Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.1.1. Caserta (Italy)
2.1.2. Tarquinia (Italy)
2.1.3. Bahía Blanca (Argentina)
2.1.4. Valencia (Spain)
2.2. Field Measurement Protocol
2.3. Datasets
2.4. Sentinel-2 Imagery and SNAP Biophysical Processor Products
2.5. Semi-Empirical and Empirical Methods
2.5.1. Semi-Empirical Method: The CLAIR Model
2.5.2. Empirical Method: Established Vegetation Indices
2.6. Crop Potential Evapotranspiration (ETc) Based on LAI
3. Results
3.1. Performance of LAI Estimation Methods
3.2. Performance of CCC Estimation Methods
3.3. Impact of LAI Uncertainty on the Estimation of ETc in Irrigated Crops
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brisco, B.; Brown, R.J.; Hirose, T.; McNairn, H.; Staenz, K. Precision agriculture and the role of remote sensing: A review. Can. J. Remote Sens. 1998, 24, 315–327. [Google Scholar] [CrossRef]
- Wang, K.; Franklin, S.E.; Guo, X.; Cattet, M. Remote sensing of ecology, biodiversity and conservation: A review from the perspective of remote sensing specialists. Sensors 2010, 10, 9647–9667. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 300. [Google Scholar]
- D’Urso, G. Current status and perspectives for the estimation of crop water requirements from earth observation. Ital. J. Agron. 2010, 5, 107–120. [Google Scholar] [CrossRef]
- Farg, E.; Arafat, S.M.; Abd El-Wahed, M.S.; El-Gindy, A.M. Estimation of evapotranspiration ETc and crop coefficient Kc of wheat, in south Nile Delta of Egypt using integrated FAO-56 approach and remote sensing data. Egypt. J. Remote Sens. Sp. Sci. 2012, 15, 83–89. [Google Scholar] [CrossRef]
- Glenn, E.P.; Neale, C.M.U.; Hunsaker, D.J.; Nagler, P.L. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrol. Process. 2011, 25, 4050–4062. [Google Scholar] [CrossRef]
- Vanino, S.; Pulighe, G.; Nino, P.; de Michele, C.; Bolognesi, S.F.; D’Urso, G. Estimation of evapotranspiration and crop coefficients of tendone vineyards using multi-sensor remote sensing data in a mediterranean environment. Remote Sens. 2015, 7, 14708–14730. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant. Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Delegido, J.; Van Wittenberghe, S.; Verrelst, J.; Ortiz, V.; Veroustraete, F.; Valcke, R.; Samson, R.; Rivera, J.P.; Tenjo, C.; Moreno, J. Chlorophyll content mapping of urban vegetation in the city of Valencia based on the hyperspectral NAOC index. Ecol. Indic. 2014, 40, 34–42. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Verma, S.B.; Rundquist, D.C.; Arkebauer, T.J.; Keydan, G.; Leavitt, B.; Ciganda, V.; Burba, G.G.; Suyker, A.E. Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. J. Geophys. Res. Atmos. 2006, 111, 1–13. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.B.; Jensen, N.O.; Schelde, K.; Thomsen, A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens. Environ. 2002, 81, 179–193. [Google Scholar] [CrossRef]
- Gianquinto, G.; Orsini, F.; Fecondini, M.; Mezzetti, M.; Sambo, P.; Bona, S. A methodological approach for defining spectral indices for assessing tomato nitrogen status and yield. Eur. J. Agron. 2011, 35, 135–143. [Google Scholar] [CrossRef]
- Houlès, V.; Guérif, M.; Mary, B. Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations. Eur. J. Agron. 2007, 27, 1–11. [Google Scholar] [CrossRef]
- Solari, F.; Shanahan, J.; Ferguson, R.; Schepers, J.; Gitelson, A. Active sensor reflectance measurements of corn nitrogen status and yield potential. Agron. J. 2008, 100, 571–579. [Google Scholar] [CrossRef]
