Lysimeter-Based Water Use and Crop Coefficient of Drip-Irrigated Potato in an Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Descriptions of the Study Sites
2.2. Lysimeters
2.3. Prediction of the Reference Evapotranspiration
2.4. Crop Data
2.5. Crop Coefficient
2.6. Water-Use Efficiency
2.7. Economic Analysis
- The estimated net return;
- The return from water use.
3. Results and Discussion
3.1. The Reference Evapotranspiration
3.2. The Crop Evapotranspiration
3.3. Crop Coefficient of Potato
3.4. Water-Use Efficiency (WUE)
3.5. Economic Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Faorome 1998, 300, D05109. [Google Scholar]
- Rafi, Z.; Merlin, O.; Le Dantec, V.; Khabba, S.; Mordelet, P.; Er-Raki, S.; Amazirh, A.; Olivera-Guerra, L.; Hssaine, B.A.; Simonneaux, V.; et al. Partitioning evapotranspiration of a drip-irrigated wheat crop: Inter-comparing eddy covariance-, sap flow-, lysimeter-and FAO-based methods. Agric. For. Meteorol. 2019, 265, 310–326. [Google Scholar] [CrossRef]
- Payero, J.O.; Neale, C.M.U.; Wright, J.L.; Allen, R.G. Guidelines for validating Bowen ratio data. Trans. Asae 2003, 46, 1051. [Google Scholar] [CrossRef]
- Todd, R.W.; Evett, S.R.; Howell, T.A. The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid, advective environment. Agric. For. Meteorol. 2000, 103, 335–348. [Google Scholar] [CrossRef]
- Verhoef, A.; Allen, S.J.; Lloyd, C.R. Seasonal variation of surface energy balance over two Sahelian surfaces. Int. J. Climatol. A J. R. Meteorol. Soc. 1999, 19, 1267–1277. [Google Scholar] [CrossRef]
- Liu, J.; Kotoda, K. Estimation of regional evapotranspiration from arid and semi-arid surfaces 1. Jawra J. Am. Water Resour. Assoc. 1998, 34, 27–41. [Google Scholar] [CrossRef]
- Laubach, J.; Raschendorfer, M.; Kreilein, H.; Gravenhorst, G. Determination of heat and water vapour fluxes above a spruce forest by eddy correlation. Agric. For. Meteorol. 1994, 71, 373–401. [Google Scholar] [CrossRef]
- Allen, R.G.; Howell, T.A.; Pruitt, W.O.; Walter, I.A.; Jensen, M.E. Lysimeters for Evapotranspiration and envIronmental Measurements; American Society of Civil Engineers: New York, NY, USA, 1991; pp. 1–9. [Google Scholar]
- Robbins, C.W.; Willardson, L.S. An instrumented lysimeter system for monitoring salt and water movement. Trans. ASAE 1980, 23, 109–111. [Google Scholar] [CrossRef]
- Goddard, W.B. A floating drag-plate lysimeter for atmospheric boundary layer research. J. Appl. Meteorol. 1970, 9, 373–378. [Google Scholar] [CrossRef]
- Armijo, J.D.; Twitchell, G.A.; Burman, R.D.; Nunn, J.R. A large, undisturbed, weighing lysimeter for grassland studies. Trans. ASAE 1972, 15, 827–830. [Google Scholar] [CrossRef]
- Dylla, A.S.; Cox, L.M. An Economical hydraulic weighing evapotranspiration tank. Trans. ASAE 1973, 16, 294–0295. [Google Scholar] [CrossRef]
- LeDrew, E.F.; Emerick, J.C. A mechanical balance-type lysimeter for use in remote environments. Agric. Meteorol. 1974, 13, 253–258. [Google Scholar] [CrossRef]
- Schneider, A.D.; Ayars, J.E.; Phene, C.J. Combining monolithic and repacked soil tanks for lysimeters from high water table sites. Appl. Eng. Agric. 1996, 12, 649–654. [Google Scholar] [CrossRef]
- Malone, R.W.; Bonta, J.V.; Stewardson, D.J.; Nelsen, T. Error analysis and quality improvement of the Coshocton weighing lysimeters. Trans. ASAE 2000, 43, 271. [Google Scholar] [CrossRef]
