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Abstract: The expected increase in population and the pressure posed by climate change on agricultural
production require the assessment of future yield levels and the evaluation of the most suitable
management options to minimize climate risk and promote sustainable agricultural production.
Crop simulation models are widely applied tools to predict crop development and production
under different management practices and environmental conditions. The aim of this study was
to parameterize CSM-CERES-Wheat and CSM-CERES-Maize models, implemented in the Decision
Support System for Agrotechnology Transfer (DSSAT) software, to predict phenology and grain yield
of durum wheat, common wheat, and maize in different Italian environments. A 10-year (2001-2010)
dataset was used to optimize the genetic parameters for selected varieties of each species and to
evaluate the models considering several statistical indexes. The generalized likelihood uncertainty
estimation method, and trial and error approach were used to optimize the cultivar-specific parameters
of these models. Results show good model performances in reproducing crop phenology and yield
for the analyzed crops, especially with the parameters optimized with the trial and error procedure.
Highly significant (p < 0.001) correlations between observed and simulated data were found for both
anthesis and yield in model calibration and evaluation (p < 0.01 for grain yield of maize in model
evaluation). Root mean square error (RMSE) values range from six to nine days for anthesis and from
1.1 to 1.7 t ha™! for crop yield and index of agreement (d-index) from 0.96 to 0.98 for anthesis and
from 0.8 to 0.87 for crop yield. The set of genetic parameters obtained for durum wheat, common
wheat, and maize may be applied in further analyses at field, regional, and national scales to guide
operational (farmers), strategic, and tactical (policy makers) decisions.

Keywords: Crop modeling; decision support system; calibration; evaluation; DSSAT; GLUE;
wheat; maize

1. Introduction

The expected world population growth, the limited availability of arable land, and the impacts of
climate change on cereal production indicate the need to increase the quantity and quality of global
grain production to meet the growing demand of food and dietary requirements [1]. Transformative
changes in agricultural systems are required to increase the adaptive capacity of the sector, guarantee
farmer income, and enhance the fulfillment of Sustainable Development Goals (SDGs) under present
and future climatic conditions. However, the choice of adaptation and mitigation strategies is closely
related to specific environmental conditions. Crop Simulation Models (CSMs) have been widely tested
and applied worldwide to assess the relations between crops and environment and to evaluate the
effects of alternative management options in different environmental conditions. CSMs are indeed
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capable of quantifying the interaction of genotype (G), environment (E), and management (M) and
their effects on crop yield and other outputs [2]. Recently, CSMs have become agricultural system
models that incorporate the capability to analyze a variety of issues, including changes in soil carbon,
greenhouse gas emissions, plant breeding, resource use and efficiency, ecosystem services, pests and
diseases, food security, yield-gap analysis, and climate change mitigation and adaptation [3] to support
the decision making process. They can be applied as “what if” tools, in addition to field and farm
experiments that require large amounts of time and resources to support farmers and policy makers
to manage agricultural systems under different conditions, and provide guidelines for a sustainable
agricultural management with environmental, social, and economic benefits.

CSMs are generally developed and applied for field-scale simulations, but they have been used
from local to global scale by combining with geospatial data using different approaches and purposes,
including climate change [4-9]. Some studies also evaluated the application of CSMs with seasonal
forecast for crop yield predictions [10-12]. However, the model applications at large scale are often
constrained by limited availability of observations for model calibration and evaluation, which reduce
the reliability of model simulations [13]. Notwithstanding the importance of model calibration and
evaluation when applied for new locations or new varieties, many studies use coefficients obtained by
model developers or from other studies, increasing the uncertainty of model output [14]. An accurate
parameterization of crop models at an appropriate scale is required to test their predictive capacity [10]
and reduce the degree of uncertainty [15].

Recent literature highlights the need for multi-crop model assessments to reduce the uncertainty
associated with model simulations [2,16] and especially for large-scale model intercomparison
studies, it is useful to have crop parameters based on a wide range of conditions and tested in
different environments.

Long-term observations from different experimental sites result in model calibration with greater
robustness, especially if high quality weather, soil, crop management, crop phenology, and production
data are available.

This study aims to contribute to the available literature on crop model parameterization to
simulate durum wheat (Triticum durum Desf.), common wheat (Triticum aestivum L.), and maize (Zea
mays L.) using CSM-CERES-Wheat and CSM-CERES-Maize models and multi-site and multi-year
observations. The CSM-CERES-Wheat and CSM-CERES-Maize are commonly used in climate change
impact assessment at different scales and are widely tested and applied in model intercomparison
studies [2,5,17], providing good performances in reproducing observations [15,18]. This research
provides parameterization at a national level for wheat and maize crops considering observations from
field trials located in different agroclimatic and management conditions in Italy in order to explore
a wide range of G X E X M interactions and obtain robust parameterization to be applied in further
studies at both local and national scales.