- Sakamoto, T.; Gitelson, A.; Nguy-Robertson, A.; Arkebauer, T.; Wardlow, B.; Suyker, A.; Verma, S.; Shibayama, M. An alternative method using digital cameras for continuous monitoring of crop status. Agric. For. Meteorol. 2012, 154, 113–126. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Myneni, R.; Pragnère, A.; Knyazikhin, Y. Investigation of a model inversion technique for the estimation of crop characteristics from spectral and directional reflectance data. Agronomie 2000, 20, 3–22. [Google Scholar] [CrossRef]
- Bréda, N.J.J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. J. Exp. Bot. 2003, 54, 2403–2417. [Google Scholar] [CrossRef]
- Yao, X.; Wang, N.; Liu, Y.; Cheng, T.; Tian, Y.; Chen, Q.; Zhu, Y. Estimation of wheat LAI at middle to high levels using unmanned aerial vehicle narrowband multispectral imagery. Remote Sens. 2017, 9, 1304. [Google Scholar] [CrossRef]
- Campos-Taberner, M.; García-Haro, F.J.; Camps-Valls, G.; Grau-Muedra, G.; Nutini, F.; Crema, A.; Boschetti, M. Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring. Remote Sens. Environ. 2016, 187, 102–118. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W. The application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture. Remote Sens. Environ. 1989, 29, 25–37. [Google Scholar] [CrossRef]
- Lázaro-gredilla, M.; Titsias, M.K.; Verrelst, J.; Camps-valls, G.; Member, S. Retrieval of biophysical parameters with heteroscedastic gaussian processes. IEEE Geosci. Remote Sens. Lett. 2013, 11, 838–842. [Google Scholar] [CrossRef]
- Bacour, C.; Baret, F.; Béal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sens. Environ. 2006, 105, 313–325. [Google Scholar] [CrossRef]
- Casa, R.; Baret, F.; Buis, S.; Lopez-Lozano, R.; Pascucci, S.; Palombo, A.; Jones, H.G. Estimation of maize canopy properties from remote sensing by inversion of 1-D and 4-D models. Precis. Agric. 2010, 11, 319–334. [Google Scholar] [CrossRef] [Green Version]
- Frederic, B.; Buis, S. Estimating canopy characteristics from remote sensing observations: Review of methods and associated problems. In Advances in Land Remote Sensing; Springer: Berlin, Germany, 2008; pp. 173–201. ISBN 978-1-4020-6449-4. [Google Scholar]
- Atzberger, C. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models. Remote Sens. Environ. 2004, 93, 53–67. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Bisquert, M.; Sánchez, J.M.; López-Urrea, R.; Caselles, V. Estimating high resolution evapotranspiration from disaggregated thermal images. Remote Sens. Environ. 2016, 187, 423–433. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER. Available online: http://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 29 July 2019).
- Djamai, N.; Fernandes, R. Comparison of SNAP-derived Sentinel-2A L2A product to ESA product over Europe. Remote Sens. 2018, 10, 926. [Google Scholar] [CrossRef]
- Pasqualotto, N.; Delegido, J.; Van Wittenberghe, S.; Rinaldi, M.; Moreno, J. Multi-crop green LAI estimation with a new simple Sentinel-2 LAI Index (SeLI). Sensors 2019, 19, 904. [Google Scholar] [CrossRef]
- METEOBLUE Weather. Climate Caserta. Available online: https://www.meteoblue.com/en/weather/forecast/modelclimate/caserta_italy_3179866 (accessed on 15 May 2019).
- METEOBLUE Weather. Climate Tarquinia. Available online: https://www.meteoblue.com/en/weather/forecast/modelclimate/tarquinia_italy_3165919 (accessed on 15 May 2019).
- METEOBLUE Weather. Climate Bahía Blanca. Available online: https://www.meteoblue.com/en/weather/forecast/modelclimate/bahía-blanca_argentina_3865086 (accessed on 15 May 2019).
- METEOBLUE Weather. Climate Valencia. Available online: https://www.meteoblue.com/en/weather/forecast/modelclimate/valencia_spain_2509954 (accessed on 15 May 2019).
- VALERI. Land European Remote-Sensing Instruments Field Protocol. Available online: http://w3.avignon.inra.fr/valeri/ (accessed on 16 May 2019).