- Klocke, N.L.; Heermann, D.F.; Duke, H.R. Measurement of Evaporation and Transportation with Lysimeters. Trans. ASAE 1985, 28, 183–189. [Google Scholar] [CrossRef]
- Tyagi, N.K.; Sharma, D.K.; Luthra, S.K. Determination of evapotranspiration for maize and berseem clover. Irrig. Sci. 2003, 21, 173–181. [Google Scholar]
- Marek, T.; Piccinni, G.; Schneider, A.; Howell, T.; Jett, M.; Dusek, D. Weighing lysimeters for the determination of crop water requirements and crop coefficients. Appl. Eng. Agric. 2006, 22, 851–856. [Google Scholar] [CrossRef]
- McFarland, M.J.; Worthington, J.W.; Newman, J.S. Design, installation and operation of a twin weighing lysimeter for fruit trees. Trans. ASAE 1983, 26, 1717–1721. [Google Scholar] [CrossRef]
- Meshkat, M.; Warner, R.C.; Walton, L.R. Lysimeter design, construction, and instrumentation for assessing evaporation from a large undisturbed soil monolith. Appl. Eng. Agric. 1999, 15, 303. [Google Scholar] [CrossRef]
- Yang, S.; Aydin, M.; Yano, T.; Li, X. Evapotranspiration of orange trees in greenhouse lysimeters. Irrig. Sci. 2003, 21, 145–149. [Google Scholar]
- Marek, T.H.; Schneider, A.D.; Howell, T.A.; Ebeling, L.L. Design and construction of large weighing monolithic lysimeters. Trans. ASAE 1988, 31, 477–484. [Google Scholar] [CrossRef]
- Schneider, A.D.; Howell, T.A.; Moustafa, A.T.A.; Evett, S.R.; Abou-Zeid, W. Asimplified Weighing Lysimeter for Monolithic or Reconstructed Soils. Appl. Eng. Agric. 1998, 14, 267–273. [Google Scholar] [CrossRef]
- Evett, S.R.; Warrick, A.W.; Matthias, A.D. Wall material and capping effects on microlysimeter temperatures and evaporation. Soil Sci. Soc. Am. J. 1995, 59, 329–336. [Google Scholar] [CrossRef]
- Payero, J.O.; Irmak, S. Construction, installation, and performance of two repacked weighing lysimeters. Irrig. Sci. 2008, 26, 191–202. [Google Scholar] [CrossRef]
- Seyfried, M.S.; Hanson, C.L.; Murdock, M.D.; Van Vactor, S. Long-Term Lysimeter Database, Reynolds Creek Experimental Watershed, Idaho, United States. Water Resour. Res. 2001, 37, 2853–2856. [Google Scholar] [CrossRef]
- Garcia, M.; Raes, D.; Allen, R.; Herbas, C. Dynamics of reference evapotranspiration in the Bolivian highlands (Altiplano). Agric. For. Meteorol. 2004, 125, 67–82. [Google Scholar] [CrossRef]
- Ati, A.S.; Iyada, A.D.; Najim, S.M. Water use efficiency of potato (Solanum tuberosum L.) under different irrigation methods and potassium fertilizer rates. Ann. Agric. Sci. 2012, 57, 99–103. [Google Scholar] [CrossRef]
- Wang, F.X.; Kang, Y.; Liu, S.P. Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain. Agric. Water Manag. 2006, 79, 248–264. [Google Scholar] [CrossRef]
- Waddell, J.T.; Gupta, S.C.; Moncrief, J.F.; Rosen, C.J.; Steele, D.D. Irrigation and nitrogen management effects on potato yield, tuber quality, and nitrogen uptake. Agron. J. 1999, 91, 991–997. [Google Scholar] [CrossRef]
- Kashyap, P.S.; Panda, R.K. Effect of irrigation scheduling on potato crop parameters under water stressed conditions. Agric. Water Manag. 2003, 59, 49–66. [Google Scholar] [CrossRef]
- Ferreira, T.C.; Carr, M.K.V. Responses of potatoes (Solanum tuberosum L.) to irrigation and nitrogen in a hot, dry climate: I. Water use. Field Crop. Res. 2002, 78, 51–64. [Google Scholar] [CrossRef]
