Extraction of Antioxidants from Blackberry (Rubus ulmifolius L.): Comparison between Ultrasound- and Microwave-Assisted Extraction Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blackberry and Jam Samples
2.2. Reagents and Solvents
2.3. Extraction Procedure
2.3.1. Ultrasound-Assisted Extraction
2.3.2. Microwave-Assisted Extraction
2.4. Total Phenolic Compounds (TPC)
2.5. Identification of Anthocyanins (TA)
2.6. Separation and Quantification of Anthocyanins
2.7. Response Surface Methodology (RSM)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Optimization of TA and TPC Separate Extraction by UAE
X12 + 48.56 X46
292.03 X5 − 1018.88 X12 − 438.83 X24 + 517.19 X26 − 391.98 X42 + 736.60 X46 −
892.45 X52
3.2. Optimization of TA and TPC Separate Extraction by MAE
3.3. Extraction Time
3.4. Repeatability and Intermediate Precision
3.5. Comparison between UAE and MAE
3.6. Optimization of TA and TPC Simultaneous Extraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sisti, M.; De Santi, M.; Fraternale, D.; Ninfali, P.; Scoccianti, V.; Brandi, G. Antifungal activity of Rubus ulmifolius Schott standardized in vitro culture. LWT—Food Sci. Technol. 2008, 41, 946–950. [Google Scholar] [CrossRef]
- Flamini, G.; Catalano, S.; Caponi, C.; Panizzi, L.; Morelli, I. Three anthrones from Rubus ulmifolius. Phytochemistry 2002, 59, 873–876. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Satora, P.; Sroka, P.; Pogon, P.; Machalica, J. Chaenomeles japonica, Cornus mas, Morus nigra fruits characteristics and their processing potential. J. Food Sci. Technol. 2014, 51, 3934–3941. [Google Scholar] [CrossRef] [PubMed]
- Akkari, H.; Hajaji, S.; B’chir, F.; Rekik, M.; Gharbi, M. Correlation of polyphenolic content with radical-scavenging capacity and anthelmintic effects of Rubus ulmifolius (Rosaceae) against Haemonchus contortus. Vet. Parasitol. 2016, 221, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Da Fonseca-Machado, A.P.; Pasquel-Reátegui, J.L.; Fernández-Barbero, G.; Martínez, J. Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: A comparison with conventional methods. Food Res. Int. 2015, 77, 675–683. [Google Scholar] [CrossRef]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Dossett, M.; Finn, C.E. Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chem. 2012, 130, 785–796. [Google Scholar] [CrossRef]
- Quispe-Fuentes, I.; Vega-Gálvez, A.; Campos-Requena, V. Antioxidant Compound Extraction from Maqui (Aristotelia chilensis [Mol] Stuntz) Berries: Optimization by Response Surface Methodology. Antioxidants 2017, 6, 10. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC—Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; Gabrić, D.; Bilušić, T.; Krešić, G.; Stulić, V.; Barba, F.J.; Chemat, F.; Barbosa-Cánovas, G.; et al. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Res. Int. 2018, 113, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Mayor, L.; Ballesteros, R.; Conidi, C.; Cassano, A. Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT—Food Sci. Technol. 2015, 64, 1114–1122. [Google Scholar] [CrossRef]