- Casa, R.; Upreti, D.; Pelosi, F. Measurement and estimation of leaf area index (LAI) using commercial instruments and smartphone-based systems. IOP Conf. Ser. Earth Environ. Sci. 2019, 275, 012006. [Google Scholar] [CrossRef]
- Parry, C.; Mark Blonquist, J.; Bugbee, B. In situ measurement of leaf chlorophyll concentration: Analysis of the optical/absolute relationship. Plant. Cell Environ. 2014, 37, 2508–2520. [Google Scholar] [CrossRef] [PubMed]
- European Space Agency (ESA). ESA’s Optical High-Resolution Mission for GMES Operational Services. Available online: https://sentinel.esa.int/documents/247904/349490/S2_SP-1322_2.pdf (accessed on 29 July 2019).[Green Version]
- ESA server. Available online: https://scihub.copernicus.eu/ (accessed on 3 May 2019).
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 SEN2COR: L2A processor for users. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; pp. 1–8. [Google Scholar]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Baret, F.; Jacquemoud, S.; Hanocq, J.F. About the soil line concept in remote sensing. Adv. Sp. Res. 1993, 13, 281–284. [Google Scholar] [CrossRef]
- Vuolo, F.; Dini, L.; D’Urso, G. Assessment of LAI retrieval accuracy by inverting a RT model and a simple empirical model with multiangular and hyperspectral CHRIS/PROBA data from SPARC. In Proceedings of the 3rd CHRIS/Proba Workshop, Frascati, Italy, 21–23 March 2005. [Google Scholar]
- Akdim, N.; Alfieri, S.M.; Habib, A.; Choukri, A.; Cheruiyot, E.; Labbassi, K.; Menenti, M. Monitoring of irrigation schemes by remote sensing: Phenology versus retrieval of biophysical variables. Remote Sens. 2014, 6, 5815–5851. [Google Scholar] [CrossRef]
- Fox, G.A.; Sabbagh, G.J.; Searcy, S.W.; Yang, C. An automated soil line identification routine for remotely sensed images. Soil Sci. Soc. Am. J. 2004, 68, 1326. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite (ERTS) Symposium, Washington, DC, USA, 10–14 December 1973; Volume 1, pp. 309–317. [Google Scholar]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bu, H.; Denton, A.; Franzen, D.W. Active-optical sensors using red NDVI compared to red edge NDVI for prediction of corn grain yield in North Dakota, U.S.A. Sensors 2015, 15, 27832–27853. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; D’Alessio, P. Comparison of narrow-band and broad-band vegetation indices for canopy chlorophyll density estimation in sugar beet. In Proceedings of the 6th European Conference on Precision Agriculture, Skiathos, Greece, 3–6 June 2007; pp. 189–196. [Google Scholar]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performanceof the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 2523, 5403–5413. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000; Volume 1619. [Google Scholar]
- Delegido, J.; Alonso, L.; González, G.; Moreno, J. Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC). Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 165–174. [Google Scholar] [CrossRef]
- Vanino, S.; Nino, P.; De Michele, C.; Falanga, S.; Urso, G.D.; Di, C.; Pennelli, B.; Vuolo, F.; Farina, R.; Pulighe, G. Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sens. Environ. 2018, 215, 452–470. [Google Scholar] [CrossRef]