Wheat and maize are staple cereal crops with a high economic and social relevance for Europe and
worldwide, as they provide a large part of the food energy intake for human consumption and livestock
feed. According to FAOSTAT [19], maize and wheat are the first two cultivated crops worldwide
(in terms of harvested area) and the first and fourth in Europe (in terms of both harvested area and
production). In Italy, maize is the main grown cereal, with a production of 6.0 million tons in 2017,
followed by wheat (4.2 for durum wheat and 2.8 for common wheat), which together account for
78.6% of the total cereal harvested area and 80.9% of total cereal production [20]. Predicting growth
and yield of these crops under present climate conditions and future scenarios is pivotal to guide
crop management. Indeed, if the potential effects of sustainable crop management practices, as
conservation agriculture [21] and in general climate smart agriculture solutions [22], are quite well
explored, especially under the present climate conditions, there is still a paucity of literature exploring
the effects of different management practices (e.g., changes in crop calendars, application of precision
agriculture, and the use of well adapted crops) as adaptation strategies to cope with climate changes
and on the synergic effects between adaptation and mitigation options. The results of this work would
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serve model applications at field, regional, and national scales to simulate average and interannual
variability of crop phenology and yield and inform decision makers and stakeholders on how to
manage agricultural systems by sustainably increasing crop productivity and improving their resilience
to climate change.

2. Materials and Methods

2.1. CSM-CERES-Wheat and CSM-CERES-Maize

CSM-CERES-Wheat [23,24] and CSM-CERES-Maize [24,25] implemented in the Decision Support
System for Agrotechnology Transfer (DSSAT) v.4.6.1.0 [26,27] were applied in this study to simulate
phenology and yield of specific varieties of durum wheat, common wheat, and maize in Italy. The
DSSAT is a software package that includes independent dynamic models to simulate crop growth,
development, and yield of more than 25 crops by considering weather, soil, crop genetics, and agronomic
management, for single or multiple seasons, at sites where the minimum input data required for
model calibration and operation are available [14,26]. CSMs implemented in DSSAT calculate cropping
system processes within a homogeneous area on a daily time-step and simulate crop growth stages
as a function of temperature and day length. The potential growth is simulated as a function of
photosynthetically active radiation and its interception, where the biomass production is constrained
by temperature, nitrogen, and water stress. A number of Cultivar-Specific Parameters (CSPs)determine
the life cycle and reproductive growth rate of specific crop varieties by considering phase modifiers
(e.g., vernalization and photoperiod sensitivity) and vegetative and reproductive attributes [28]. See
Table 1 for the CSPs of wheat and maize considered in DSSAT. Moreover, DSSAT includes specific
modules to simulate soil dynamics, soil temperature and water, and nitrogen and carbon processes,
including changes in soil organic matter content according to environmental conditions and agronomic
management [26,29]. CSMs implemented in DSSAT also consider the effects of the CO, atmospheric
concentration on photosynthesis and water-use efficiency [14].

Table 1. Cultivar-specific parameters (CSPs) for CSM-CERES-Wheat and CSM-CERES-Maize
crop models.

Wheat CSPs Definition
P1v Vernalization sensitivity coefficient (%/d of unfulfilled vernalization)
P1D Photoperiod sensitivity coefficient (% reduction/h near threshold)
P5 Grain filling (excluding lag) phase duration (degree days)
G1 Kernel number per unit canopy weight at anthesis (#/g)
G2 Standard kernel size under optimum conditions (mg/day)
G3 Standard, non-stressed dry weight (total, including grain) of a single tiller at maturity (g)
PHINT Interval between the appearance of leaf tips (degree days)
Maize CSPs Definition

Thermal time from seedling emergence to the end of the juvenile phase (expressed in degree days above a base
temperature of 8 °C) during which the plant is not responsive to changes in photoperiod
Extent to which development (expressed as days) is delayed for each hour increase in photoperiod, beyond the longest

P1

P2 photoperiod at which development proceeds at a maximum rate (which is considered to be 12.5 hours)
P5 Thermal time from silking to physiological maturity (expressed in degree days above a base temperature of 8 °C)
G2 Maximum possible number of kernels per plant
G3 Kernel filling rate during the linear grain filling stage and under optimum conditions (mg/day)
PHINT Phyllochron interval (degree days)

2.2. Experimental Sites and Minimum Data set for Model Calibration and Evaluation

The minimum data set for model calibration includes soil characteristics, daily weather data
of minimum and maximum temperature, precipitation, solar radiation, crop management, and
CSPs [26,30].

In this study, observations of anthesis date, grain yield, and crop management (e.g., sowing
and harvesting dates, fertilization and irrigation dates and rates, and tillage) were collected for three
varieties of durum wheat, common wheat, and maize (see Table 2) from the experimental field trials
(Figure 1) of the national network of varietal comparison and published annually in dedicated special
issues. See [31-56] for durum wheat, [57-77] for common wheat, and [78-86] for maize.
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Table 2. Main characteristics of the crop varieties from [87-89].