- Dahmoune, F.; Spigno, G.; Moussi, K.; Remini, H.; Cherbal, A.; Madani, K. Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind. Crops Prod. 2014, 61, 31–40. [Google Scholar] [CrossRef]
- Backes, E.; Pereira, C.; Barros, L.; Prieto, M.A.; Genena, A.K.; Barreiro, M.F.; Ferreira, I.C.F.R. Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques. Food Res. Int. 2018, 113, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Nipornram, S.; Tochampa, W.; Rattanatraiwong, P.; Singanusong, R. Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chem. 2018, 241, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Espinosa, M.; González de Peredo, A.V.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barbero, G.F.; Espada-Bellido, E. Assessment of ultrasound assisted extraction as an alternative method for the extraction of anthocyanins and total phenolic compounds from maqui berries (Aristotelia chilensis (Mol.) Stuntz). Agronomy 2019, 9, 148. [Google Scholar] [CrossRef]
- Chen, S.; Zeng, Z.; Hu, N.; Bai, B.; Wang, H.; Suo, Y. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology. Food Chem. 2018, 242, 1–8. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Zhang, L.L.; Yue, X.Y.; Liang, J.; Jiang, J.; Gao, X.L.; Yue, P.X. Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 2016, 204, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barroso, C.G.; Barbero, G.F. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chem. 2017, 219, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Spigno, G.; De Faveri, D.M. Microwave-assisted extraction of tea phenols: A phenomenological study. J. Food Eng. 2009, 93, 210–217. [Google Scholar] [CrossRef]
- Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem. 2015, 166, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Torres-León, C.; Rojas, R.; Serna-Cock, L.; Belmares-Cerda, R.; Aguilar, C.N. Extraction of antioxidants from mango seed kernel: Optimization assisted by microwave. Food Bioprod. Process. 2017, 105, 188–196. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Olalere, O.A. Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food Bioprod. Process. 2018, 107, 36–48. [Google Scholar] [CrossRef]
- Machado, A.P.D.F.; Pereira, A.L.D.; Barbero, G.F.; Martínez, J. Recovery of anthocyanins from residues of Rubus fruticosus, Vaccinium myrtillus and Eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination. Food Chem. 2017, 231, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pasquel Reátegui, J.L.; Machado, A.P.D.F.; Barbero, G.F.; Rezende, C.A.; Martínez, J. Extraction of antioxidant compounds from blackberry (Rubus sp.) bagasse using supercritical CO2 assisted by ultrasound. J. Supercrit. Fluids 2014, 94, 223–233. [Google Scholar] [CrossRef]
- Aybastier, Ö.; Işik, E.; Şahin, S.; Demir, C. Optimization of ultrasonic-assisted extraction of antioxidant compounds from blackberry leaves using response surface methodology. Ind. Crops Prod. 2013, 44, 558–565. [Google Scholar] [CrossRef]
- Ivanovic, J.; Tadic, V.; Dimitrijevic, S.; Stamenic, M.; Petrovic, S.; Zizovic, I. Antioxidant properties of the anthocyanin-containing ultrasonic extract from blackberry cultivar “Čačanska Bestrna”. Ind. Crops Prod. 2014, 53, 274–281. [Google Scholar] [CrossRef]