- Menenti, M.; Bastiaanssen, W.G.M.; Van Eick, D. Determination of surface hemispherical reflectance with Thematic Mapper data. Remote Sens. Environ. 1989, 28, 327–337. [Google Scholar] [CrossRef]
- D’Urso, G.; Calera Belmonte, A. Operative approaches to determine crop water requirements from Earth Observation data: Methodologies and applications. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2006; pp. 14–25. [Google Scholar]
- Vuolo, F.; Zóltak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C. Data service platform for Sentinel-2 surface reflectance and value-added products: System use and examples. Remote Sens. 2016, 8, 938. [Google Scholar] [CrossRef]
- Kira, O.; Nguy-Robertson, A.L.; Arkebauer, T.J.; Linker, R.; Gitelson, A.A. Toward generic models for green LAI estimation in maize and soybean: Satellite observations. Remote Sens. 2017, 9, 318. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Abdullah, H.; Cherenet, E.; Ali, A.; Wang, T.; Nieuwenhuis, W.; Heurich, M.; Vrieling, A.; O’Connor, B.; et al. Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Pasqualotto, N.; Delegido, J.; Pezzola, A.; Winschel, C.; Moreno, J. Estimación del contenido de clorofila a nivel de cubierta (CCC) en cultivos: Comparativa de índices de vegetación y el producto de nivel 2A de Sentinel-2. In Proceedings of the XVIII Congreso de la Asociación Española de Teledetección, Valladolid, Spain, 24–27 September 2019. [Google Scholar]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Vuolo, F.; Neugebauer, N.; Bolognesi, S.F.; Atzberger, C.; D’Urso, G. Estimation of leaf area index using DEIMOS-1 data: Application and transferability of a semi-empirical relationship between two agricultural areas. Remote Sens. 2013, 5, 1274–1291. [Google Scholar] [CrossRef]
- Tarantino, E.; Novelli, A.; Laterza, M.; Gioia, A. Testing high spatial resolution WorldView-2 imagery for retrieving the leaf area index. In Proceedings of the Third International Conference on Remote Sensing and Geoinformation of the Environment, Paphos, Cyprus, 16–19 March 2015; p. 95351N. [Google Scholar]
- Clevers, J.G.P.W.; Kooistra, L.; van den Brande, M.M.M. Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef]
- Peschechera, G.; Fratino, U. Calibration of CLAIR model by means of Sentinel-2 LAI data for analysing wheat crops through Landsat-8 surface reflectance data. In International Conference on Computational Science and Its Applications; Springer International Publishing: Melbourne, Australia, 2018; pp. 294–304. [Google Scholar]
- Xie, Q.; Dash, J.; Huete, A.; Jiang, A.; Yin, G.; Ding, Y.; Peng, D.; Hall, C.C.; Brown, L.; Shi, Y.; et al. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 187–195. [Google Scholar] [CrossRef]
- Djamai, N.; Fernandes, R.; Weiss, M.; McNairn, H.; Goïta, K. Validation of the Sentinel Simplified Level 2 Product Prototype Processor (SL2P) for mapping cropland biophysical variables using Sentinel-2/MSI and Landsat-8/OLI data. Remote Sens. Environ. 2019, 225, 416–430. [Google Scholar] [CrossRef]
- Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sens. Environ. 2018, 216, 245–261. [Google Scholar] [CrossRef]