Cultivar Characteristics Iride (Durum Wheat) Bologna (Common Wheat) Eleonora (Maize)
Release 1996 1999 1995
Cultivar type Spring durum wheat Winter common wheat FAO class 700
Heading time Precocious Medium-Late Medium-Late
Potential production Very high Very high Very high
Adaptabi'lity to different High High Very high
environments
Resistance to cold Good Medium-High Medium-High
Resistance to lodging Good Medium-High High
Resistance to the main diseases Medium Medium Medium-High
Flour quality Medium-High Very high -
Main uses Grain Grain Grain - Silage

Islands

Legend
[] Area boundaries N

Region boundaries A
®  Calibration sites
A Evaluation sites 0 60 120 180 240 300

Kilometers

Figure 1. Location of the experimental sites for model calibration and evaluation in Italy.

The crop varieties were selected as representative of very-high productivity potential and
high/very-high adaptability to different environments (Table 2). The crop management information
followed the ordinary practices applied in the variety trials of the different Italian regions (North, Centre,
South, and Islands) and were recorded from the available literature, as well as observations of anthesis
date and grain yield [31-86]. The size of the experimental plots was 10 m? for each crop. Sowing
density was of 450 plants/m? for northern and central Italy and 350 plants/m? for southern-peninsular
area, Sicily, and Sardinia for durum wheat, and 450 plants/m2 for common wheat in all sites. For
maize, each plot consisted of four rows of 11 m including a transverse portion of 70-80 cm between
the various parcels. The plant density (ranging from 5.5 to 7.5 plants/m? in the different field trials)
was obtained with the manual thinning of the plants at the stage of 4th-5th leaf. Wheat sowing dates
ranged from the last week of October (in northern and central Italy) to the last week of December (in
southern Italy); while sowing dates for maize ranged from the beginning of April to the end of May.
The ordinary tillage for wheat is conventional tillage with moldboard plowing in late summer when
the soil is in the right humidity conditions and disk harrow and tine harrow before sowing to prepare
a proper seedbed. For maize, the ordinary tillage comprised of plowing and harrowing before sowing.

The anthesis date (expressed in dap = days after planting) for phenology and the grain yield
(in t ha™!) accounting for biomass production were considered for crop models calibration and
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evaluation. The observed values of anthesis dates were estimated from the observed heading dates and
the observed grain yield values were corrected to 0% water, as required by the CSMs. Weed control,
pests, and diseases were not considered.

The main characteristics of each experimental site are given in Table 3.

Table 3. Characterization of the experimental sites.

Experimental Site Latitude Longitude Weather Station Tmax* (°C) Tmin* (°C) PP* (mm) Soil Type
Agugliano 43°32'N 13°24’E Potenza Picena 20.3 10.8 760.9 Silty loam
Alba Adriatica 42°49'N 13°55’E Monsampolo 20.4 9.5 726.1 Silty loam
Alessandria 44°53'N 08°36'E Alessandria Lobbi 18.8 74 908.8 Medium loam
Ambrogio 44°55'N 11°56’E Rovigo 19.2 84 678.2 Medium loam
Basiliano 46°01'N 13°08’E Cividale del Friuli 18.5 8.8 1477.3 Medium loam
Caleppio di Settala 45°26'N 09°22'E Montanaso Lombardo 18.1 8.9 876.4 Medium loam
Caltagirone 37°14'N 14°30'E Santo Pietro 223 119 576.0 Medium loam
Cammarata 37°37'N 13°39’E Pietranera 23.5 8.6 676.4 Clay loam
Castel di Judica 37°29'N 14°40’E Libertinia 243 10.0 534.3 Silty loam
Castellazzo Bormida 44°44'N 08°27'E Basaluzzo 18.3 6.9 593.3 Medium loam
Ceregnano 45°03'N 11°51'E Rovigo 19.2 8.4 678.2 Clay loam
Cigliano 45°19'N 08°03'E Candia 17.6 6.7 944.7 Clay loam
Codroipo 45°58'N 12°56’E Fiume Veneto 19.2 8.3 1177.7 Silty loam
Cuneo 44°22'N 07°33'E Fossano 17.0 8.0 525.2 Clay loam
Gela 37°06'N 14°16’E Santo Pietro 229 10.8 590.3 Silty loam
Gravina 40°57'N 16°05’E Genzano di Lucania 184 10.7 656.2 Medium loam
Latisana 45°47'N 13°01'E Fiume Veneto 19.2 8.3 1177.7 Clay loam
Malalbergo 44°43'N 11°32’E Gualdo 20.1 8.9 667.4 Clay loam
Matera 40°39'N 16°36’E Matera 21.0 8.7 666.2 Silty loam
Mogliano Veneto 45°35'N 12°14’E Susegana 18.4 8.0 1,356.3 Medium loam
Ostellato 44°44'N 11°56’E Gualdo 20.1 8.9 667.4 Clay loam
Palazzolo dello Stella 45°52'N 13°11'E Fiume Veneto 19.2 8.3 1177.7 Silty clay loam
Roma 41°57’N 12°30’E Roma Collegio Romano 21.3 12.5 697.0 Loam
San Piero a Grado 43°41'N 10°21'E San Piero a Grado 20.6 85 872.6 Medium loam
Santa Lucia 39°58'N 08°37'E Santa Lucia 229 10.8 590.3 Medium loam
Sant’Angelo Lodigiano 45°14'N 09°24'E Montanaso Lombardo 18.1 8.9 876.4 Clay loam
Santo Stefano Quisquina 37°37’N 13°29'E Pietranera 235 8.6 676.4 Clay loam
Ussana 39°24'N 09°05'E Ussana 245 11.6 454.2 Clay loam
Vigone 44°50'N 07°29'E Cumiana 19.0 7.8 924.7 Medium loam
Villadose 45°05'N 11°53’'E Rovigo 19.2 8.4 678.2 Medium loam
Viterbo 42°25'N 12°05’E Caprarola 18.4 9.6 922.3 Medium loam
Zoppola 46°1'N 12°35'E Fiume Veneto 19.2 8.3 1177.7 Silty loam