- Franquin-Trinquier, S.; Maury, C.; Baron, A.; Le Meurlay, D.; Mehinagic, E. Optimization of the extraction of apple monomeric phenolics based on response surface methodology: Comparison of pressurized liquid-solid extraction and manual-liquid extraction. J. Food Compos. Anal. 2014, 34, 56–67. [Google Scholar] [CrossRef]
- Cheok, C.Y.; Chin, N.L.; Yusof, Y.A.; Talib, R.A.; Law, C.L. Optimization of total phenolic content extracted from Garcinia mangostana Linn. hull using response surface methodology versus artificial neural network. Ind. Crops Prod. 2012, 40, 247–253. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Prieto, M.A.; Vazquez, J.A.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R. Recovery of bioactive compounds from Arbutus unedo L. fruits: Comparative optimization study of maceration/microwave/ultrasound extraction techniques. Food Res. Int. 2018, 109, 455–471. [Google Scholar] [CrossRef]
- Setyaningsih, W.; Saputro, I.E.; Carrera, C.A.; Palma, M.; Barroso, C.G. Multiresponse optimization of a UPLC method for the simultaneous determination of tryptophan and 15 tryptophan-derived compounds using a Box-Behnken design with a desirability function. Food Chem. 2017, 225, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Lester, P., Ed.; Academic Press: San Diego, CA, USA, 1999; pp. 152–178. [Google Scholar]
- Martinez-Periñan, E.; Hernández-Artiga, M.P.; Palacios-Santander, J.M.; Elkaoutit, M.; Naranjo-Rodriguez, I.; Bellido-Milla, D. Estimation of beer stability by sulphur dioxide and polyphenol determination. Evaluation of a Laccase-Sonogel-Carbon biosensor. Food Chem. 2011, 127, 234–239. [Google Scholar] [CrossRef]
- Islam, M.A.; Alam, M.R.; Hannan, M.O. Multiresponse optimization based on statistical response surface methodology and desirability function for the production of particleboard. Compos. Part B Eng. 2012, 43, 861–868. [Google Scholar] [CrossRef]
- Oliveira, G.D.A.R.; De Oliveira, A.E.; Da Conceição, E.C.; Leles, M.I.G. Multiresponse optimization of an extraction procedure of carnosol and rosmarinic and carnosic acids from rosemary. Food Chem. 2016, 211, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Sammani, M.S.; Clavijo, S.; Portugal, L.; Suárez, R.; Seddik, H.; Cerdà, V. Use of multiresponse statistical techniques to optimize the separation of diosmin, hesperidin, diosmetin and hesperitin in different pharmaceutical preparations by high performance liquid chromatography with UV-DAD. Talanta 2017, 167, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Arapitsas, P.; Turner, C. Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage. Talanta 2008, 74, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.-P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H.-B. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem. 2017, 217, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Qu, Z.; Lan, Y.; Zhao, S.; Ma, X.; Wan, Q.; Jing, P.; Li, P. Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes. Food Chem. 2016, 197, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Ovando, A.; Pacheco-Hernández, M.d.