- Chen, A.; Orlov-Levin, V.; Meron, M. Applying high-resolution visible-channel aerial imaging of crop canopy to precision irrigation management. Agric. Water Manag. 2019, 216, 196–205. [Google Scholar] [CrossRef]
- Hssaine, B.A.; Merlin, O.; Rafi, Z.; Ezzahar, J.; Jarlan, L.; Khabba, S.; Er-Raki, S. Calibrating an evapotranspiration model using radiometric surface temperature, vegetation cover fraction and near-surface soil moisture data. Agric. For. Meteorol. 2018, 256–257, 104–115. [Google Scholar] [CrossRef]
- Richter, K.; Vuolo, F.; D’Urso, G. Leaf area index and surface albedo estimation: Comparative analysis from vegetation indexes to radiative transfer models. Int. Geosci. Remote Sens. Symp. 2008, 3, III-736–III-739. [Google Scholar] [CrossRef]
- Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Confalonieri, R.; Francone, C.; Foi, M. The PocketLAI smartphone app: An alternative method for leaf area index estimation. In Proceedings of the International Environmental Modelling and Software Society (iEMSs), San Diego, CA, USA, 15–19 June 2014; p. 6. [Google Scholar]
- Paleari, L.; Movedi, E.; Vesely, F.M.; Thoelke, W.; Tartarini, S.; Foi, M.; Boschetti, M.; Nutini, F.; Confalonieri, R. Estimating crop nutritional status using smart apps to support nitrogen fertilization. A case study on paddy rice. Sensors 2019, 19, 981. [Google Scholar] [CrossRef]
- Campos-Taberner, M.; García-Haro, F.J.; Confalonieri, R.; Martínez, B.; Moreno, Á.; Sánchez-Ruiz, S.; Gilabert, M.A.; Camacho, F.; Boschetti, M.; Busetto, L. Multitemporal monitoring of plant area index in the valencia rice district with PocketLAI. Remote Sens. 2016, 8, 202. [Google Scholar] [CrossRef]
- Orlando, F.; Movedi, E.; Coduto, D.; Parisi, S.; Brancadoro, L.; Pagani, V.; Guarneri, T.; Confalonieri, R. Estimating leaf area index (LAI) in vineyards using the PocketLAI smart-app. Sensors 2016, 16, 2004. [Google Scholar] [CrossRef]
Test Site | Crop Types | N° ESUs | LAI | LCC (g/m2) | Total ESUs | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
CAS19_IT | Oat (Avena sativa) | 44 | 2.65 | 0.93 | 0.96 | 0.15 | 50 |
Ryegrass (Secale cereale) | 3 | 2.22 | 0.14 | 0.45 | 0.27 | ||
Alfalfa (Medicago sativa) | 3 | 1.58 | 0.25 | 0.96 | 0.09 | ||
Bare soil | 10 | 0 | 0 | 0 | 0 | 10 | |
TAR16_IT | Wheat (Triticum durum) | 18 | 3.24 | 0.98 | 0.45 | 0.07 | 44 |
Tomato (Solanum lycopersicum) | 26 | 2.15 | 1.10 | 0.37 | 0.07 | ||
Bare soil | 10 | 0 | 0 | 0 | 0 | 10 | |
BAH18_AR | Wheat (Triticum durum) | 8 | 1.51 | 1.28 | 0.50 | 0.07 | 50 |
Alfalfa (Medicago sativa) | 5 | 2.11 | 0.78 | 0.71 | 0.18 | ||
Onion (Allium cepa) | 9 | 1.65 | 0.83 | 0.36 | 0.10 | ||
Oat (Avena sativa) | 6 | 2.51 | 0.63 | 0.47 | 0.17 | ||
Agropiro (Thinopyrum ponticum) | 9 | 3.24 | 0.95 | 0.57 | 0.10 | ||
Barley (Hordeum vulgare) | 4 | 2.43 | 1.23 | 0.50 | 0.02 | ||
Potato (Solanum tuberosum) | 9 | 2.09 | 0.52 | 0.64 | 0.06 | ||
Bare soil | 12 | 0 | 0 | 0 | 0 | 12 | |
VAL18_ES | Tigernut (Cyperus esculentus) | 7 | 1.78 | 0.64 | 0.28 | 0.09 | 48 |
Potato (Solanum tuberosum) | 2 | 0.95 | 0.15 | 0.73 | 0.03 | ||
Orange tree (Citrus x sinensis) | 7 | 2.68 | 0.41 | 1.40 | 0.29 | ||
Pumpkin (Cucurbita maxima) | 4 | 1.54 | 0.36 | 0.52 | 0.23 | ||