* Tmax (Maximum temperature), Tmin (Minimum Temperature), and PP (Precipitation) are the mean values
recorded in the period of the analysis.

The daily weather data were collected for the period 2001-2010, from the available weather stations
of the national database of the Agricultural Research Council’s Research Unit for Climatology and
Meteorology applied to Agriculture (CRA-CMA, 2011) and the regional Italian Agencies. Specifically,
data for the Ussana site were provided by the Agency for Agricultural Research of the Autonomous
Region of Sardinia (AGRIS Sardegna) and data for experimental sites located in Piedmont (Alessandria
Lobbi, Basaluzzo, Candia, Fossano, and Cumiana) were from the Regional Agency for Environmental
Protection of Piedmont (ARPA Piemonte). For each experimental field, the nearest available weather
stations were considered.

Soil profiles and information were from the ISRIC-WISE v.1.2 data set [90]. For the Ussana
experimental site (in Sardinia), the soil profile was provided by AGRIS Sardegna.

All the collected observations (weather, soil, climate, and crop management) were organized in
the form required by DSSAT and the experimental files (EXP) were created accordingly.

Before proceeding with the CSM-CERES-Wheat and CSM-CERES-Maize model calibration and
evaluation, a sensitivity analysis for CSPs that characterize the development and productivity of
each crop variety (Table 1) was performed. A detailed description of the sensitivity analysis and
the optimization and evaluation of CSPs for CSM-CERES-Wheat and CSM-CERES-Maize models is
presented in the following sections.

2.3. Sensitivity Analysis

A sensitivity analysis was performed to study the influence of each CSP of the CSM-CERES-Wheat
and CSM-CERES-Maize models on the variation of model output [91,92], in this case anthesis date and
grain yield for durum and common wheat, and grain yield for maize. The sensitivity analysis aims to



Agronomy 2019, 9, 665 6 of 19

guide the calibration phase focusing on parameters that mainly affect the model outputs. The analysis
was performed considering the experimental sites used in model calibration and calculating the
sensitivity index (SI) for each CSP as follows [93]:

SI=((Oz - 01)/Oavg)/((Iz - 1)/ Tavg), M

where Iy, I, and layg are the maximum, minimum, and average values of a specific input parameter,
while Oy, Oy, and O,yg are the maximum, minimum, and average values of the crop model output
under consideration.

2.4. CSM-CERES-Wheat and CSM-CERES-Maize Calibration and Evaluation

Model calibration and evaluation were performed comparing model simulations with field
observations of anthesis dates and crop yields for multiple years and sites (Table 4). Sites were grouped
for calibration and evaluation experiments, considering at least two sites—one for calibration and
one for evaluation—for each geographical area (North, Center, South, and Islands) (see Figure 1 and
Table 4). Overall, 14 experimental sites were selected for durum wheat (67 combinations site X year),
12 sites for common wheat (38 combinations site X year), and 13 sites for maize (23 combinations site
X year).

Table 4. Experimental sites and relative number of years (in brackets) for model calibration (C) and
evaluation (E).

Crop Calibration (C) Evaluation (E)

Agugliano (5); Caltagirone (6); Cigliano (2); Matera (5); Castel di Judica (6); Ceregnano (4); Gela (4); Gravina
Roma (5); Santa Lucia (7); Santo Stefano Quisquina (7) (2); Ostellato (3); Ussana (6); Viterbo (5)

Durum wheat

Basiliano (3); Cigliano (3); Matera (5); Mogliano
Veneto (3); San Piero a Grado (3); Santo Stefano
Quisquina (3)

Alba Adriatica (1); Caltagirone (3); Cammarata (5);

Common wheat Ceregnano (2); Malalbergo (2); Sant’Angelo Lodigiano (5)

Ambrogio (2); Castellazzo Bormida (1); Cigliano (1);
Cuneo (1); Palazzolo dello Stella (2); Sant’Angelo
Lodigiano (2); Zoppola (1)

Alessandria (1); Caleppio di Settala (1); Codroipo (1);

Maize Latisana (3); Vigone (6); Villadose (1)

The anthesis date and grain yield were considered for CSM-CERES-Wheat calibration and
evaluation, while for the CSM-CERES-Maize crop model, only grain yield was calibrated and evaluated
and a date of maturity equal to 132 dap was considered as reported by the producer (Pioneer) for the
length of growing period of the selected hybrid.