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Dranca, F.; Oroian, M. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrason. Sonochem. 2016, 31, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Celli, G.B.; Ghanem, A.; Brooks, M.S.L. Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using Response Surface Methodology. Ultrason. Sonochem. 2015, 27, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Hellström, J.; Mattila, P.; Karjalainen, R. Stability of anthocyanins in berry juices stored at different temperatures. J. Food Compos. Anal. 2013, 31, 12–19. [Google Scholar] [CrossRef]
- Pace, E.; Jiang, Y.; Clemens, A.; Crossman, T.; Rupasinghe, H.P. Impact of Thermal Degradation of Cyanidin-3-O-Glucoside of Haskap Berry on Cytotoxicity of Hepatocellular Carcinoma HepG2 and Breast Cancer MDA-MB-231 Cells. Antioxidants 2018, 7, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbeyst, L.; Van Crombruggen, K.; Van Der Plancken, I.; Hendrickx, M.; Van Loey, A. Anthocyanin degradation kinetics during thermal and high pressure treatments of raspberries. J. Food Eng. 2011, 105, 513–521. [Google Scholar] [CrossRef]
- AOAC. AOAC Peer Verified Methods Program, Manual on Policies and Procedures; AOAC: Maryland, MD, USA, 2012. [Google Scholar]
Peak | tr (min) | Anthocyanin | Molecular Ion [M+] | Anthocyanidin Fragment (m/z) |
---|---|---|---|---|
1 | 1.55 | cyanidin 3-O-glucoside | 449 | 287 |
2 | 2.16 | cyanidin 3-O-rutinoside | 595 | 287 |
3 | 2.72 | cyanidin 3-O-(6”-malonyl-glucoside) | 535 | 287 |
4 | 3.24 | cyanidin 3-O-(6”-dioxalyl-glucoside) | 593 | 287 |
Run | Factors | Responses (Fresh Weight) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
X1 (%) | X2 (°C) | X3 (%) | X4 (s) | X5 | X6 (g mL−1) | YTA (μg g−1) | YTP (μg g−1) | |||
Measured | Predicted | Measured | Predicted | |||||||
1 | 50 | 40 | 30 | 0.45 | 2 | 10 | 1600.82 | 1639.82 | 11,294.9 | 11,058.5 |
2 | 50 | 40 | 70 | 0.45 | 2 | 10 | 1653.09 | 1671.87 | 12,811.9 | 12,208.3 |
3 | 50 | 40 | 30 | 0.45 | 7 | 10 | 1753.65 | 1727.65 | 11,921.7 | 12,081.3 |
4 | 50 | 40 | 70 | 0.45 | 7 | 10 | 1651.96 | 1716.24 | 11,921.7 | 12,221.9 |
5 | 50 | 40 | 30 | 0.45 | 2 | 20 | 1779.13 | 1734.33 | 11,294.9 | 11,228.2 |
6 | 50 | 40 | 70 | 0.45 | 2 | 20 | 1755.61 | 1762.13 | 12,799.4 | 12,406.3 |
7 | 50 | 40 | 30 | 0.45 | 7 | 20 | 1742.16 | 1742.85 | 11,545.6 | 12,382.8 |
8 | 50 | 40 | 70 | 0.45 | 7 | 20 | 1785.66 | 1727.19 | 12,548.6 | 12,551.5 |
9 | 50 | 10 | 50 | 0.2 | 2 | 15 | 1618.77 | 1648.17 | 10,041.1 | 10,407.3 |
10 | 50 | 70 | 50 | 0.2 | 2 | 15 | 1646.36 | 1728.32 | 11,796.4 | 12,193.9 |
11 | 50 | 10 | 50 | 0.7 | 2 | 15 | 1680.69 | 1672.9 | 12,423.3 | 12,068.5 |
12 | 50 | 70 | 50 | 0.7 | 2 | 15 | 1695.48 | 1669.94 | 12,297.9 | 12,099.9 |
13 | 50 | 10 | 50 | 0.2 | 7 | 15 | 1595.39 | 1637.79 | 10,542.6 | 10,677.9 |
14 | 50 | 70 | 50 | 0.2 | 7 | 15 | 1704.42 | 1695.36 | 12,548.6 | 12,966.0 |
15 | 50 | 10 | 50 | 0.7 | 7 | 15 | 1823.87 | 1758.75 | 12,924.8 | 12,464.5 |
16 | 50 | 70 | 50 | 0.7 | 7 | 15 | 1779.46 | 1733.21 | 13,300.9 | 12,997.4 |