Artichoke (Cynara scolymus) | 6 | 1.94 | 0.35 | 0.98 | 1.12 | ||
Alfalfa (Medicago sativa) | 3 | 2.33 | 0.22 | 0.82 | 0.09 | ||
Lettuce (Lactuca sativa) | 5 | 3.15 | 0.90 | 0.34 | 0.08 | ||
Oleander (Nerium oleander) | 5 | 1.64 | 0.78 | 1.08 | 0.30 | ||
Onion (Allium cepa) | 2 | 0.44 | 0.01 | 0.39 | 0.04 | ||
Walnut tree (Juglans regia) | 2 | 1.16 | 0.18 | 0.79 | 0.02 | ||
Olive tree (Olea europaea) | 2 | 2.50 | 0.67 | 1.39 | 0.09 | ||
Fan palm (Chamaerops humilis) | 3 | 2.26 | 0.44 | 1.07 | 0.04 | ||
Bare soil | 10 | 0 | 0 | 0 | 0 | 10 |
Band Number | Function | Central Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) |
---|---|---|---|---|
B1 | Coastal aerosol | 443 | 27 | 60 |
B2 | Blue | 490 | 98 | 10 |
B3 | Green | 560 | 45 | 10 |
B4 | Red | 665 | 38 | 10 |
B5 | Vegetation red-edge | 705 | 19 | 20 |
B6 | Vegetation red-edge | 740 | 18 | 20 |
B7 | Vegetation red-edge | 783 | 28 | 20 |
B8 | Near-infrared (NIR) | 842 | 145 | 10 |
B8a | Vegetation red-edge | 865 | 33 | 20 |
B9 | Water vapour | 945 | 26 | 60 |
B10 | SWIR | 1380 | 75 | 60 |
B11 | SWIR | 1610 | 143 | 20 |
B12 | SWIR | 2190 | 242 | 20 |
Test Site | Sentinel-2 Tile | N° of Images | Acquisition Dates | Field Measurement Dates |
---|---|---|---|---|
CAS19_IT | T33TVF | 2 | 2019 (March 09, March 19) | 2019 (March 12, March 20) |
TAR16_IT | T32TQM | 7 | 2016 (March 17, April 19, May 06, June 08, June 25, July 08, July 28) | 2016 (March 17, April 19, May 06, June 08, June 25, July 08, July 28) |
BAH18_AR | T20HNB T20HNC | 3 | 2018 (November 18, November 23) | 2018 (November 16, November 17, November 21, November 23) |
VAL18_ES | T30SYJ | 1 | 2018 (October 03) | 2018 (October 01, October 03, October 04) |
LAI | |||
---|---|---|---|
Reference | Abbreviation | Formula | Formula with S2 Bands |
[50] | RVI | ||
[51] | NDVI | ||
[52] | NDI | ||
[53] | RENDVI | ||
[33] | SeLI | ||
[54] | TRBI | ||
[55] | IRECI | ||
[56] | EVI | ||
CCC | |||
Reference | Abbreviation | Formula | Formula with S2 bands |
[57] | CIred-edge | ||
[57] | CIgreen | ||
[58] | TCARI | 3 | 3 |
[59] | OSAVI | ||
[60] | MTCI | ||
[61] | NDRE1 | ||
[62] | NDRE2 | ||
[63] | NAOC |
Test Site | Acquisition Dates | Soil Line Slope | α* (Calibrated) | |
---|---|---|---|---|
CAS19_IT | March 09, 2019 | 0.990 | 0.728 | 0.27 |
March 19, 2019 | 0.986 | 0.784 | 0.27 | |
TAR16_IT | March 17, 2016 | 0.984 | 0.943 | 0.20 |
April 19, 2016 | 0.983 | 0.971 | 0.20 | |
May 06, 2016 | 0.993 | 1.026 | 0.20 | |
June 08, 2016 | 0.978 | 0.927 | 0.20 | |
June 25, 2016 | 0.999 | 0.917 | 0.20 | |
July 08, 2016 | 0.995 | 0.788 | 0.20 | |
July 28, 2016 | 0.995 | 0.774 | 0.20 | |
BAH18_AR | November 18, 2018 (T20 HNB) | 0.984 | 0.590 | 0.69 |
November 18, 2018 (T20 HNC) | 0.989 | 0.534 | 0.69 | |
November 23, 2018 (T20 HNB) | 0.985 | 0.571 | 0.69 | |
VAL18_ES | October 03, 2018 | 0.998 | 0.519 | 0.58 (herb. crops) 0.27 (tree crops) |
Model | CAS19_IT | TAR16_IT | BAH18_AR | VAL18_ES | All Datasets | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
ANN S2 | 0.863 | 0.79 | 0.742 | 0.86 | 0.702 | 0.78 | 0.473 | 1.19 | 0.639 | 0.92 | |
CLAIR | 0.798 | 0.90 | 0.715 | 1.47 | 0.631 | 0.86 | 0.460 | 0.84 | 0.529 | 1.04 | |