The CSPs were modified to minimize the differences between model simulations and observations.
The Generalized Likelihood Uncertainty Estimation (GLUE) method [94] was applied using the GLUE

Moreover, the trial and error (TE) approach [95] was applied to further improve the simulation results
by modifying the CSPs through an iterative procedure to minimize the Root-Mean-Square Error (RMSE)
as suggested by [96] and optimize other statistical indexes described in the paragraph “Statistical
Analysis”.

The DEFAULT cultivar of the WHCER046.CUL file of DSSAT was used as the starting point
for model calibration for both durum and common wheat, while for maize, the parameterization
started from the MEDIUM SEASON hybrid of the file MZCER046.CUL. The first step simulated by the
DSSAT CSMs is crop development and, consequently, the process of parameterization started with the
CSPs related to phenological stages (P1V, P1D, and P5 for CSM-CERES-Wheat and P1, P2, and P5 for
CSM-CERES-Maize). The coefficients that affect grain yield (G1, G2, and G3 for CSM-CERES-Wheat
and G2, G3, and PHINT for CSM-CERES-Maize) were subsequently parameterized. According to
the results of sensitivity analysis, only the parameters that showed a sensitivity on anthesis date and
grain yield were modified. In the TE method, P1V coefficient was set to 5.0 for both durum and
common wheat, as suggested for the varieties that does not require vernalization [97] and the PHINT
coefficient was set equal to 95, as the suggested value for durum wheat and common wheat in the
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Mediterranean area [98]. The G3 coefficient was set equal to 1.8 for durum wheat as the average value
of those reported in other studies for the calibration of durum wheat in Italy [99,100]. Finally, the two
set of CSPs obtained with GLUE and trial and error were evaluated considering an independent data
set of field observations for anthesis dates and crop yields (as reported in Table 3).

2.5. Statistical Analysis

The performance of CSM-CERES-Wheat and CSM-CERES-Maize in calibration and evaluation
were evaluated using five statistical indexes, mainly based on the calculation of correlation and
differences between simulated (Ei) and observed (Mi) values of each variable, exploring absolute
and relative differences: (1) Pearson correlation coefficient (r), (2) coefficient of determination (R2),
(3) root-mean-square error (RMSE), (4) coefficient of residual mass (CRM), and (5) index of agreement
(d-Index). Since the use of a single statistical index is not sufficient for evaluating simulation
models, multiple indexes were selected among the most commonly used indexes in crop model
evaluation [14,99]. The identified indexes are calculated as follows:

_ i=1(Ei—E)(Mi - M)
\/Z?: 1(Ei_E)2 Xi- 1(Mi_ M)z

(27 (B - E)(vi - M)

r

, )

R* = 3)
—\2 —\2 7
P_1(E-E) L'y (Mi- M)
" (B - M)
RMSE = \/ 1—1(;; ) , )
n
. E;
CRM = 1- #, (5)
i—1Mi
" (E - M;)?
d—Index = 1 - G 2 (6)

v (| - M) + v - M)

where E; and M;, respectively, represent the simulated and measured annual values of the year i, n is the
number of annual values, and E and M are the mean simulated and observed data values, respectively.

3. Results

3.1. Sensitivity Analysis

The results of sensitivity analysis of the CSPs for the phenology and grain yield of durum
wheat and common wheat are reported in Table 5, while results for maize are displayed in Table 6.
The P1D coefficient of CSM-CERES-Wheat crop model was the most sensitive CSP for the anthesis
date, especially for Iride cultivar. Regarding grain yield, the coefficients with the highest SI were G1
and G2, followed by the P5 coefficient. The G3 coefficient showed no sensitivity for grain yield of
durum wheat and very low sensitivity for grain yield of common wheat. Results for the Eleonora
cultivar indicated a high sensitivity of the CSM-CERES-Maize to the P5 coefficient, followed by the P1
and PHINT coefficients. The sensitivity index of the P2 coefficient was very low. The most sensitive
parameter on grain yield was P5, followed by the G3 and G2 coefficients. The other coefficients had a
minor influence on grain yield.
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Table 5. Sensitivity index of the CSPs of CSM-CERES-Wheat crop model for anthesis date (ANT) and
grain yield (GY) of Iride and Bologna cultivars and range are considered.

Durum wheat (Iride Cultivar) Common Wheat (Bologna Cultivar)
CSP:

° ANT GY RANGE ANT GY RANGE

P1v 0.05 0.08 0-100 0.03 0.03 0-100

P1D 0.21 0.12 0-100 0.17 0.11 0-100

P5 0.00 0.35 0-999 0.00 0.29 0-999
G1 0.00 0.60 0.1-100 0.00 0.61 0.1-100

G2 0.00 0.61 0-100 0.00 0.62 0-100
G3 0.00 0.00 0.2-3.0 0.00 0.01 0.2-3.0
PHINT 0.00 0.22 15-100 0.00 0.17 15-100

Table 6. Sensitivity index of the CSPs of CSM-CERES-Maize crop model for maturity date (MAT) and
grain yield (GY) of Eleonora hybrid and range are considered.