17 | 25 | 40 | 30 | 0.2 | 4.5 | 15 | 1276.1 | 1233.94 | 9790.31 | 9954.34 |
18 | 75 | 40 | 30 | 0.2 | 4.5 | 15 | 956.935 | 947.121 | 12,297.9 | 12,070.1 |
19 | 25 | 40 | 70 | 0.2 | 4.5 | 15 | 1341.18 | 1276.12 | 10,291.8 | 10,362.9 |
20 | 75 | 40 | 70 | 0.2 | 4.5 | 15 | 931.61 | 984.435 | 12,799.4 | 12,604.0 |
21 | 25 | 40 | 30 | 0.7 | 4.5 | 15 | 1331.62 | 1287.95 | 10,668.0 | 10,690.9 |
22 | 75 | 40 | 30 | 0.7 | 4.5 | 15 | 962.905 | 1018.8 | 12,548.6 | 12,650.0 |
23 | 25 | 40 | 70 | 0.7 | 4.5 | 15 | 1248.06 | 1267.03 | 11,420.2 | 11,475.6 |
24 | 75 | 40 | 70 | 0.7 | 4.5 | 15 | 959.994 | 992.999 | 13,551.7 | 13,560.0 |
25 | 50 | 10 | 30 | 0.45 | 4.5 | 10 | 1642.19 | 1629.8 | 12,799.4 | 12,696.7 |
26 | 50 | 70 | 30 | 0.45 | 4.5 | 10 | 1567.99 | 1616.69 | 12,674.0 | 12,540.0 |
27 | 50 | 10 | 70 | 0.45 | 4.5 | 10 | 1730.47 | 1649.95 | 13,175.5 | 13,059.8 |
28 | 50 | 70 | 70 | 0.45 | 4.5 | 10 | 1610.16 | 1617.17 | 13,300.9 | 13,467.3 |
29 | 50 | 10 | 30 | 0.45 | 4.5 | 20 | 1660.89 | 1634.4 | 12,297.9 | 11,898.0 |
30 | 50 | 70 | 30 | 0.45 | 4.5 | 20 | 1660.74 | 1721.79 | 13,927.8 | 13,810.0 |
31 | 50 | 10 | 70 | 0.45 | 4.5 | 20 | 1679.53 | 1650.31 | 11,921.7 | 12,289.3 |
32 | 50 | 70 | 70 | 0.45 | 4.5 | 20 | 1686.17 | 1718.03 | 14,429.3 | 14,765.5 |
33 | 25 | 10 | 50 | 0.45 | 2 | 15 | 1095.24 | 1145.55 | 8661.9 | 9529.62 |
34 | 75 | 10 | 50 | 0.45 | 2 | 15 | 992.97 | 985.602 | 11,796.4 | 11,692.4 |
35 | 25 | 70 | 50 | 0.45 | 2 | 15 | 1311.5 | 1282.53 | 10,417.2 | 10,877.4 |
36 | 75 | 70 | 50 | 0.45 | 2 | 15 | 1037.31 | 925.805 | 12,297.9 | 12,162.6 |
37 | 25 | 10 | 50 | 0.45 | 7 | 15 | 1110.71 | 1205.37 | 9288.79 | 9486.78 |
38 | 75 | 10 | 50 | 0.45 | 7 | 15 | 989.131 | 1001.25 | 12,799.4 | 12,401.8 |
39 | 25 | 70 | 50 | 0.45 | 7 | 15 | 1295.56 | 1319.77 | 11,294.9 | 11,336.1 |
40 | 75 | 70 | 50 | 0.45 | 7 | 15 | 952.341 | 918.877 | 14,303.9 | 13,373.5 |
41 | 25 | 40 | 50 | 0.2 | 4.5 | 10 | 1304.64 | 1283.8 | 11,545.6 | 10,927.1 |
42 | 75 | 40 | 50 | 0.2 | 4.5 | 10 | 1024.03 | 975.192 | 12,172.5 | 12,510.0 |
43 | 25 | 40 | 50 | 0.7 | 4.5 | 10 | 1221.88 | 1209.13 | 10,417.2 | 10,378.5 |
44 | 75 | 40 | 50 | 0.7 | 4.5 | 10 | 894.625 | 918.182 | 10,918.7 | 11,804.7 |
45 | 25 | 40 | 50 | 0.2 | 4.5 | 20 | 1234.44 | 1220.04 | 10,166.4 | 9108.04 |
46 | 75 | 40 | 50 | 0.2 | 4.5 | 20 | 946.563 | 950.147 | 11,671.0 | 11,882.0 |
47 | 25 | 40 | 50 | 0.7 | 4.5 | 20 | 1299.96 | 1339.64 | 11,671.0 | 11,505.9 |
48 | 75 | 40 | 50 | 0.7 | 4.5 | 20 | 1057.39 | 1087.4 | 13,677.0 | 14,123.2 |
49 | 50 | 40 | 50 | 0.45 | 4.5 | 15 | 1640.56 | 1653.57 | 12,799.4 | 13,112.8 |
50 | 50 | 40 | 50 | 0.45 | 4.5 | 15 | 1670.51 | 1653.57 | 13,677.0 | 13,112.8 |
51 | 50 | 40 | 50 | 0.45 | 4.5 | 15 | 1625.19 | 1653.57 | 13,426.3 | 13,112.8 |
52 | 50 | 40 | 50 | 0.45 | 4.5 | 15 | 1699.1 | 1653.57 | 13,050.2 | 13,112.8 |
53 | 50 | 40 | 50 | 0.45 | 4.5 | 15 | 1676.91 | 1653.57 | 12,924.8 | 13,112.8 |
54 | 50 | 40 | 50 | 0.45 | 4.5 | 15 | 1609.12 | 1653.57 | 12,799.4 | 13,112.8 |
UAE | Source | Sum of Squares | Degreesof Freedom | Mean Square | F Value | p-Value |
---|---|---|---|---|---|---|