CLAIRopt | 0.800 | 0.60 | 0.712 | 0.78 | 0.631 | 1.22 | 0.460 | 0.93 | 0.576 | 0.91 | |
VI | RVI | 0.802 | 0.56 | 0.433 | 1.09 | 0.493 | 0.90 | 0.346 | 0.86 | 0.540 | 0.87 |
NDVI | 0.736 | 0.65 | 0.696 | 0.80 | 0.714 | 0.68 | 0.525 | 0.73 | 0.689 | 0.71 | |
NDI | 0.709 | 0.68 | 0.605 | 0.91 | 0.640 | 0.76 | 0.369 | 0.85 | 0.610 | 0.80 | |
RENDVI | 0.782 | 0.59 | 0.478 | 1.05 | 0.609 | 0.85 | 0.217 | 0.94 | 0.542 | 0.87 | |
SeLI | 0.805 | 0.56 | 0.709 | 0.78 | 0.721 | 0.67 | 0.468 | 0.78 | 0.702 | 0.70 | |
TRBI | 0.710 | 0.68 | 0.673 | 0.83 | 0.719 | 0.67 | 0.523 | 0.74 | 0.677 | 0.73 | |
IRECI | 0.852 | 0.49 | 0.655 | 0.85 | 0.605 | 0.80 | 0.437 | 0.80 | 0.662 | 0.75 | |
EVI | 0.802 | 0.56 | 0.744 | 0.74 | 0.673 | 0.72 | 0.520 | 0.74 | 0.708 | 0.69 |
Model | CAS19_IT | TAR16_IT | BAH18_AR | VAL18_ES | All Datasets | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (g/m2) | R2 | RMSE (g/m2) | R2 | RMSE (g/m2) | R2 | RMSE (g/m2) | R2 | RMSE (g/m2) | ||
ANN S2 | 0.847 | 0.68 | 0.775 | 0.67 | 0.745 | 0.45 | 0.473 | 1.45 | 0.502 | 0.89 | |
VI | CIred-edge | 0.806 | 0.62 | 0.667 | 0.40 | 0.827 | 0.32 | 0.408 | 0.99 | 0.710 | 0.64 |
CIgreen | 0.794 | 0.64 | 0.712 | 0.37 | 0.802 | 0.34 | 0.427 | 0.98 | 0.712 | 0.63 | |
TCARI | 0.813 | 0.61 | 0.543 | 0.47 | 0.754 | 0.38 | 0.182 | 1.16 | 0.628 | 0.72 | |
OSAVI | 0.684 | 0.79 | 0.582 | 0.45 | 0.819 | 0.32 | 0.315 | 1.07 | 0.630 | 0.72 | |
MTCI | 0.705 | 0.76 | 0.569 | 0.46 | 0.777 | 0.36 | 0.371 | 1.06 | 0.637 | 0.71 | |
NDRE1 | 0.679 | 0.80 | 0.603 | 0.44 | 0.822 | 0.32 | 0.376 | 1.02 | 0.649 | 0.70 | |
NDRE2 | 0.690 | 0.78 | 0.639 | 0.42 | 0.831 | 0.31 | 0.422 | 0.98 | 0.670 | 0.68 | |
NAOC | 0.627 | 0.86 | 0.609 | 0.43 | 0.803 | 0.34 | 0.384 | 1.01 | 0.631 | 0.72 |
WHEAT | TOMATO | |||
---|---|---|---|---|
Model | ETc LAI In Situ | |||
R2 | RMSE (mm/d) | R2 | RMSE (mm/d) | |
ETo × Kc | 0.998 | 0.32 | 0.240 | 1.17 |
ETc ANN LAI S2 | 0.902 | 0.41 | 0.971 | 0.33 |
ETc LAI CLAIR | 0.978 | 1.42 | 0.985 | 1.10 |
ETc LAI SeLI | 0.998 | 0.31 | 0.672 | 0.54 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasqualotto, N.; D’Urso, G.; Bolognesi, S.F.; Belfiore, O.R.; Van Wittenberghe, S.; Delegido, J.; Pezzola, A.; Winschel, C.; Moreno, J. Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach. Agronomy 2019, 9, 663. https://doi.org/10.3390/agronomy9100663
Pasqualotto N, D’Urso G, Bolognesi SF, Belfiore OR, Van Wittenberghe S, Delegido J, Pezzola A, Winschel C, Moreno J. Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach. Agronomy. 2019; 9(10):663. https://doi.org/10.3390/agronomy9100663
Chicago/Turabian StylePasqualotto, Nieves, Guido D’Urso, Salvatore Falanga Bolognesi, Oscar Rosario Belfiore, Shari Van Wittenberghe, Jesús Delegido, Alejandro Pezzola, Cristina Winschel, and José Moreno. 2019. "Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach" Agronomy 9, no. 10: 663. https://doi.org/10.3390/agronomy9100663
APA StylePasqualotto, N., D’Urso, G., Bolognesi, S. F., Belfiore, O. R., Van Wittenberghe, S., Delegido, J., Pezzola, A., Winschel, C., & Moreno, J. (2019). Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach. Agronomy, 9(10), 663. https://doi.org/10.3390/agronomy9100663