Maize (Eleonora Hybrid)

CSPs

MAT GY RANGE
P1 0.26 0.37 100-300
P2 0.03 0.03 0-1
P5 0.42 1.39 500-900
G2 0.00 0.80 600-999
G3 0.00 1.00 0-10

PHINT 0.15 0.16 0.1-99

3.2. CSM-CERES-Wheat and CSM-CERES-Maize Calibration
The set of CSPs obtained with GLUE method TE method are reported in Table 7.

Table 7. CSPs of durum wheat, common wheat, and maize obtained with TE and GLUE methods.

CSPs
Crop Calibration Method
P1V P1D P5 G1 G2 G3 PHINT
Durum wheat GLUE 25.2 619 7766 286 41.1 2.0 97.1
(Iride cv) TE 5.0 65.0 5000  20.0 40.0 1.8 95.0
Common wheat GLUE 64.9 94.8 589.3 151 20.5 2.0 63.9
(Bologna cv) TE 5.0 980 7000  20.0 50.0 13 95.0
P1 P2 P5 G2 G3 PHINT
Maize (Eleonora GLUE 398.4 1.0 704.6  683.5 14.5 224
cv) TE 223.0 0.6 803.0 9079 75 389

TE, trial and error; GLUE, Generalized Likelihood Uncertainty Estimation.

The results of simulated crop phenology and yield are presented in Figure 2 for each analyzed
year and the associated statistics are summarized in Tables 8-10. Overall, the simulated values of
anthesis date were quite well reproduced by CSM-CERES-Wheat for both durum and common wheat,
explaining more than 89% of the variation (Figure 2). The correlation between the observed and
simulated data was highly significant (p < 0.001) (Table 8). The good correlation between simulated
and measured anthesis date was confirmed also by the high values of d-Index (ranging from 0.97 to
0.99) and the values of CRM very close to 0 (Table 8).

The statistical indexes obtained for anthesis with the set of CSPs parameterized with the GLUE
method were quite similar to those obtained with the TE procedure, while for grain yield, the TE
allowed to improve the values of statistical indexes, especially for durum wheat (Table 9) and maize
(Table 10).

The results obtained for CSM-CERES-Wheat calibration for grain yield (Figure 2 and Table 9)
showed lower model performances respect to simulation of crop phenology, even if the correlation
between the observed and simulated data was highly significant (p < 0.001). In this case, the TE
procedure allowed an improvement of the statistical indexes with respect to the set of CSPs obtained
with GLUE, in particular for R? (0.48 vs. 0.34), RMSE (1.54 vs. 2.19 tha™!), and d-Index (0.82 vs. 0.74)
for durum wheat and R? (0.62 vs. 0.54), RMSE (1.52 vs. 3.72 t ha™!), and d-Index (0.87 vs. 0.52) for
common wheat.
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Figure 2. Calibration results for anthesis date (a) and grain yield (b) of durum wheat (Iride cv), anthesis
date (c) and grain yield (d) of common wheat (Bologna cv), and grain yield of maize (Eleonora hybrid)
(e) with TE and GLUE methods.

The results of CSM-CERES-Maize calibration for grain yield are reported in Figure 2 and Table 10.
A mean maturity date of 132 dap (as reported in the literature for an FAO class 700 hybrid) was
obtained for the selected years and locations. A good correlation between simulated and observed
yield was achieved, particularly with the CSPs optimized through the trial and error approach (0.83
(p £0.001) versus 0.70 (p < 0.01)) (Table 10).
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Table 8. Statistical results of observed (OBS) and simulated (SIM) values of anthesis date (in days after
planting = dap) for durum wheat (Iride cv) and common wheat (Bologna cv) for the calibration of
CSM-CERES-Wheat model.

Durum Wheat (Iride cv) Common Wheat (Bologna cv)
OBS TE SIM GLUE SIM OBS TE SIM GLUE SIM
Mean 140 140 142 166 164 166
Standard 27 2 2 2 27 25
deviation
Min 82 87 89 129 116 123
Max 192 191 190 203 197 196
N 23 18
r 0.94 *** 0.95 *** 0.98 *** 0.98 ***
R? 0.89 0.91 0.96 0.96
RMSE 9 8 6 5
CRM 0.00 -0.01 0.01 0.00
d-Index 0.97 0.97 0.98 0.99

** p < 0.001; ns = not significant. OBS = observed values; TE = simulated values with trial and error;
GLUE SIM = simulated values with GLUE.

Table 9. Statistical results of observed (OBS) and simulated (SIM) values of grain yield (t ha~!) for durum
wheat (Iride cv) and common wheat (Bologna cv) for the calibration of CSM-CERES-Wheat model.