Anthocyanins | Model | 4.847 × 106 | 27 | 1.795 × 105 | 47.53 | <0.0001 |
Residual | 98,193.97 | 26 | 3776.69 | |||
Lack of fit | 92,338.78 | 21 | 4397.08 | 3.75 | 0.0736 | |
Pure error | 5855.19 | 5 | 1171.04 | |||
Total | 4.945 × 106 | 53 | ||||
Phenolics | Model | 7.650 × 107 | 27 | 2.833 × 106 | 8.81 | <0.0001 |
Residual | 8.362 × 106 | 26 | 3.216 × 105 | |||
Lack of fit | 7.709 × 106 | 21 | 3.671 × 105 | 2.81 | 0.1270 | |
Pure error | 6.523 × 105 | 5 | 1.305 × 105 | |||
Total | 8.487 × 107 | 53 |
UAE | TA | TPC |
---|---|---|
Methanol (%) | 46 | 63.7 |
Temperature (°C) | 60.4 | 68.3 |
pH | 4.97 | 4.81 |
Ratio (g:mL) | 0.3:20 | 0.3:20 |
Amplitude (%) | 30 | 70 |
Cycle (s) | 0.7 | 0.7 |
Experimental (μg g−1) | 1792.73 ± 68.84 | 15,697.76 ± 603.21 |
Predicted (μg g−1) | 1830.06 | 15,466.0 |
Run | Factors | Responses (Fresh Weight) | ||||||
---|---|---|---|---|---|---|---|---|
X1 (%) | X2 (°C) | X3 | X4 (g mL−1) | YTA (μg g−1) | YTP (μg g−1) | |||
Measured | Predicted | Measured | Predicted | |||||
1 | 25 | 50 | 4.5 | 15 | 1621.25 | 1536.36 | 10,949.7 | 11,186.4 |
2 | 75 | 50 | 4.5 | 15 | 1563.46 | 1429.14 | 14,780.6 | 14,893.1 |
3 | 25 | 100 | 4.5 | 15 | 1987.62 | 2044.4 | 9982.97 | 10,422.5 |
4 | 75 | 100 | 4.5 | 15 | 1323.6 | 1330.94 | 14,847.6 | 15,163.1 |
5 | 50 | 75 | 2 | 10 | 2140.48 | 1969.04 | 15,080.7 | 14,812.8 |
6 | 50 | 75 | 7 | 10 | 1752.68 | 1792.01 | 8847.21 | 10,348.6 |
7 | 50 | 75 | 2 | 20 | 1972.25 | 1855.39 | 15,148.0 | 14,198.7 |
8 | 50 | 75 | 7 | 20 | 1895.13 | 1989.04 | 11,208.3 | 12,028.3 |
9 | 50 | 75 | 4.5 | 15 | 2121.59 | 1940.64 | 15,051.0 | 14,239.9 |
10 | 25 | 75 | 4.5 | 10 | 1662.33 | 1892.76 | 9111.25 | 9079.66 |
11 | 75 | 75 | 4.5 | 10 | 1676.08 | 1759.14 | 14,610.1 | 13,741.2 |
12 | 25 | 75 | 4.5 | 20 | 2091.89 | 2211.18 | 9725.54 | 10,050.4 |
13 | 75 | 75 | 4.5 | 20 | 1552.19 | 1524.12 | 14,348.5 | 13,836.1 |
14 | 50 | 50 | 2 | 15 | 826.374 | 1261.81 | 15,565.8 | 16,029.9 |
15 | 50 | 100 | 2 | 15 | 2003.25 | 2039.44 | 15,211.9 | 15,460.4 |
16 | 50 | 50 | 7 | 15 | 1646.65 | 1812.83 | 13,182.7 | 12,390.2 |
17 | 50 | 100 | 7 | 15 | 1678.12 | 1445.04 | 13,473.7 | 12,465.6 |
18 | 50 | 75 | 4.5 | 15 | 2037.76 | 1940.64 | 13,860.5 | 14,239.9 |
19 | 50 | 50 | 4.5 | 10 | 1945.26 | 1725.77 | 14,145.9 | 13,973.1 |
20 | 50 | 100 | 4.5 | 10 | 1762.86 | 1800.97 | 13,414.0 | 13,253.8 |
21 | 50 | 50 | 4.5 | 20 | 1800.67 | 1637.74 | 13,881.5 | 14,033.6 |
22 | 50 | 100 | 4.5 | 20 | 1877.72 | 1972.38 | 14,094.1 | 14,258.9 |
23 | 25 | 75 | 2 | 15 | 2091.72 | 1901.66 | 11,357.5 | 11,129.1 |
24 | 75 | 75 | 2 | 15 | 1518.01 | 1524.75 | 15,222.2 | 15,955.2 |
25 | 25 | 75 | 7 | 15 | 2044.97 | 1913.41 | 9155.48 | 8414.33 |
26 | 75 | 75 | 7 | 15 | 1404.39 | 1469.63 | 11,815.3 | 12,035.5 |
27 | 50 | 75 | 4.5 | 15 | 1662.58 | 1940.64 | 13,808.1 | 14,239.9 |
MAE | Source | Sum of Squares | Degrees of Freedom | Mean Square | F Value | p-Value |
---|---|---|---|---|---|---|
Anthocyanins | Model | 1.579 × 106 | 14 | 1.128 × 105 | 1.96 | 0.1255 |
Residual | 6.922 × 105 | 12 | 57,681.13 | |||
Lack of fit | 5.727 × 105 | 10 | 57,268.10 | 0.9585 | 0.6123 | |