- Al-Rumkhani, Y.A.; Din, S.U. Use of remote sensing for irrigation scheduling in arid lands of Saudi Arabia. J. Indian Soc. Remote Sens. 2004, 32, 225–233. [Google Scholar] [CrossRef]
- Kashyap, P.S.; Panda, R.K. Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agric. Water Manag. 2001, 50, 9–25. [Google Scholar] [CrossRef]
- Tallec, T.; Béziat, P.; Jarosz, N.; Rivalland, V.; Ceschia, E. Crops’ water use efficiencies in temperate climate: Comparison of stand, ecosystem and agronomical approaches. Agric. For. Meteorol. 2013, 168, 69–81. [Google Scholar] [CrossRef]
- Oberholzer, S.; Prasuhn, V.; Hund, A. Crop water use under Swiss pedoclimatic conditions—Evaluation of lysimeter data covering a seven-year period. Field Crop. Res. 2017, 211, 48–65. [Google Scholar] [CrossRef]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agric. Water Manag. 2012, 108, 39–51. [Google Scholar] [CrossRef]
- Alkolibi, F.M. Possible effects of global warming on agriculture and water resources in Saudi Arabia: Impacts and responses. Clim. Chang. 2002, 54, 225–245. [Google Scholar] [CrossRef]
- Stanhill, G. Water use efficiency. Adv. Agron. 1986, 39, 53–85. [Google Scholar]
- Al-Omran, A.M.; Shalaby, A.A. Calculation of water requirements for some crops in the eastern and central regions of the Kingdom of Saudi Arabia. J. Coll. Agric. King Saud Univ. 1992, 4, 97–114. [Google Scholar]
- Al-Ghobari, H.M. Estimation of reference evapotranspiration for southern region of Saudi Arabia. Irrig. Sci. 2000, 19, 81–86. [Google Scholar] [CrossRef]
Location | Longitude | Latitude | Altitude (m) | Region |
---|---|---|---|---|
QU | 43°46′ E | 26°21′ N | 648 | Qassiem |
MOA | 46°43′ E | 24°43′ N | 600 | Riyadh |
AAC | 39°29′ E | 29°29′ N | 724 | Al-Jouf |
KFU | 49°33′ E | 25°21′ N | 179 | Eastern |
Parameter | Region | |||
---|---|---|---|---|
Qassiem | Riyadh | Al-Jouf | Eastern | |
Average production (t ha−1) | 24.40 | 26.97 | 17.69 | 18.25 |
Average water cost ($ m−3) | 0.06 | 0.06 | 0.07 | 0.06 |
Average market price ($ t−1) | 466.7 | 409.3 | 186.7 | 266.7 |
Water requirement (m3 ha−1) | 11843 | 6712 | 8564 | 7130 |
Average variable cost ($ ha−1) | 1089.6 | 5387.5 | 2831.3 | 3852.3 |
Average return ($ ha−1) | 8516.8 | 9989.1 | 5033.8 | 4717.6 |
Average net return ($ ha−1) | 7426.9 | 4601.3 | 2202.7 | 865.3 |
Average water return ($ m−3) | 0.72 | 1.49 | 0.59 | 0.67 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alataway, A.; Al-Ghobari, H.; Mohammad, F.; Dewidar, A. Lysimeter-Based Water Use and Crop Coefficient of Drip-Irrigated Potato in an Arid Environment. Agronomy 2019, 9, 756. https://doi.org/10.3390/agronomy9110756
Alataway A, Al-Ghobari H, Mohammad F, Dewidar A. Lysimeter-Based Water Use and Crop Coefficient of Drip-Irrigated Potato in an Arid Environment. Agronomy. 2019; 9(11):756. https://doi.org/10.3390/agronomy9110756
Chicago/Turabian StyleAlataway, Abed, Hussein Al-Ghobari, Fawzi Mohammad, and Ahmed Dewidar. 2019. "Lysimeter-Based Water Use and Crop Coefficient of Drip-Irrigated Potato in an Arid Environment" Agronomy 9, no. 11: 756. https://doi.org/10.3390/agronomy9110756
APA StyleAlataway, A., Al-Ghobari, H., Mohammad, F., & Dewidar, A. (2019). Lysimeter-Based Water Use and Crop Coefficient of Drip-Irrigated Potato in an Arid Environment. Agronomy, 9(11), 756. https://doi.org/10.3390/agronomy9110756