Durum Wheat (Iride cv) Common Wheat (Bologna cv)
OBS TE SIM GLUE SIM OBS TE SIM GLUE SIM
Mean 5.25 4.87 5.74 4.63 4.24 1.45
Standard 2.06 1.75 259 243 212 0.68
deviation

Min 1.69 1.73 1.92 0.50 1.53 0.55

Max 10.12 8.11 11.04 8.23 7.68 2.82
N 37 18

r 0.70 *** 0.59 *** 0.79 *** 0.74 **

R? 0.48 0.34 0.62 0.54

RMSE 1.54 2.19 152 3.72

CRM 0.07 -0.09 0.08 0.69

d-Index 0.82 0.74 0.87 0.52

*** p <0.001; ns = not significant. OBS = observed values; TE SIM = simulated values with trial and error; GLUE
SIM = simulated values with GLUE.

Table 10. Statistical results of observed (OBS) and simulated (SIM) values of grain yield (t ha™1) of
maize (Eleonora hybrid) for the calibration of CSM-CERES-Maize model.

Maize (Eleonora Hybrid)

OBS TE SIM GLUE SIM
Mean 11.49 10.92 11.33
Standard 213 1.44 2.05
deviation
Min 6.86 8.04 637
Max 14.04 12.62 13.68
N 13
r 0.83 *** 0.70 **
R? 0.68 0.49
RMSE 132 1.57
CRM 0.05 0.01
d-Index 0.85 0.84

** p <0.01; *** p < 0.001; ns = not significant. OBS = observed values; TE SIM = simulated values with trial and
error; GLUE SIM = simulated values with GLUE.

3.3. CSM-CERES-Wheat and CSM-CERES-Maize Evaluation

The results for model evaluation confirm the good performances of CSM-CERES-Wheat in
reproducing crop phenology, with high significant results (p < 0.001) obtained for anthesis with both
the sets of CSP parameters (Figure 3 and Table 11).

The simulations of grain yield for wheat with the evaluation dataset showed a good agreement
with observations, with not big differences for durum wheat between the two set of CSPs, while
for common wheat, the set of CSPs adjusted with the TE procedure allowed to obtain better results,
according to the statistical indexes considered (Figure 3 and Table 12). The TE parameterization
reduced the RMSE and CRM values (RMSE from 2.74 to 1.73 t ha~! and CRM from -0.36 to —0.17 for
durum wheat and RMSE from 4.02 to 1.60 t ha~! and CRM from 0.69 to 0.06 for common wheat) and
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increased the d-Index (from 0.68 to 0.80 for durum wheat and from 0.50 to 0.84 for common wheat)
(Table 12).

Table 11. Statistical results of observed (OBS) and simulated (SIM) values of anthesis date (in days
after planting = dap) for durum wheat (Iride cv) and common wheat (Bologna cv) for the evaluation of
CSM-CERES-Wheat model.

Durum Wheat (Iride cv) Common Wheat (Bologna cv)
OBS TE SIM GLUE SIM OBS TE SIM GLUE SIM
Mean 138 141 143 177 180 180
Standard
A 23 24 23 23 27 25
deviation
Min 112 118 120 94 95 102
Max 192 184 186 201 208 207
N 19 20
r 0.95 *** 0.96 *** 0.95 *** 0.94 ***
R? 0.91 0.93 0.90 0.89
RMSE 8 8 9 9
CRM -0.02 -0.03 -0.02 -0.02
d-Index 0.97 0.97 0.96 0.96

*** p <0.001; ns = not significant. OBS = observed values; TE SIM = simulated values with trial and error; GLUE
SIM = simulated values with GLUE.

The performances of CSM-CERES-Maize in the evaluation phase are summarized in Figure 3
and Table 13. Results showed a better correlation between simulated and observed grain yield for
maize with the CSPs optimized through the TE approach with respect to the GLUE method (r-values
of 0.65 (p < 0.01) versus 0.5 (p < 0.05) and higher values of d-Index and lower values of RMSE and
CRM (Table 13).

In summary, the simulated anthesis date and the grain yield of the three crops with the evaluation
dataset showed results comparable with the calibration dataset.

Table 12. Statistical results of observed (OBS) and simulated (SIM) values of grain yield (t ha™1) for
durum wheat (Iride cv) and common wheat (Bologna cv) for the evaluation of CSM-CERES-Wheat model.

Durum Wheat (Iride cv) Common Wheat (Bologna cv)
OBS TE SIM GLUE SIM OBS TE SIM GLUE SIM

Mean 4.36 5.11 5.93 5.19 4.86 1.62

Standard deviation 1.69 2.35 3.23 225 2.00 0.64

Min 1.14 2.44 2.38 1.65 1.80 0.45

Max 7.92 10.73 16.19 7.98 7.89 2.52
N 30 20

r 0.74 *** 0.74 ** 0.72 %+ 0.64 **

R? 0.55 0.55 0.52 0.41

RMSE 173 2.74 1.60 4.02

CRM -0.17 —-0.36 0.06 0.69

d-Index 0.80 0.68 0.84 0.50

**p <0.01; *** p < 0.001; ns = not significant. OBS = observed values; TE SIM = simulated values with trial and
error; GLUE SIM = simulated values with GLUE.

Table 13. Statistical results of observed (OBS) and simulated (SIM) values of grain yield (t ha™1) of
maize (Eleonora hybrid) for the evaluation of CSM-CERES-Maize model.