Pure error | 1.195 × 105 | 2 | 59,746.28 | |||
Total | 2.271 × 106 | 26 | ||||
Phenolics | Model | 1.145 × 108 | 14 | 8.181 × 106 | 10.24 | 0.0001 |
Residual | 9.588 × 106 | 12 | 7.99 × 105 | |||
Lack of fit | 8.600 × 106 | 10 | 8.600 × 105 | 1.74 | 0.4195 | |
Pure error | 9.883 × 105 | 2 | 4.941 × 105 | |||
Total | 1.241 × 108 | 26 |
MAE | TA | TPC |
---|---|---|
Methanol (%) | 26.3 | 64 |
Temperature (°C) | 100 | 50.3 |
pH | 2 | 2 |
Ratio (g:mL) | 0.3:20 | 0.3:12 |
Experimental (µg g−1) | 2454.12 ± 65.90 | 16,277.29 ± 688.42 |
Predicted (µg g−1) | 2422.12 | 16,797.21 |
Sample | Total Anthocyanins (μg g−1) | Total Phenolic Compounds (μg g−1) | ||
---|---|---|---|---|
UAE | MAE | UAE | MAE | |
J-1 | 6.43 ± 0.40 a | 6.62 ± 0.35 a | 206.37 ± 12.34 a | 227.33 ± 16.88 a |
J-2 | 0.75 ± 0.07 a | 0.81 ± 0.06 a | 329.77 ± 14.97 a | 360.85 ± 11.73 b |
J-3 | 20.04 ± 0.81 a | 20.95 ± 0.98 a | 276.83 ± 12.71 a | 312.61 ± 15.89 b |
J-4 | 3.12 ± 0.28 a | 3.29 ± 0.22 a | 336.42 ± 20.25 a | 358.07 ± 15.11 a |
J-5 | 32.14 ± 1.02 a | 33.02 ± 1.33 a | 388.49 ± 22.44 a | 412.89 ± 27.22 a |
J-6 | ND | ND | 450.28 ± 16.98 a | 462.73 ± 14.33 a |
J-7 | 0.72 ± 0.06 a | 0.71 ± 0.05 a | 455.03 ± 20.30 a | 507.44 ± 22.10 b |
J-8 | 7.70 ± 0.37 a | 7.91 ± 0.32 a | 378.11 ± 25.67 a | 391.93 ± 27.27 a |
J-9 | 12.21 ± 0.22 a | 12.49 ± 0.52 a | 401.35 ± 16.20 a | 420.77 ± 15.94 a |
J-10 | 8.87 ± 0.38 a | 8.83 ± 0.48 a | 266.07 ± 12.03 a | 281.09 ± 22.47 a |
F-1 | 1792.73 ± 68.84 a | 1844.55 ± 45.07 a | 15,697.76 ± 603.21 a | 16,525.08 ± 455.82 a |
F-2 | 2298.54 ± 105.23 a | 2454.12 ± 65.90 a | 17,328.90 ± 509.36 a | 16,277.29 ± 688.42 a |
Variables | UAE | MAE |
---|---|---|
Methanol (%) | 46.5 | 51 |
Temperature (°C) | 67.5 | 100 |
pH | 4.16 | 2 |
Ratio (g:mL) | 0.3:20 | 0.3:15 |
Amplitude (%) | 66.8 | - |
Cycle (s) | 0.7 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Álvarez, J.A.; F. Barbero, G.; Ayuso, J. Extraction of Antioxidants from Blackberry (Rubus ulmifolius L.): Comparison between Ultrasound- and Microwave-Assisted Extraction Techniques. Agronomy 2019, 9, 745. https://doi.org/10.3390/agronomy9110745
Espada-Bellido E, Ferreiro-González M, Carrera C, Palma M, Álvarez JA, F. Barbero G, Ayuso J. Extraction of Antioxidants from Blackberry (Rubus ulmifolius L.): Comparison between Ultrasound- and Microwave-Assisted Extraction Techniques. Agronomy. 2019; 9(11):745. https://doi.org/10.3390/agronomy9110745
Chicago/Turabian StyleEspada-Bellido, Estrella, Marta Ferreiro-González, Ceferino Carrera, Miguel Palma, José A. Álvarez, Gerardo F. Barbero, and Jesús Ayuso. 2019. "Extraction of Antioxidants from Blackberry (Rubus ulmifolius L.): Comparison between Ultrasound- and Microwave-Assisted Extraction Techniques" Agronomy 9, no. 11: 745. https://doi.org/10.3390/agronomy9110745
APA StyleEspada-Bellido, E., Ferreiro-González, M., Carrera, C., Palma, M., Álvarez, J. A., F. Barbero, G., & Ayuso, J. (2019). Extraction of Antioxidants from Blackberry (Rubus ulmifolius L.): Comparison between Ultrasound- and Microwave-Assisted Extraction Techniques. Agronomy, 9(11), 745. https://doi.org/10.3390/agronomy9110745