-tolerant |
3 | −0.49 | > r < | −0.15 | risk-tolerant |
4 | −0.15 | > r < | 0.14 | risk-neutral |
5 | 0.14 | > r < | 0.41 | slightly risk-averse |
6 | 0.41 | > r < | 0.68 | risk-averse |
7 | 0.68 | > r < | 0.97 | very risk-averse |
8 | 0.97 | > r < | 1.37 | highly risk-averse |
Lottery | Option A | Option B | Expected Value | CRRA* Interval | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Question (Scenario) | A | PA * | B1 | PB1 * | B2 | PB2 * | E(A) | E(B) | Difference | |
1 | 100 | 1 | 100 | 0.5 | 0 | 0.5 | 100 | 50 | 50 | −1.71, −0.95 |
2 | 75 | 1 | 100 | 0.5 | 0 | 0.5 | 75 | 50 | 25 | −0.95, −0.49 |
3 | 60 | 1 | 100 | 0.5 | 0 | 0.5 | 60 | 50 | 10 | −0.49, −0.15 |
4 | 50 | 1 | 100 | 0.5 | 0 | 0.5 | 50 | 50 | 0 | −0.15, 0.14 |
5 | 40 | 1 | 100 | 0.5 | 0 | 0.5 | 40 | 50 | −10 | 0.14, 0.41 |
6 | 30 | 1 | 100 | 0.5 | 0 | 0.5 | 30 | 50 | −20 | 0.41, 0.68 |
7 | 20 | 1 | 100 | 0.5 | 0 | 0.5 | 20 | 50 | −30 | 0.68, 0.97 |
8 | 10 | 1 | 100 | 0.5 | 0 | 0.5 | 10 | 50 | −40 | 0.97, 1.37 |
Type of Information | Variables |
---|---|
Utilized agricultural area | Number of hectares of rain fed crops |
Volume of water used in irrigation | Volume of water irrigated (m3/ha) |
Income | Percentage of income from agriculture |
Attitudes and Opinions towards the Environment (NEP Statements) | |
A global ecological crisis is exaggerated | |
The balance of nature supports the impact of industrialized countries | |
Humans may be able to control nature | |
Human ingenuity ensures that the earth is not uninhabitable | |
The interference of the human being in nature has disastrous consequences | |
The human being seriously abuses the environment | |
The balance of nature is delicate and easily alterable | |
We are approaching the limit number of people that the earth can hold | |
The earth has limited resources | |
The land has abundant resources, we just have to learn how to exploit them | |
Sustainable development needs a balanced situation that controls industrial growth | |
Attitudes towards Climate Change | |
Level of disposition to perform only nightly irrigation | |
Level of willingness to use low-polluting machinery | |
Level of disposition to carry out agro ecological production | |
Level of disposition to use of renewable energy sources | |
Level of disposition not to burn biomass (stubble) | |
Level of willingness to use non-nitrogenous fertilizers | |
Level of willingness to use zero tillage | |
Perception of Climate Change | |
Level of impact of global warming on their crops | |
Percentage of climate change influence on production costs | |
Temperature increase | |
More episodes of floods | |
More episodes of hail | |
More diseases and pests | |
Weed increase |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orduño Torres, M.A.; Kallas, Z.; Ornelas Herrera, S.I. Analysis of Farmers’ Stated Risk Using Lotteries and Their Perceptions of Climate Change in the Northwest of Mexico. Agronomy 2019, 9, 4. https://doi.org/10.3390/agronomy9010004
Orduño Torres MA, Kallas Z, Ornelas Herrera SI. Analysis of Farmers’ Stated Risk Using Lotteries and Their Perceptions of Climate Change in the Northwest of Mexico. Agronomy. 2019; 9(1):4. https://doi.org/10.3390/agronomy9010004
Chicago/Turabian StyleOrduño Torres, Miguel Angel, Zein Kallas, and Selene Ivette Ornelas Herrera. 2019. "Analysis of Farmers’ Stated Risk Using Lotteries and Their Perceptions of Climate Change in the Northwest of Mexico" Agronomy 9, no. 1: 4. https://doi.org/10.3390/agronomy9010004
APA StyleOrduño Torres, M. A., Kallas, Z., & Ornelas Herrera, S. I. (2019). Analysis of Farmers’ Stated Risk Using Lotteries and Their Perceptions of Climate Change in the Northwest of Mexico. Agronomy, 9(1), 4. https://doi.org/10.3390/agronomy9010004