Maize (Eleonora Hybrid)

OBS TE SIM GLUE SIM
Mean 10.70 10.36 9.47
Standard deviation 1.36 1.39 2.36
Min 7.29 8.07 6.13
Max 12.66 12.36 13.80
N 10
r 0.65 ** 0.50 *
R? 0.43 0.25
RMSE 1.14 2.31
CRM 0.03 0.11
d-Index 0.80 0.58

*p <0.05; ** p < 0.01; ns = not significant. OBS = observed values; TE SIM = simulated values with trial and error;
GLUE SIM = simulated values with GLUE.
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Figure 3. Evaluation results for anthesis date (a) and grain yield (b) of durum wheat (Iride cv), anthesis
date (c) and grain yield (d) of common wheat (Bologna cv), and grain yield of maize (Eleonora hybrid)
(e) with TE and GLUE methods.

4. Discussion

The results of this study offer a set of CSPs for CSM-CERES-Wheat and CSM-CERES-Maize,
successfully tested over a large dataset of experimental observations for anthesis date and grain yield
of durum and common wheat and grain yield of maize.

The optimized CSPs for durum and common wheat provide simulated values of anthesis date
in good agreement with observations data for different Italian environments, both in calibration and
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evaluation tests, confirming the good performance of CSM-CERES-Wheat in predicting crop phenology.
Similar results were reported in other studies [15,99]. The parameterization obtained with GLUE
and TE methods shows comparable performances in reproducing anthesis date, while unsatisfactory
results were obtained in reproducing crop yield using GLUE, especially for common wheat both in the
calibration and evaluation tests. On the contrary, the adjustment of model parameters with the TE
procedure allowed to obtain good model performances also in reproducing grain yield, both in the
calibration and evaluation phases, although with lower accuracy than in reproducing crop phenology.
This is explained by the high number of factors that influence variability in crop production, recorded
from North to South Italy. Results for durum wheat show a slight tendency to underestimate the grain
yield in model calibration and a low tendency to overestimate it in model evaluation. For common
wheat, there is a slight tendency to underestimate grain yield in both calibration and evaluation.
Regarding maize, simulated yields show good agreement with observed yields for the studied hybrid,
particularly in model calibration with the TE procedure that showed a better model performance than
GLUE in reproducing grain yields. The lower simulation performance in reproducing observed maize
yields compared to wheat yields may be due to the lower availability of observed data used to optimize
the CSPs of maize with respect to the number of the available data used to define the optimal set of
CSPs of wheat.

The comparison between the CSPs obtained in this work for CSM-CERES-Wheat and
CSM-CERES-Maize and those obtained in other studies for durum wheat, common wheat, and maize
in Europe and the Mediterranean Basin [98-107] has only a limited value due to the differences in
the scale of the analysis at which the parameterization was performed. There were differences in the
characteristics of the cultivars and in the versions of the crop simulation models used. The results of the
statistical analysis (e.g., d-Index or RMSE) of the model performances in reproducing field observations
show results similar to, or even better than, those obtained in other studies [14,99,102,108]. The added
value of this work is a robust parameterization of the CSM-CERES-Wheat and CSM-CERES-Maize
models for three representative varieties of durum wheat, common wheat, and maize, performed over
several Italian regions having a wide range of environmental conditions and management options.
The parameterizations of CSM-CERES-Wheat and CSM-CERES-Maize models should be further
evaluated if applied to simulate other aspects (e.g., date of physiological maturity, leaf area index,
etc.) that were not tested in this study. Further improvement of model performance could result
from including other experimental sites and additional information of environmental conditions, crop
management, crop growth, and production. As in this study, the data used for model parameterization
were not collected for crop modeling purposes and the lack of detailed and appropriate data may affect
the model results [99,109,110].

5. Conclusions

The set of CSPs found for CSM-CERES-Wheat and CSM-CERES-Maize in this study confirm
that the performances of the two crop models are good if applied in Mediterranean environmental
conditions to predict phenology and yield of durum wheat, common wheat, and maize. Overall,
the CSPs optimized with the TE method show higher performances, especially in reproducing grain
yield, with respect to the set of CSPs obtained with GLUE. The set of CSPs optimized considering a wide
range of meteoclimatic, pedological, and management conditions allowed to explore the interactions
between genotype, environment, and crop management and produce robust parameterization to
simulate anthesis date and grain yield of durum and common wheat, and maize grain yield. The derived
set of CSPs may serve to further applications of the CSM-CERES-Wheat and CSM-CERES-Maize in
geographical areas and for cultivars similar to those considered in this study, taking into consideration
that the simulation of other model outputs, not evaluated in this study, require further assessments. The
parameterized crop models may be applied to assess the effect of alternative management options on
grain yield under the present climate conditions, seasonal forecasts, and/or future climate projections,
to support farmers and policy makers in making operational, strategic and tactical decisions. Informing
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on the optimal agronomic practices is pivotal to help the decision-making process and drive the
development of the agricultural sector in line with the principles of the climate-smart agriculture,
to increase the adaptive capacity of system to cope with weather and climate hazards and make the
agricultural sector more productive and sustainable.
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